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Using parallel programming environments on clusters
of workstations

Rudnei Dias da Cunha
Computing Laboratory, University of Kent at Canterbury, U.K.
Centro de Processamento de Dados, Universidade Federal do Rio Grande do Sul, Brasil

Tim Hopkins
Computing Laboratory, University of Kent at Canterbury, U.K.

Abstract. We report our experiences using the parallel programming environ-
ments, PVM, HeNCE, p4 and TCGMSG and discuss some aspects concerning
the performance and software engineering issues.

A brief overview of each environment is given and a number of case
studies written using a number of different programming paradigms are pre-
sented. Some of the examples presented are simple “building-blocks” which
may enhance the performance of parallel applications, others are complete
applications.

K eywor ds Clusters of computers, heterogeneous computing, PVM, HeNCE, p4, TCGMSG

1 Introduction

During the past few years the use of dispersed, networked computers as a pool of processors
cooperating on a task has received considerable attention by industry and academia. Such
“metacomputers” have been able in some cases to surpass some single processor, high-
speed computers, either in terms of cost-performance ratio or indeed in raw execution time.
The winner of the 1992 Gordon Bell Prize in the price/performance category, “Statistical
mechanics of polymer solutions”, was able to reduce the execution time of the application
from 3 hours on a Cray Y-MP to 10 minutes using a metacomputer composed of 48 IBM
RS/6000, 80 Sun SPARC2 and 64 nodes of an Intel iPSC/860 [13].

This is not surprising since in the last years the development of high-performance com-
modity chips has raised the processing speeds in such a way that today’s workstation is the
supercomputer of ten years ago. From 1971 to 1992, the clock speed of CMOS processors
has increased 1000 times and since 1985 this speed has quadrupled every three years [14].
Increase in performance has also affected network data transmission, memory chip density
and disk storage. In 1990 an FDDI network could transmit data at 100 Mbit/s, ten times faster
than an Ethernet network of 1980’s vintage. A similar trend has affected memory chips where
their storage capacity has had a thousandfold increase from 1972 to 1990.

These technological developments favour the metacomputer concept. Indeed, some com-
puter companies like HP and IBM are (re)entering the parallel processing arena with prod-
ucts based on a combination of high-performance commodity processors and high-speed,



low-latency networks; Cray Research is preparing to launch a scalable, massively-parallel
machine using DEC Alpha processors coupled with vector processing units.

In terms of software, a variety of packages are available which allows the control of the
resources in the metacomputer. This report will discuss some of the aspects concerning four
parallel programming environments, namely PVM, HeNCE, p4 and TCGMSG. We provide
an overview of these packages and then proceed to examine some of the issues involved in
running applications written using these packages on a cluster of workstations. We do not
intend to provide an extensive analysis of these packages but rather to concentrate on the
development of parallel applications and their performance. The reader is referred to [14] for
a comprehensive review of the software available for controlling networked resources.

2 Parallél programming environments

The parallel programming environments covered in this report share a number of common
characteristics,

e Computation model: an application is a collection of asynchronous, concurrent sequen-
tial processes, interacting through messages exchanged during their execution time.

Portability of source code across different architectures.

Transparent use of different architectures in the same application.

The possibility of using geographically dispersed machines.

Seamless support for mixed language (C or Fortran 77) applications.

Explicit and manual partitioning and scheduling of an application.

Support function-based distribution of processes.

The machines are regarded as if they were connected via some network and that point-to-
point communication between any two nodes is available. For example, a network could be
like that in Figure 1 where a number of different machines are depicted.

The subsequent sections give some details concerning PVM, p4 and TCGMSG.

21 PWM

PVM, or Parallel Virtual Machine, developed by a team at Oak Ridge National Laboratory,
University of Tennessee and Emory University [9], is a software package which enables the
use of heterogeneous architectures to be used on a single application. PVVM-based application
can be regarded as a collection of remote processes that interact with each other by exchanging
messages during their execution. The current version of PVM is 3.1.5 while an older version,
2.4.2 is still being used. The user is referred to Grant and Skjellum’s report on PVM 2.4.1 [10]
for an in-depth analysis of the system; some of their comments apply to the current version
as well.

PVM is composed of a deemon, running in each machine used in the application, and a
library of functions which are called by the processes in the application. The demon is
responsible for



Figure 1: Example of a network.

Network

e Initiating remote processes at a request made by a process.
e Transferring messages between application processes.
e Providing information regarding the status of the machines.

PVM also provides a “console” program that allows the user to interactively inquire about
the configuration of machines (name of the machine, task id, architecture type, maximum
message size, relative speed), add and delete machines, activate and destroy processes, and
send signals to processes.

The machines are usually interconnected via an industry-standard network like Ethernet or
FDDIY; in the case of an Ethernet network PVM uses either the UDP protocol to exchange
messages between the remote processes via the demons or TCP/IP sockets for point-to-point
communication between the remote processes. These two methods of ferrying messages can
be used on a single application, e.g. some machines may use the UDP protocol and others
may use the point-to-point communication. On multiprocessors like hypercubes or the Intel
Paragon XP, PVM uses proprietary system calls to exchange messages across the network
connecting the processing elements.

If the user requires socket connections, it must be noted that these are established between
the communicating processes the first time they exchange messages. This initial transfer thus
has the additional cost of setting up the connections.

The process of exchanging messages in PVM consists of two different phases by both the
sender and receiver processes

LA release of PVM with FDDI support was not publicly available at the time of writing.



Sender 1. Pack the data types into the message buffer,
2. Send the message.
Receiver 1. Receive the message,
2. Unpack the data types from the message buffer.

Using this approach, it is possible in PVM to transfer different data types in the same message,
by calling as many “pack/unpack” PVM functions as required, for each different data type
values.

One of the main advantages of PVM over other systems like p4 and TCGMSG is the
capability of a process to initiate and terminate remote processes dynamically. The first
process to be started (either at the shell prompt or via the PVM console) can call a PVM
function which spawns the remote processes. The selection of a specific machine to execute
a remote process can be done in three different modes

Transparent A machine from the pool is allocated using an heuristic based on the machine
load and rated performance.

Architecture-dependent A node of a specific architecture is selected.
Node-dependent A specific machine is selected (by its Internet name address).

Once a process is initiated it “enrolls” on PVM and either it can start computing or it can
initiate other PVM processes (see §3.2 for an example).

The use of heterogeneous machines is handled by PVM without the need of interference
by the user. Through the information stored by the deemons, PVM knows whether XDR
conversion must be performed; the user may bypass this if necessary (e.g., for performance
reasons on an homogeneous network).

2.2 HeNCE

HeNCE, the Heterogeneous Network Computing Environment, is a graphical tool for the
development of parallel programs, developed by the PVM team and others [2]. Applications
written either in C or Fortran 77 with HeNCE 1.4 are run under PVVM (either 2.4.x or 3.1.X).
The main feature of HeNCE is that itallows a parallel application to be written at a higher level
than in the other environments. This is achieved by allowing the programmer to graphically
design the interrelationships between the different parts of the application, and explicitly
assign the execution of such parts to different machines without any reference being made to
how the data should be transferred between those parts.

A HeNCE application is written by drawing a graph that represents the temporal relationship
between different parts of an application. This task is done interactively with the graphical
front-end tool, htool. The nodes in the graph can be either compute nodes or HeNCE special
nodes

e Compute nodes have two programs associated with them, called node and source.
These programs can be edited and modified using htool.

The node program is written in the HeNCE language (which uses a C-like syntax) and
its purpose is to indicate the data dependencies in the graph. Using the HeNCE language
the programmer tells HeNCE the type of data (integers, floats, characters), whether the



data is created in the node or inherited from other nodes, and if it is input, output or
input/output data. The language allows data to be initialised in the declaration.

The source program is a sequential code written in either C or Fortran 77 in the form
of subroutines or functions.

e The special nodes represent sequential and parallel flow constructs, including condi-
tional, loop, fan and pipe nodes.

Directed arcs are placed by the user to connect the nodes in the order that the application
requires. Note that these connections, together with any special nodes present in the graph,
imply the order of activation of the nodes during the execution of the application.

Figure 2 shows htool while an application is being composed; the graph of a simple
program (to compute vector inner-products) is being shown together with two editing windows
containing both the node and source programs (in Fortran 77). Immediately above the graph
drawing area are a number of icons representing compute and special nodes, the latter in
pairs to identify the beginning and end of each operation (pipe, loop, fan and conditional
respectively). Note in the graph the presence of a pair of fan nodes (“fan-out”/*fan-in”)
enclosing a compute node; this means that the latter will be replicated a number of times, as
described in the node program for the first fan node.

When the user tells htool to generate the code for the whole application, HeNCE uses
the information present in the graph to produce sections of code, called wrappers, which
call the appropriate PVM routines to transfer the data between the nodes and activate the
source program. Once the application is compiled it can be started from htool using a
configuration matrix entered by the user, which assigns the compute nodes to specific machines
for execution. To each node the user assigns a value that represents the cost of executing
the node subroutine in that machine. This configuration matrix is then used to generate the
configuration file read by the P\VM local demon when it starts.

Once the user requests PVM to be started the application can be executed. The execution
is logged on a trace file and this file can be visually analysed, as shown in Figure 3. A number
of VCR-like buttons are available to control the display of the trace file (rewind, stop, step-
by-step, play) and a timer. The user may request to have windows opened to display icons
specific to the machines used (the Host M ap) and a time-span graph showing the execution
of the application (the Utilization Graph). A window containing a legend of the status of
each node is also available.

Some applications written under HeNCE may suffer in performance. For instance, global
accumulation of data, as needed in the computation of vector inner-products, is not performed
in recursive-doubling fashion. This operation is usually a bottleneck in an application and
it should be replaced by a tuned version where the compute nodes may be started with a
fan-out operation but the compute nodes themselves call a routine which calls PVM routines
to send/receive data and accumulate the partial values. Using HeNCE 1.4 and PVM 2.4.1 it
is possible to use explicit message-passing code for this optimisation.

23 p4

The p4 system, or Portable Programs for Parallel Processors, developed at Argonne National
Laboratory [3], is a software package which allows the programming of a variety of machines,
including both shared- and distributed-memory architectures. Both types of architecture can
be used in a single application.



Figure 2: Building an application with HeNCE.
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Figure 3: Analysing a program execution with HeNCE.
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Messages in p4 are exchanged via TCP sockets on an Ethernet network, either synchronously
or asynchronously. Like PVM, the socket connections are established in run-time when
the first message exchange is required between two processes. P4 does not use the pack-
ing/unpacking concept of PVM; thus only single data type messages can be exchanged.

Heterogeneous architectures can be used on a distributed-memory application via XDR,
but specific send/receive functions must be used for this purpose. The functions provided
by p4 are “instrumented”, meaning that logging for debugging or profiling purposes may be
obtained although recompilation of the application program(s) may be needed. Upshot, a
companion program to p4 allows the information stored in the message logging files to be
displayed graphically.

Initiation of processes on p4, however, is not dynamic; a file describing which machines
will execute which program is read by one of the p4 functions (which must be called by the
user) and the remote processes are then initiated via rsh. As is well know, remote process
execution with rsh is slow; to overcome this a deemon, called server is provided only for the
purpose of starting up the remote processes?. In this case a special file “.p4apps”, residing
at the root directory of the user in each of the machines used, must contain the name of the
program(s) to be executed?®.

P4 favours the master/slave programming model, since a program must call a “slave”
procedure*. P4 also provides functions to perform so-called global operations over the
processes. These functions include maxima and minima, and sums and products and can
operate over either vectors or single variables and are quite useful in numerical linear algebra
applications.

24 TCGMSG

TCGMSG (Theoretical Chemistry Group MeSsaGe-passing system), developed at Battelle
Pacific Northwest Laboratory [11], is a system similar to p4. Both shared- and distributed-
memory applications are supported. For UNIX machines, TCP sockets are used to ferry
the messages between processes in the latter case; in distributed multiprocessors proprietary
system calls are used.

Messages are transferred either in synchronous or asynchronous mode; only single data
type messages may be transferred. Unlike PVM and p4, however, the socket connections
are made between the processes when they are started, whereby each process connects to all
the others. In UNIX systems this may cause problems due to the number of open sockets,
requiring some tuning of the kernel.

Initiation of processes is not dynamic and is performed via a program called “parallel”,
which starts the application programs on the machines via rsh, as specified on a configuration
file similar to that needed on a p4 application. Use of heterogeneous architectures can be
made calling the send/receive functions with specific flags set by the user to obtain XDR
conversion.

Automatic logging of messages can be obtained by calling two routines to enable/disable
the logging of events — these are stored in a file which may be displayed graphically. Global
operations are provided as in p4.

ZNote that this differs from PVM, where the demons may be used as a means of transferring messages.
3If the machines share filestore (like NFS or AFS) then just one such file will be needed.
“Version 1.3, released at the time of writing, does not have this restriction.



3 Examples

In this section we provide some examples of parallel programs implemented using PVM,
HeNCE, p4 and TCGMSG. These examples cover some of the most common operations used
in real applications (for example, parallel file access); we also provide examples of SPMD,
master-slave and function-based algorithms. An example is also provided in the field of linear
algebra, namely a parallel triangular solver. The reader is referred to [6] and [7] for other
examples of linear algebra applications.

The tests were carried on the Ethernet-based network of workstations available at the
Computing Laboratory at the University of Kent. The machines available comprised Sun
SPARC1+, SPARC2 and SPARC10, and HP9000/300.

3.1 Datatransmission rates

In this section we present the data transmission rates obtained using PVM 3.1, p4 1.2 and
TCGMSG 4.02.

The experiments were carried on two different networks, one being the research network
of the Computing Laboratory, which is shared by a number of workstations, of which two
Sun SPARC2 workstations were used. The other network used is a dedicated network with
two Sun SPARC1+ workstations. In both cases a network file system was being used.

The data transfer rates were measured by sending 64-bit word messages of different lengths
between two workstations using Fortran 77 programs incorporating PVM 3.1, p4 1.2 or
TCGMSG 4.02 library routines. The programs used in this experiment are listed in sections
A.1-A3.

The messages were sent in a round-trip between the two workstations a hundred times
and each round-trip was individually timed. The average time is then used to obtain the
data transfer rates. The timing of each round-trip was made calling the UNIX routine
gettimeofday which returns the elapsed time. The timing routines can be found in
section A.1.1.

For the PVM version, the messages were sent using the demons with the UDP protocol
and point-to-point communication with TCP sockets, with and without XDR conversion.
Note that since the networks consisted of homogeneous machines, the conversion will not
take place although some overhead is involved when requiring the unnecessary conversion
to be done. In the p4 and TCGMSG versions the messages were sent in synchronous and
asynchronous mode with and without XDR conversion.

Tables 1-6 show the execution time (in seconds) and the transfer rate (in Mbit/s) obtained
for this experiment. We would like to note that our results are similar to those presented by
Douglas et al. [8]. The following conclusions can be drawn from those results

1. The TCGMSG program shows the best performance, achieving approximately 80% of
the nominal Ethernet rate of 10Mbit/s for the largest message length used.

2. The p4 program has a good performance with more than half of the Ethernet bandwidth
being achieved for the largest messages.

3. The PVM program has the lowest transfer rate (at most half that of the other programs).

4. The overhead of XDR conversion is a 25%-45% increase in the execution time.



Note that in this experiment we are interested in obtaining the time necessary for the message
to arrive at its destination and be made available to the application program. For this reason,
the timings in the PVM version included both packing and unpacking the messages; this is
possibly the main reason for the apparently poor performance of PVM,

We would like to recall that PVM is the only package of those analysed that allows different
data types to be transferred in a single message. However, most numerical applications do
not require this capability.

3.2 Sarting remote processes

Starting a large number of remote processes over a large network may incur substantial
overheads. It is easy to see that if a single process is responsible for starting up the remote
processes, it becomes a bottleneck which can account for a significant proportion of the
overall execution time of the application. We investigated the possibility of using a scattered
initiation of processes and compared such a strategy to the more usual, naive method of a
single process starting up all the remote processes, which we call a linear initiation.

Since the scattered initiation is a dynamic procedure, we used PVM 3.1 in this experiment
which consisted of starting up the remote processes in a binary-tree-like form. Each process,
as it started, received information from its parent node indicating at which level in the tree
the parent process lay and the number of levels required. The remote process then checked
to see if it needed to start two more sons. This procedure was repeated until all processes had
been started.

A comparison between the scattered and linear initiation procedures was made on a network
of Sun workstations. Every time a process was started it selected two different machines on
which to start its sons, if any. For a number of 255 processes, the scattered procedure was
completed in 15s wall-clock time while the linear procedure required 34s.

A simple analysis of these procedures via an analytical model is sufficient to show that the
scattered procedure is superior for a large number of processes. Suppose that p = 2" — 1
processes are required (A denoting the height of the binary-tree) and that 7, is the time
required to start up a remote process. Then the total execution time of the scattered and linear
initiations may be given respectively by

Ts = 2(h —1)T,

TL = (p - 1)Tr
from which we may conclude that 7s < 77, for h > 2.

3.3 Parallel triangular solver

The solution of systems of linear equations is required in many scientific and engineering
applications. Triangular systems arise during the solution of linear systems when using
direct methods based on LU and Cholesky factorisations and for the preconditioning step in
association with various iterative methods.

Parallelising the traditional forward- or backward-substitution methods for lower and upper
triangular systems respectively requires the use of a cyclic or wrap-around partitioning of the
coefficient matrix among the processors. This is due to the inherently sequential nature of both
methods which is overexposed when the coefficient matrix is partitioned in contiguous blocks,

10



Table 1: PVM 3.1: Asynchronous, point-to-point communication with TCP sockets.

No of Dedicated network/SPARC1+ Shared network/SPARC2
64-bit With XDR Without XDR With XDR Without XDR
words | Time(s) Mbit/s Time(s) Mbit/s | Time(s) Mbit/s Time(s) Mbit/s

1] 0.0055 0.02 0.0061 0.02 | 0.0036 0.04 0.0040 0.03

2| 00056 005 0.0060 0.04 | 00036 0.07 0.0036 0.07

10 | 0.0059 0.22 0.0066 0.19 | 0.0041 031 0.0038 0.34
20 | 0.0066 0.39 0.0069 037 | 0.0053 049 0.0042 0.1
100 | 0.0100 1.29 0.0087 147 | 0.0074 173 0.0062 2.07
200 | 0.0154 166 0.0133 193 | 0.0121 212 0.0087 2.94
1000 | 0.0615 2.08 0.0412 3.11 | 0.0880 145 0.0567 2.26
2000 | 0.1326 193 0.1012 253 | 0.1500 1.71 0.1174 218

Table 2: PVM 3.1: Asynchronous, communication via demons.

No of Dedicated network/SPARC1+ Shared network/SPARC2
64-bit With XDR Without XDR With XDR Without XDR
words | Time(s) Mbit/s Time(s) Mbit/s | Time(s) Mbit/s Time(s) Mbit/s

1] 00155 0.01 00136 001 | 0.0116 001 0.0197 0.01

2| 00162 0.02 0.0137 0.02 | 0.0120 0.02 0.0102 0.03

10 | 0.0143 0.09 0.0143 0.09 | 0.0158 0.08 0.0123 0.10
20| 0.0153 0.17 0.0150 0.17 | 0.0131 0.19 0.0149 0.17
100 | 0.0196 0.65 0.0176 0.73 | 0.0131 098 0.0136 0.94
200 | 0.0284 090 0.0249 103 | 0.0196 131 0.0171 1.50
1000 | 0.0856 150 0.0680 1.88 | 0.0606 2.11  0.0434 2.95
2000 | 0.1491 172 0.1227 2.09 | 01269 2.02 0.0941 2.72

Table 3: P4 1.2: Asynchronous, point-to-point communication with TCP sockets.

No of Dedicated network/SPARC1+ Shared network/SPARC2
64-bit With XDR Without XDR With XDR Without XDR
words | Time(s) Mbit/s Time(s) Mbit/s | Time(s) Mbit/s Time(s) Mbit/s

1] 00052 0.02 0.0051 0.03 | 0.0036 0.04 0.0038 0.03

2| 00057 0.05 0.0053 0.05 | 0.0038 0.07 0.0044 0.06

10 | 0.0066 0.19 0.0059 0.22 | 0.0043 030 0.0035 0.36
20 | 0.0092 0.28 0.0062 0.41 | 0.0056 0.46 0.0044 0.58
100 | 0.0113 1.13 0.0094 136 | 0.0070 1.82 0.0046  2.77
200 | 0.0163 157 0.0105 243 | 0.0089 287 0.0072 3.55
1000 | 0.0482 2.66 0.0373 3.44 | 0.0368 3.48 0.0234 547
2000 | 0.1179 2.17 0.0637 4.02 | 0.0643 3.98 0.0440 5381

11



Table 4: P4 1.2: Synchronous, point-to-point communication with TCP sockets.

No of Dedicated network/SPARC1+ Shared network/SPARC2

64-bit With XDR Without XDR With XDR Without XDR
words | Time(s) Mbit/s Time(s) Mbit/s | Time(s) Mbit/s Time(s) Mbit/s

1] 0.0066 0.02 0.0071 0.02 | 0.0044 0.03 0.0042 0.03

2| 00068 0.04 0.0066 0.04 | 0.0048 0.05 0.0043 0.06

10 | 0.0080 0.16 0.0069 0.19 | 0.0063 0.20 0.0046 0.28

20 | 0.0106 0.24 0.0071 0.36 | 0.0068 0.37 0.0046 0.56

100 | 0.0146 0.88 0.0081 158 | 0.0080 160 0.0053 241

200 | 0.0197 130 0.0112 228 | 0.0117 219 0.0080 3.20

1000 | 0.0454 2.82 0.0336 3.81 | 0.0313 4.09 0.0239 5.35

2000 | 0.1153 222 0.0654 392 | 0.0709 3.61 0.0457 5.60

Table 5: TCGMSG 4.02: Asynchronous, point-to-point communication with TCP sockets.

No of Dedicated network/SPARC1+ Shared network/SPARC2

64-bit With XDR Without XDR With XDR Without XDR
words | Time(s) Mbit/s Time(s) Mbit/s | Time(s) Mbit/s Time(s) Mbit/s

1] 0.0049 0.03 0.0047 0.03 | 0.0031 0.04 0.0036 0.04

2| 00048 0.05 0.0046 0.06 | 0.0032 0.08 0.0031 0.08

10 | 0.0064 0.20 0.0049 0.26 | 0.0043 0.30 0.0039 0.32

20 | 0.0066 0.39 0.0050 0.51 | 0.0107 0.24 0.0042 0.62

100 | 0.0095 1.35 0.0065 196 | 0.0179 0.72 0.0049 261

200 | 0.0144 177 0.0094 271 | 0.0118 218 0.0077 3.34

1000 | 0.0450 2.85 0.0217 5.89 | 0.0319 4.01 0.0219 584

2000 | 0.0700 3.66 0.0389 6.58 | 0.0681 3.76 0.0364 7.04

Table 6: TCGMSG 4.02: Synchronous, point-to-point communication with TCP sockets.

No of Dedicated network/SPARC1+ Shared network/SPARC2

64-bit With XDR Without XDR With XDR Without XDR
words | Time(s) Mbit/s Time(s) Mbit/s | Time(s) Mbit/s Time(s) Mbit/s

1] 0.0052 0.02 0.0046 0.03 | 0.0045 0.03 0.0032 0.04

2| 00050 0.05 0.0045 0.06 | 0.0048 0.05 0.0031 0.08

10 | 0.0052 0.25 0.0049 0.26 | 0.0044 0.29 0.0033 0.39

20 | 0.0059 044 0.0051 050 | 0.0042 0.1 0.0033 0.77

100 | 0.0095 1.35 0.0067 190 | 0.0067 192 0.0048 2.67

200 | 0.0150 1.70 0.0103 250 | 0.0104 246 0.0073 3.53

1000 | 0.0434 295 0.0232 551 | 0.0287 4.46 0.0220 5.81

2000 | 0.0765 3.34 0.0372 6.88 | 0.0481 532 0.0342 7.48
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as show in Figure 4. Such a partitioning leads to a situation where the parallel algorithm is
slower than the sequential one due to the communication overheads. By cyclically assigning
blocks of contiguous rows or columns, the processors are kept busier during the execution of
the program and the scalability is increased.

Figure 4: Partitioning of data on triangular solvers.

Contiguous partitioning Cyclic partitioning

X b

e

\\

Processor 0 Processor 1 Processor 2

We have developed an algorithm, called PLTSLES, to solve a lower triangular linear
system which was first implemented on a network of transputers using occam2 (see [5]).
The coefficient matrix is partitioned into blocks (segments) of contiguous rows of a given size
6; these blocks are then assigned cyclically among the processors. The processors also hold
corresponding blocks of the solution vector.

The PLTSLES algorithm uses the forward-substitution method as its basis. For a lower
triangular system of » equations

Lx=1b
we initialise = to b and then, for each segment of x the unknowns (z, 11, ..., Trrs_1) We
apply the forward-substitution steps
T = l'k/[/k,k (1)
i—1
Lkt — Tk4q — ZL}C+,'7]‘$]‘, = 2,3,...,5—1 (2)
1=k

and this segment is said to be defined. It may now be broadcast to the other processors
which still have =—segments to work on and it is also used locally to update the remaining
segments using (2). Similarly, as a processor receives a segment of variables, (2) is applied
to the segments stored in this processor that have not yet been defined. After all variables
needed to update a variable x; have been received by a processor, (1) and (2) are applied to
the variables xy , x411, ..., zris_1 and the process is repeated until all processors have all
their = —segments defined.
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This algorithm is similar to the row-wise algorithm developed by Heath and Romine [12]
but the messages exchanged between the processors are of a fixed length 6. The main
advantage of PLTSLES over the Heath and Romine row-wise algorithm is that it does not
have a optimal value of ¢ after which its scalability degrades substantially. For details, see
[5] and [4].

The PLTSLES algorithm was implemented in Fortran 77 and the results in Table 7 were
obtained on a network of Sun SPARC 2 workstations using PVM 3.1. The value chosen for
the segment size 6 affects the performance since a higher communication load results from a
small value of . As can be seen on Table 7 for 6 = 2 and 6 = 4 the algorithm does not scale
well and may be slower than the sequential forward-substitution method. However as ¢ and
n increase a better performance results.

Table 7: Execution times (in seconds) — parallel triangular solver. Numbers in brackets
indicate speed-up.

Sequen- )
n tial p 8 16 32 64

256 0.06 2 0.28(0 21) 0. 10(0 60) 0.06(1.00) 0.05(1.20) 0.04(1.50) 0.02(1.50)
4 0.18(0.27) 0.10(0.50) 0.05(1.00) 0.02(2.50) 0.01(5.05) O. 01(5 05)
8 0.15(0.33) 0.06(0.83) 0.02(2.51) 0.03(1.67) 0.01(5.05)

512 0.24 2 0.58(0.41) 0.39(0.62) 0.19(1.26) 0.10(2.40) 0.10(2.42) 0. 10(2 18)
4 0.52(0.46) 0.25(0.96) 0.14(1.71) 0.09(2.67) 0.09(2.67) 0.06(4.00)
8 0.33(0.73) 0.14(1.71) 0.08(3.00) 0.07(3.43) 0.06(4.00) 0.04(6.00)

1024 0.84 2 1.37(0.61) 0.87(0.97) 0.46(1.83) 0.42(2.00) 0.43(1.71) 0.38(2.21)
4 1.02(0.82) 0.57(1.47) 0.41(2.05) 0.26(3.23) 0.20(4.20) 0.19(4.42)
8 0.78(1.09) 0.44(1.91) 0.17(4.94) 0.09(3.23) 0.15(4.20) 0.08(4.42)

2048 2.94 2 3.98(0.74) 2.46(1.20) 1.73(1.70) 1.85(1.59) 1.68(1.75) 1.83(1.61)
4 260(1.13) 1.36(2.17) 0.84(3.50) 1.04(2.83) 0.93(3.16) 0.86(3.42)
8 1.49(1.97) 1.11(2.65) 0.61(4.82) 0.54(5.45) 0.53(5.55) 0.34(8.65)
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3.4 A master-slave application

Master-slave applications are characterised by having one master process and a collection of
slave processes. The master process is responsible for generating the tasks to be assigned to
the slaves and receiving the information produced by the slave processes. Usually the slaves
exchange information only with the master process.

As an example application we consider a parallel algorithm to compute the zeros of a
complex-valued function f(z). The sequential algorithm makes an exhaustive search over
a given initial region [xmin, xmax, ymin, ymax|. This region is subdivided into », and n,
intervals along the real and imaginary axis respectively, resulting in a grid of n,n, points.

The search is made by computing | f(z) | for each point z = (z,,y;) on the grid. A point
z' is selected as a minimum if | f(z')| is smaller than the value of | f | at each of its four
neighbouring points in the vertical and horizontal directions. The region containing this point,
delimited by [@;_1, x;11, vi—1, yi+1] IS then searched again until the area of a region is smaller
than some required tolerance. At each search, several regions may be selected.

This algorithm is inherently parallel as the computation at each grid point is independent of
all the others. Since the regions are produced dynamically, allocation of regions to processors
cannot be static, which could lead to load-imbalance. A master-slave model is suited to
parallelising this algorithm since the master process is responsible for attributing tasks to the
slave processes while keeping the application load-balanced (note that other strategies could
be used to parallelise the algorithm).

We allowed a certain level of replication among the slave processes, in the sense that
the grid points in the interfaces between regions are recomputed by each slave process. To
guarantee load-balance, a FIFO queue holding the process identification of the available
slaves is maintained by the master process. This queue impedes starvation of tasks by a slave
process and guarantees load-balance if there are enough regions to be processed or one or
more of the slaves are slower than the others.

The parallel algorithm can be described in terms of its operations by the following

Algorithm 3.1 Master-save.

Master  repeat ...
Produces data to the available servers
Receives data back from the servers
Decidesif to stop
until no more data is available
Sgnal slave processesto die

Server repeat ...
Recelives data from the master
Sends data back to the master
until death

In algorithm 3.1 different types of messages are required. The three packages PVM, p4
and TCGMSG identify messages by a user-specified number and it is important that different
numbers are used for different types of messages; this practice avoids execution errors, helps
in the debugging and makes the program more readable. The messages we used are detailed
in Table 8.
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Table 8: Message types for master-slave application.

Message type Information Originator  Send type
100 Region: Master  Specific to a slave
double r[4]
200 New region(s): Slave Specific to master

int no_of_regions
double r[4*no_of_regions]

300 Signals “no regions found” Slave Specific to master
400 Gather execution statistics Master ~ Broadcast to slaves
500 Execution statistics: Slave Specific to master

int no_of_runs
float exec_time

600 Termination Master Broadcast to slaves

Figure 5: Diagram of the master-slave application.

Master Slave

msgtype 100

o

msgtype 200 or 300

msgtype 400

msgtype 500

msgtype 600

—_—- pecific messages

= = =g Broadcast messages
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The algorithm was coded in C and was executed under PVM 3.1. We used a heterogeneous
network of workstations consisting of

e 6 Sun SPARC 2,
e 2 Sun SPARC 10 and
e 10 HP Apollo 9000 Srs 300

The speed-up results are shown in Figure 6. The speed-up is computed with respect to the
sequential algorithm executed on a single workstation. In Figure 6, the values of p indicate
1 master process and p — 1 slave processes, running on separate workstations. Overall, an
efficiency of at least 65% is obtained with this implementation.

Figure 6: Speed-up of the master-slave application.
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3.5 Anexample of a function-based partitioning of an application

Many applications are composed of computational modules which may be executed most
efficiently on different types of architectures. For instance, one module may execute most
efficiently on a vector processor, while another has an inherent parallelism that matches a
distributed-memory machine, and perhaps another is essentially sequential, requiring a very
fast scalar processor. Such applications may be partitioned among different machines in terms
of the functions performed by each section of code.

In this section we provide an example of such an application which is divided into three
modules, each running with different hardware/software configuration. This example has the
following characteristics

e Two architectures: the implementation uses 2 Sun SPARC2 and an array-processor, an
AMT DAP-500 array processor

e Three different languages: C, Fortran 77 and Fortran™ (the latter used in the DAP)

The application was the solution of a partial differential equation describing the electrical
potential on a circular region. The equation was discretised on a square grid of 32 x 32 nodes
and only those inside the circular region were used; a relaxation technique was then applied
to solve the PDE. The values of the electrical potential at the nodes were then displayed
in graphical form, depicting the region and associating with each node a different colour
according to the value at that point. This application has clearly two distinct phases

1. Solving the PDE
2. Displaying the results

The relaxation technique used in phase 1 makes extensive use of matrix operations and may
be executed efficiently on distributed-memory, vector and array-processor architectures. To
demonstrate the feasibility of using different architectures in the same application, we decided
to use the AMT DAP-500 array-processor with 32 x 32 processing elements. This machine
is linked via a high-speed bus to a Sun SPARC2 workstation which acts as a host to the DAP;
this workstation is linked through an Ethernet to the UKC network.

Any DAP application consists of two separate codes: one executes in the host machine
and is mainly responsible for 1/0 operations (from the host to the DAP and back) and starting
up the code that runs on the DAP. In our application, the host code was written in Fortran 77
and the DAP code in Fortran*®, a superset of Fortran 77 with data-parallel extensions similar
to those found in Fortran 90. Note that only the host code used PVM to communicate with
the display program — it received data from the display program (through PVM calls), sent it
to the DAP (through DAP calls), activated the DAP program, received the computed values
from the DAP program and sent it back to the display program via PVM.

The display program was written in C and made use of a locally developed, X-windows
based graphical library. This program, running on a remote workstation, performs a number
of tasks

1. Input of parameters needed for the relaxation technique running on the DAP,

2. Activation of the host program on the DAP front-end,

5This program was adapted from an example found in [1].
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3. Sending data to the host program and waiting to receive the electrical potential values
computed by the DAP, and sent by the host program,

4. Displaying the results by mapping then via a colour look-up table and displaying them
in the screen.

Figure 7 shows the relationship between the three programs used in this application and Figure
8 shows the output of the display program.

35.1 Using HeNCE

This example was also implemented using HeNCE, after an original implementation had been
achieved. Our purpose was to investigate the work necessary to convert an already existing
application with explicit message-passing to the HeNCE environment.

As shown in §A.5, there is a single portion of the code in the function main which
exchanges messages with the DAP host program. The whole program was broken into three
separate parts: an initialisation module to set parameters for the relaxation technique (in C),
a compute module (in Fortran 77 and Fortran*) and finally the display module (in C). Both
the initialisation and the display modules are executed on a Sun SPARC 2 workstation and
the compute module is necessarily run on the DAP (host and DAP proper).

These modifications were fairly easy to make, and no modifications were necessary on the
DAP code. However, building the application was not straightforward; the use of different
languages in the same application is not well supported in HeNCE. In this case, this was
circumvented by running htool on both workstations, using the samegraph for the application:
on one we built the C modules and on the other the Fortran 77 module. The codes were
then installed in the appropriate directories and the application was started from the remote
workstation. Figure 9 illustrates htool in compose mode with several editing windows open
showing the node and source programs.
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Figure 7: Diagram of the function-based application.
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Figure 8: Output of the function-based application.
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Figure 9: The function-based application under HeNCE.

P htool a1

AB:86:66.158 1/8 DONE F B @
AR:88:80. 158 2/0 READY F 8 8
exit trace mode.

compose mode.

|direct0ry: Dispelepot-hence |: :|costs: dispe]eput.mat||tracefi]e: dispe1ep0t.trace||1anguage: C

.|cunfig||bu11d||trace| |start pvm||execute||pr1nt||1egend| |qu1t|

|'IDad||st0r“e||c1ear‘||cr"it1'c||C1eanup||r‘edr‘aw||he1p|

@ ——[Ulnv]al?]3]

l
MODE [ 480 45d ] 1
NEW <> float eps=H.0EEE1A;
HNEW <> int maxit=188;
init{&maxit, &eps);

fusritmphaaal7661 ET]
HODE [ 4ee 368 ] 2

< eps;
SOdispmy < mgxit;
MEW <> float maxpot;
MEW <> float minpot;
MEW <> float pot[32][32];
compute{maxit, eps, &minpot, &mas=pot, pot);

fusritmpicaaal7661
NODE [ 488 158 ] 3

< maxpot;
2 C) compute < minpot:

< pot[IL];
display(minpot, maxpot, pot);

display.c 2]

/* Set colours */
wn_set_pixel_colors(colors,ncols);

101’n'it

void display(minpot,maxpot,pot)

int wn;
{ int Ry, 1;
int width, height;

21



3.6 Paralld file access

Many applications have to read a file to gain access to input data. In a parallel application
it is often necessary that simultaneous read accesses to the file are allowed to minimise the
start-up time of the application. If this is not possible, then an additional overhead is incurred,
that of broadcasting the data from the processing node that has the capability of file access to
the other nodes cooperating in the task.

In our case, all the workstations on our local research network share the filestore system
using NFS. This characteristic allows for a number of processes to make requests to the NFS
file-server to provide the 1/0O operations on files. It is also possible to have many processes
simultaneously reading the same file with some degree of concurrency since NFS servers
work asynchronously, buffering the requests made to them. There is a limit to the number of
processes that can be satisfactorily serviced by the server dictated, among other reasons, by
the number of NFS demons running.

We tested the capability of simultaneously reading files using a Fortran 77 program which
starts a number of similar processes using PVM. Each process reads a number of records from
a file containing 8000 records, the number of records read being a function of the number of
processes. The results shown in Table 9 indicate that as we increase the number of processes
the scalability decreases, although this performance can be improved by tuning the NFS
installation.

As an implementation note, we stress that a PVM 3.1 program reading files will look in
the directory where the application program resides (usually pvm3 /bin/ARCH) unless a
specific path to the file is used. The program is listed in §A.6.

Table 9: Execution times — parallel file reading.

p Recordsread Time(s) 5,
1 8000 1.64 -
2 4000 082 2.00
4 2000 046  3.57
8 1000 030 545
16 500 0.19 8.63

4 Summary

In this paper we have presented a number of different applications and their implementations
on a number of public-domain parallel programming environments.

Three of the environments, PVM, p4 and TCGMSG, can be used to develop parallel
applications across a number of different architectures. In terms of raw data transfer rates,
our experiments show that TCGMSG offers the best performance, followed by p4 and PVM.
However, this factor may not be sufficient to select one of these environments since they
present many different capabilities. PVM allows dynamic initiation of processes while p4
and TCGMSG offer more support for numerical linear algebra applications by providing
global accumulation routines. p4 also supports shared-memory architectures which can be
used together with distributed-memory architectures in the same application.
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Developing applications using these three environments is at a low-level, whereby the
programmer explicitly calls routines to send/receive messages. HeNCE is a step forward in
the development of parallel applications, freeing the application designer from the details of
message-passing. Parallel applications are easily written under HeNCE allowing the re-use
of (perhaps old) sections of code, which may be restructured in a single parallel application.
Some aspects of performance need to be addressed in HeNCE, particularly when critical
sections of code are repeatedly executed. Nonetheless we believe that HeNCE paves the way
for the evolution of parallel programming in the future.
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A Appendix —Program listings

Al Datatransmission rate—PVM 3.1 version
program roundtrip
include ’fpvm3.h’'

parameter (nn=50000)
parameter (nnl=8)

integer mytid,numt, info,parenttid, slavetid,mode, advise
character*8 mach

character*12 task

c Constants for ‘advise’ and ‘mode’ are defined in ’'fpvm3.h’

c parameter (advise = PVMDONTROUTE)
parameter (advise = PVMROUTEDIRECT)
c parameter (mode = PVMDEFAULT)
parameter (mode = PVMRAW)
parameter (mach = ‘beech’)

double precision u(nn)

integer sizes(nnl), reps

parameter (reps = 100)

data sizes/1,2,10,20,100,200,1000,2000/
real avt,rate,mbit, tsec

integer s0,sl,s,maxt,mint, tott,usec
external usec

c Enroll this program in PVM
call pvmfmytid (mytid)
if (mytid.lt.0) then
print *,’failure in pvmfmytid on round-trip’
stop
endif

call pvmfadvige (advise, info)
if (info.lt.0) print *, ’'pvmfadvise(’,advise,’) failed’

call pvmfparent (parenttid)
if (parenttid.lt.0) then

¢ I am master

¢ Initiate round-trip slave
task='round-trip’
call pvmfspawn (task, PVMHOST,mach,1,slavetid, numt)
if (numt.lt.0) then
print *,’Failure in pvmfspawn’
stop
endif

c Start bandwidth tests

write(6,200)
200 format ('PVM 3.1: Message bandwidth, round-trip, ',
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+'£77 version, ',
+’double-precision data’/

if (advise.eq.PVMDONTROUTE) then
write(6,210)
210 format (' Timings include packing/unpacking of data.’/
+’Communication via daemons with UDP’)
else if (advise.eq.PVMROUTEDIRECT) then
write(6,215)

215 format (' Timings include packing/unpacking of data.’/
+’Communication with TCP sockets’)
endif

if (mode.eqg.0) then
write(6,220)
220 format (‘With XDR encoding (PVMDEFAULT) ')
else if (mode.eqg.l) then
write(6,230)
230 format ('Without XDR encoding (PVMRAW) ')
endif

c Perform some round-trips before actually timing

msgtype=100

do 15 j=1,10
call pvmfinitsend (mode, info)
call pvmfpack (REAL8,u,1l,1,info)
call pvmfsend(slavetid,msgtype, info)
call pvmfrecv(slavetid, msgtype, info)
call pvmfunpack (REAL8,u,1,1,info)

15 continue

do 20 i=1,nnil
write(6,500)sizes (1)
500 format ('Message length= ’,1i7,’ double-precision words’)
maxt=-1
mint=999999
tott=0
do 30 j=1,reps
sO=usec ()
call pvmfinitsend (mode, info)
call pvmfpack (REALS,u,sizes(i),1,info)
call pvmfsend(slavetid, msgtype, info)
call pvmfrecv(slavetid, msgtype,info)
call pvmfunpack (REAL8,u,sizes(i),1,info)
sl=usec ()
s=s1-s0
mint=min (mint, s)
maxt=max (maxt, s)
tott=tott+s
30 continue
avt=real (tott) /real (reps)
mbit=64*sizes (i) /leé6
tsec=avt/2e6
rate=mbit/tsec
write(6,1000)avt,mint, maxt, rate
1000 format (' Average=',£15.8,’ us, Min =’,ie6,
+’ us, Max=',16,’ us, Rate='’,f15.8,’ Mbit/s’/)
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20 continue
else
c I am slave

c Perform some round-trips before actually timing
msgtype=100
do 35 j=1,10
call pvmfrecv(parenttid, msgtype, info)
call pvmfunpack (REAL8,u,1l,1,info)
call pvmfinitsend (mode, info)
call pvmfpack (REAL8,u,1l,1,info)
call pvmfsend (parenttid, msgtype, info)
35 continue

do 40 i=1,nnil

do 50 j=1,reps
call pvmfrecv(parenttid, msgtype,info)
call pvmfunpack (REAL8,u,sizes(i),1,info)
call pvmfinitsend (mode, info)
call pvmfpack (REALS,u,sizes(i),1,info)
call pvmfsend (parenttid, msgtype,info)
50 continue

40 continue
endif

c program finished leave PVM before exiting
call pvmfexit (info)

stop
end

Al11 The“usec” routines

#include <sys/time.h>
#include <time.h>

int usec()

{

struct timeval tv;

gettimeofday (&tv, (struct timezone*)O0) ;
return tv.tv_sec*1000000+tv.tv_usec;

}

int usec_()

{
}

return usec() ;
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A.2 Datatransmission rate—p4 1.2 version

program roundtrip
include ‘p4f.h’

call p4init ()

if (p4myid() .eq.0) then
call pécrpgl()

endif

call fslave()

call p4cleanup ()

stop
end

subroutine fslave ()

integer lenint,lenreal, lendble,any
parameter (lenint=4,lenreal=4,lendble=8,any=-1)

integer myid,nprocs,msgtype,msglen,reclen, to, from
include ’‘p4f.h’

integer p4myid,p4ntotids
external p4myid,pé4ntotids

external pé4send,pédrecv

parameter (nn=50000)
parameter (nnl=8)

double precision u(nn)

integer sizes(nnl), reps

parameter (reps = 100)

data sizes/1,2,10,20,100,200,1000,2000/
real avt,rate,mbit, tsec

integer s0,sl,s,maxt,mint, tott,usec
external usec

c Start

myid=p4myid ()
nprocs=p4ntotids ()

c Start bandwidth tests

if (myid.eqg.0) then
write(6,200)
200 format (//'Message bandwidth, round-trip ’,
+'£77/p4 version, ',
+’double-precision data’/

write(6,210)
¢ 210 format ('Asynchronous messages.’/’'XDR conversion.'’)
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¢ 210 format ('Asynchronous messages.’/’No XDR conversion.’)
¢ 210 format (’Synchronous messages.’/’XDR conversion.’)
210 format (’Synchronous messages.’/’'No XDR conversion.'’)

to=1
from=1

c Perform some round-trips before timing
msgtype=100
msglen=lendble
do 15 j=1,reps
call p4send(msgtype,to,u,msglen, info)
call p4recv(msgtype, from,u,msglen,reclen, info)
15 continue

do 20 i=1,nnil
write(6,500)sizes (1)
500 format ('Message length= ’,1i7,’ double-precision words’)
msglen=sizes (i) *lendble
maxt=-1
mint=999999
tott=0
do 30 j=1,reps
sO0=usec ()
Asynchronous/With XDR
call p4sendx(msgtype, to,u,msglen, PADBL, info)
Asynchronous/No XDR
call p4send(msgtype,to,u,msglen,info)
Synchronous/With XDR
call p4sendrx(msgtype, to,u,msglen, PADBL, info)
Synchronous/No XDR
call p4sendr (msgtype,to,u,msglen,info)

Q00 QoA

call p4recv (msgtype, from,u,msglen,reclen, info)
sl=usec ()
s=s1-s0
mint=min (mint, s)
maxt=max (maxt, s)
tott=tott+s
30 continue
avt=real (tott) /real (reps)
mbit=64*sizes (i) /leé6
tsec=avt/2e6
rate=mbit/tsec
write(6,1000)avt,mint, maxt, rate
1000 format (' Average=',£15.8,’ us, Min =’,i6,
+’ us, Max=',16,’ us, Rate=',f15.8,’ Mbit/s’/)

20 continue
else

c I am slave
to=0

from=0

c Perform some round-trips before timing
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Q0 Q0aaan

msgtype=100
msglen=lendble
do 35 j=1,reps
call p4recv(msgtype, from,u,msglen,reclen, info)
call p4send(msgtype,to,u,msglen, info)
35 continue

do 40 i=1,nnil
msglen=sizes (i) *lendble
do 50 j=1,reps
call p4recv (msgtype, from,u,msglen,reclen, info)

Asynchronous/With XDR

call p4sendx(msgtype, to,u,msglen, PADBL, info)
Asynchronous/No XDR

call p4send(msgtype,to,u,msglen,info)
Synchronous/With XDR

call p4sendrx(msgtype, to,u,msglen, PADBL, info)
Synchronous/No XDR

call p4sendr (msgtype,to,u,msglen,info)
50 continue

40 continue
endif

return
end
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A.3 Datatransmission rate— TCGMSG version

program roundtrip

integer lenint, lenreal, lendble,any
parameter (lenint=4,lenreal=4,lendble=8,any=-1)
parameter (idbgon=1,idbgoff=0)

integer myid,nprocs,msgtype,msglen, reclen, sync,
+to, from, recfrom

include ’'msgtypesf.h’

integer nodeid, nnodes
external nodeid, nnodes

external snd, rcv

parameter (nn=10000)
parameter (nnl=8)

double precision u(nn)

integer sizes(nnl), reps

parameter (reps = 100)

data sizes/1,2,10,20,100,200,1000,2000/
real avt,rate,mbit, tsec

integer s0,sl,s,maxt,mint, tott,usec
external usec

c Start
call pbeginf

myid=nodeid ()
nprocs=nnodes ()

c Start bandwidth tests

Q

Asynchronous (sync=0)/synchronous (sync=1)
c sync=0
sync=1

if (myid.eqg.0) then
write(6,200)
200 format ('Message bandwidth, round-trip, ',
+'£77/tcgmsg version, ',
+’double-precision data’/

write(6,210)
¢ 210 format ('Asynchronous messages.’/’'XDR conversion.')
210 format (’'Asynchronous messages.’/’No XDR conversion.’)
¢ 210 format (’Synchronous messages.’/’XDR conversion.’)
210 format (’Synchronous messages.’/’'No XDR conversion.')

Q

to=1
from=1

31



c Perform some round-trips before timing
msgtype=100
msglen=lendble
do 15 j=1,10
call snd(msgtype,u,msglen, to, sync)
call rcv(msgtype,u,msglen,reclen, from, recfrom, sync)
15 continue

do 20 i=1,nnil
write(6,500)sizes (1)

500 format ('Message length= ’,i7,’ double-precision words’)
msglen=sizes (i) *lendble
maxt=-1
mint=999999
tott=0

do 30 j=1,reps

¢ Round-trip messages
sO=usec ()
c With XDR
c call snd(msgtype+MSGDBL,u,msglen, to, sync)
c call rcv(msgtype+MSGDBL,u,msglen,reclen, from,recfrom, sync)
¢ No XDR

call snd(msgtype,u,msglen, to, sync)
call rcv(msgtype,u,msglen, reclen, from, recfrom, sync)
sl=usec ()
s=s1-s0
mint=min (mint, s)
maxt=max (maxt, s)
tott=tott+s
30 continue
avt=real (tott) /real (reps)
mbit=64*sizes (i) /leé6
tsec=avt/2e6
rate=mbit/tsec
write(6,1000)avt,mint, maxt, rate
1000 format (' Average=',£15.8,’ us, Min =’,i6,
+’ us, Max=',16,’ us, Rate=',f15.8,’ Mbit/s’/)

20 continue
else

c I am slave
to=0
from=0

c Perform some round-trips before timing
msgtype=100
msglen=lendble
do 35 j=1,10
call rcv(msgtype,u,msglen,reclen, from, recfrom, sync)
call snd(msgtype,u,msglen, to, sync)
35 continue

do 40 i=1,nnil
msglen=sizes (i) *lendble
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Q0 Q0

do 50 j=1,reps
With XDR
call rcv(msgtype+MSGDBL,u,msglen, reclen, from,recfrom, sync)
call snd(msgtype+MSGDBL,u,msglen, to, sync)
No XDR
call rcv(msgtype,u,msglen,reclen, from,recfrom, sync)
call snd(msgtype,u,msglen, to, sync)
50 continue

40 continue
endif

call pend

stop
end
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A4 Master-save application
Master program

<stdio.h>
<stdlib.h>
#include <stddef.h>
#include <math.h>

#ifdef SUN4

#include <sys/time.h>
#include <sys/resource.h>
#telse
#include
#endif

#include
#include

<time.h>

#include "pvm3.h"

#include "zroot.h"

#define MAXNHOSTS 18
#define MAXNSLAVES MAXNHOSTS-1

/* SLAVENAME is the name of the slave process */
#define SLAVENAME "zrootps"

void divide (xmin, xmax,ymin, ymax,r,nr)

double xmin,xmax,ymin,ymax;
double «r[];
int *nr;

{

/* Divides a rectangular region into four new subregions of
length half the x- and y-lengths of the region */
double dx,dy;

dx=xmax-xmin; dy=ymax-ymin;

*nr=4;

r[0]=xmin; r[l]=xmin+dx/2.0;
r[2]=ymin; r[3]=ymin+dy/2.0;
r[4]l=r[1]; r[5]=xmax;
r[6]l=ymin; r[7]=r[3];
r[8]=xmin; r[9]=xmin+dx/2.0;
r[10]=r[3]; r[ll]=ymax;
r[12]=r([1]; r[13]=xmax;
r[14]=r[3]; r[l5]=ymax;

}

void topzscan(nslaves, tids,xmin,xmax,nx,ymin,ymax,ny,tol, z,nz,nruns, info)

int nslaves;
int tids|[];
double xmin,xmax,ymin,ymax,tol;
int nx,ny, *nruns, *info;
double zI[];
int *nz;
{
double (gl[IQSIZE];
int gi,qf,ql;
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int k,h,1,s;

double dx,dy,nxmin,nxmax,nymin,nymax,norm;
double ~r[IRSIZE];

double aregion[4];

int nr;

int toreceive;

/* Queue for slaves */
int free [MAXNSLAVES] ;
int freei, freef, freel, infol;

/* PVM variables */
int infopvm, msgtype,bufid, slavetid, bytes;

/* Start */

/* Put all the slaves ids into the queue of
available slaves*/

ginit (&qi, &gf, &ql) ;

ginit (&freei, &freef, &freel) ;

*info=0;

for (k=0;k<nslaves;k++) {
infol=igins (tids [k], &freei, &freef, &freel, MAXNSLAVES, free) ;
if (infol<0) goto bail;

}

/* Subdivide initial region into four new regions */
divide (xmin,xmax,ymin, ymax, r, &nr) ;

/* Put new regions into queue */

h=0;

for (k=0;k<nr;k++) {
*info=gins (r[h], &gqi, &gqf, &ql, IQSIZE,q) ;
if (*info<0) goto bail;
*info=gins(r [h+1], &gqi, &qf, &gql, IQSIZE, q) ;
if (*info<0) goto bail;
*info=gins (r [h+2], &gqi, &qf, &gql, IQSIZE, q) ;
if (*info<0) goto bail;
*info=gins (r [h+3], &gqi, &qf, &gql, IQSIZE, q) ;
if (*info<0) goto bail;
h=h+4;

}

/* Loop through queue, scanning the regions. Put in queue new
regions if the area is larger than the tolerance, otherwise
store in the z array

*/

*nruns=0;

*nz=0;

1=0;

while (gl>0) {

(*nruns) ++;

/* Send regions to available slaves */

toreceive=0;
while ((freel>0)&&(gl>0)) {
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/* Get a slave id from the queue of available slaves */
infol=igdel (&slavetid, &freei, &freef, &freel, MAXNSLAVES, free) ;

/* Retrieve new region from queue */

if (*info<0) goto bail;

*info=gdel (&aregion[1], &qi, &qf, &gql, IQSIZE, q) ;
if (*info<0) goto bail;

*info=qgdel (&aregion[2], &qi, &qf, &gql, IQSIZE, q) ;
if (*info<0) goto bail;

*info=gdel (&aregion[3], &qi, &qf, &gql, IQSIZE, q) ;
if (*info<0) goto bail;

msgtype=100;
#ifdef UNIQUE
bufid=pvm initsend (PvmDataRaw) ;
#else
bufid=pvm_initsend(PvmDataDefault) ;
#endif
infopvm=pvm pkdouble (aregion,4,1) ;
infopvm=pvm pkint (&nx,1,1);
infopvm=pvm pkint (&ny,1,1);
infopvm=pvm_ send(slavetid,msgtype) ;

toreceive++;

}

for (s=0;s<toreceive;s++) {
/* Receive message from any slave */
bufid=pvm recv(-1,-1);
if (bufid<0) {
printf ("Error on pvm recv! Bailing out!\n");
goto bail;

}

infopvm=pvm bufinfo (bufid, &bytes, &msgtype, &slavetid) ;
/* Put slave into queue of available slaves */
infol=igins(slavetid, &freei, &freef, &freel, MAXNSLAVES, free) ;

switch (msgtype) {
/* New region */
case 200: /* Unpack region from message buffer */
infopvm=pvm upkint (&nr,1,1) ;
infopvm=pvm upkdouble(r,nr*4,1) ;

h=0;
for (k=0;k<nr;k++) {
/* Put new region into queue if region
is larger than tolerance */
dx=r [h+1] -r[h];
dy=r [h+3] -r [h+2] ;
norm=hypot (dx, dy) ;
if (norm<tol) {
if (1==INROOT) {
*info=-3;
goto bail;

}
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if (*n
*inf

bail: ;

int
main (argc, argv
int argc;
char *argvl|];
{
float
double
int
double
int
int
/* For
#ifdef SUN4
struct
long
#telse
clock
#endif
float
/* PVM
int

int

/* Store into z the midpoint of the region
(*nz) ++;
z[1l]l=r[h]+dx/2.0;
z[1+1]l=r[h+2]1+dy/2.0;
1=1+2;

}

else {
/* Put new region in the queue */
*info=qgins (r[h], &gqi, &gqf, &gql, IQSIZE, q) ;
if (*info<0) goto bail;
*info=gins(r [h+1], &gqi, &qf, &gql, IQSIZE, q) ;
if (*info<0) goto bail;
*info=gins (r [h+2], &gqi, &qf, &ql, IQSIZE, q) ;
if (*info<0) goto bail;
*info=gins (r [h+3], &gqi, &qf, &ql, IQSIZE, q) ;
if (*info<0) goto bail;

}

h=h+4;

}
break;
/* No new region */
case 300: break;

z==0) {

o=-5;

)

rxmin, rxmax, rymin, rymax, rtol;
xmin, xmax,ymin, ymax, tol;
nx,ny, info;

z [INROOT] ;

nz;

i,j,nruns, slavenruns;
timing purposes */

rusage ru0l,ru;
ts, tu;

t to,tl;

t,slavet;
variables */

*/

infopvm,nslaves, mytid, myid, msgtype,bufid, nhosts,narches,

slaveid;
tids [MAXNSLAVES] ;
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struct hostinfo *hosts = 0;
/* Get input parameters */

if (argc<8) {
printf (" wusage: %$s xmin xmax nx ymin ymax ny nslaves\n",
argv([0]) ;
exit (-1);
}
else {
xmin= (double)atof (argv[1l]) ;
xmax= (double)atof (argv[2]) ;
nx=atoi (argv([3]) ;
ymin= (double)atof (argv[4]) ;
ymax= (double)atof (argv[5]) ;
ny=atoi (argv([6]) ;
nslaves=atoi (argv([7]) ;
}
printf ("ZROOT Parallel, nslaves=%d\n\n",nslaves) ;
printf ("Region:\nxmin=%f xmax=%f nx=%d\n",xmin, xmax,nx) ;
printf ("ymin=%f ymax=%f ny=%d\n",ymin, ymax,ny) ;

/* Enroll in PVM */

myid=0;

mytid=pvm mytid() ;

if (mytid<o) {
printf ("Failed to enroll! Bailing out!\n");
exit (-1);

}

/* Set socket connections */
#ifdef SUN4
infopvm=pvm advise (PvmRouteDirect) ;
telse
infopvm=pvm_advise (PvmDontRoute) ;
#endif
if (infopvm<0) {
printf ("Failure on pvm_advise! Bailing out!\n");
pvm_exit () ;
exit (-1);

}

/* Acquire information about PVM configuration */
infopvm=pvm config(&nhosts, &narches, &hosts) ;
if (infopvm<0) {
printf ("Failure on pvm config! Bailing out!\n");
pvm_exit () ;
exit (-1);
}
if (nslaves>(nhosts-1)) {
printf ("Not enough processors available! Bailing out!\n");
pvm_exit () ;
exit (-1);

}

/* Initiate nslaves instances of SLAVENAME program */

38



for (i=1;i<=nslaves;i++) f{
infopvm=pvm_ spawn (SLAVENAME, (char**) 0, PvmTaskHost,
hosts[i] .hi name,1,&tids[i-1]);
if ((infopvm<O0) || (tids[i-1]1<0)) {
printf ("Failure on pvm spawn while starting slave on %s,
tids=%d! Bailing out!\n",hosts[i] .hi name, tids[i-1]);
pvm_exit () ;
exit (-1);
}
}

/* Send ids to slaves */
msgtype=50;
for (i=0;i<nslaves;i++) {
#ifdef UNIQUE
bufid=pvm initsend (PvmDataRaw) ;
telse
bufid=pvm_initsend(PvmDataDefault) ;
#endif
infopvm=pvm pkint(&i,1,1);
infopvm=pvm send(tids[i],msgtype) ;

}

/* Initiate computation */
tol=1.0e-10;

#ifdef SUN4
getrusage (RUSAGE_SELF, &ru0) ;
#telse
t0=clock () ;
#endif
topzscan (nslavesg, tids, xmin, xmax, nx,ymin, ymax,ny, tol,
z,&nz, &nruns, &info) ;

/* Get execution time */
#ifdef SUN4
getrusage (RUSAGE_SELF, &ru) ;
tu=(ru.ru _utime.tv_sec-rul0.ru utime.tv_sec)*1000000+
ru.ru_utime.tv_usec-rul0.ru utime.tv_usec;
ts=(ru.ru_stime.tv_sec-rul0.ru stime.tv_sec)*1000000+
ru.ru_stime.tv_usec-rul0.ru stime.tv_usec;
t=((float) (tu+ts))/1000000.0;
#else
tl=clock() ;
t=((float) (t1-t0)) /CLOCKS_PER_SEC;
#endif
printf ("\nMaster elapsed-time (s)= %f nruns=%d\n",t,nruns) ;
/* Request statistics from slaves */
msgtype=400;
#ifdef UNIQUE
bufid=pvm initsend (PvmDataRaw) ;
#else
bufid=pvm initsend (PvmDataDefault) ;
#endif
infopvm=pvm mcast (tids,nslaves,msgtype) ;
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/* Receive execution times from slaves */
msgtype=500;
for (i=0;i<nslaves;i++) {
bufid=pvm recv(-1,msgtype) ;
if (bufid<0) {
printf ("Error on pvm recv! Bailing out!\n");
pvm_exit () ;
exit (-1);

}

infopvm=pvm upkint (&slaveid,1,1) ;

infopvm=pvm upkfloat (&slavet,1,1);

infopvm=pvm upkint (&slavenruns,1,1);

printf ("Slave %2d elapsed-time (s)= %f nruns=%d\n",
slaveid, slavet, slavenruns) ;

}

/* Broadcast termination message to slaves */
msgtype=600;

#ifdef UNIQUE

#telse

#endif

bufid=pvm initsend (PvmDataRaw) ;
bufid=pvm_initsend(PvmDataDefault) ;
infopvm=pvm mcast (tids,nslaves,msgtype) ;

/* Process is finished, leave PVM */
pvm_exit () ;

switch (info) ({

case O0: printf ("Roots:\n");
printf ("No. of roots found=%d\n",nz) ;
/*
j=0;
for (i=0;i<nz;i++) {

printf ("z(%d)= %f %f\n",1i,z[j],z[j+11);
Jj=3+2;

}
*/
break;

case -1: printf ("Failure: queue full\n");
break;

case -2: printf ("Failure: queue empty\n");
break;

case -3: printf ("Failure: exceeded number of roots\n");
break;

case -4: printf ("Failure: exceeded number of regions\n");
break;

case -5: printf ("Failure: no roots found\n") ;
break;

exit (0) ;
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Save program

#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <math.h>

#ifdef SUN4

#include <sys/time.h>
#include <sys/resource.h>
#telse

#include <time.h>

#endif

#include "pvm3.h"

#include "zroot.h"
#include "funcdef.h"

#define MAXNHOSTS 18
#define MAXNSLAVES MAXNHOSTS-1

double zfunc (x,y,nroots,rr,ri)
double x,vy;
int nroots;
double rr(],rill;
{
int k;
double a,b,c,d,u,v;

a=1.0; b=0.0;

for (k=0;k<nroots;k++) {
c=x-rr[k]; d=y-ril[k];
u=a*c-b*d; v=a*d+b*c;
a=u; b=v;

}

return (hypot (a,b));

}

void surpts(x,y,ix,iy,xmin,ymin,dx,dy,nx0,ny0,nroots,rr,ri,px,py,paf)
double x,y,xmin,ymin,dx,dy,nx0,ny0;

int ix, iy;

int nroots;

double rrl[]l,rill;

double pxI[],pyl];

double pafl];

{

double t;
double maskI([2];
int i;

mask[0]=-1.0; mask[1]=1.0;

(i=0;i<2;i++) {
t=((double)ix+mask[i]-1.0) /nx0;
px[i]=xmin+t*dx;
t=((double)iy+mask[i]-1.0) /ny0;

[i]=ymin+t*dy;
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}

paf [0]=zfunc (px[0],y,nroots,rr,ri) ;
paf[1]l=zfunc(px[1l],y,nroots,rr,ri) ;
paf[2]=zfunc(x,py[0] ,nroots,rr,ri) ;
paf [3]=zfunc(x,py[1l] ,nroots,rr,ri) ;

}

void zscan (xmin,xmax,nx,ymin,ymax,ny,irsize,nroots,rr,ri,r,nr,info)
double xmin,xmax,ymin,ymax;

int nx,ny,irsize;
int nroots;
double rr(],rill;
double «rI[];

int *nr,*info;

{
int k,h,iy,ix,valid;
double af,it,jt,x,y,nx0,ny0,dx,dy;
double px[2],pyl[2],paf[4];

*nr=0;

*info=0;

h=0;

dx=xmax-xmin;
dy=ymax-ymin;

nx0= (double)max (nx-1,1) ;
ny0= (double)max (ny-1,1) ;

for (iy=1;iy<=ny;iy++) {
=((double) (iy-1)) /ny0;
y=ymin+it*dy;
for (ix=1;ix<=nx;ix++) {
=((double) (ix-1)) /nx0;
x=xmin+jt*dx;
af=zfunc(x,y,nroots,rr,ri) ;

surpts (x,vy,1ix,iy,xmin, ymin, dx, dy,nx0,nyo0,
nroots, rr,ri,px,py,paf) ;

))
k++)
i

valid=! (isinf (af) | | isnan (af
for (k:O;(k<4)&&(va11d==1),
valid=! (isinf (paf [k]) | | isnan (paf [k])) ;
if ((valid==1)&&(af<=paf[0]) && (af<=paf[1]) &&
(af<=paf [2]) && (af<=paf [3])) {

if (h==irsize) {
*info=-4;

goto bail;
/* Store in r(h...h+3)=(px(1),px(2),py(1),py(2)), h=1,5,
xmin xmax ymin ymax
*/
r [h]=px[0];
r[h+1]=px[1];
r [h+2]=py[0];
r[h+3]=pyI[1l];
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h=h+4;
(*nr) ++;

int
main (argc, argv)
int argc;
char *argvl|];
{
double nxmin,nxmax,nymin,nymax;
int nx,ny;
int info;
double r[IRSIZE];
double aregion[4];

int nr;
int i,j,die,nruns;
int nroots;

double rr[MAXNR],ri [MAXNR] ;

/* For timing purposes */
#ifdef SUN4

struct rusage rul,ru;

long ts, tu;
#telse
clock t toO,tl;
#endif
float t;
/* PVM variables */
int infopvm, msgtype,bufid, mastertid, slaveid, mytid, myid,
recvtid, bytes,nslaves;
int tids [MAXNSLAVES] ;

/* Enroll in PVM */

mytid=pvm mytid() ;

if (mytid<o) {
printf ("Failed to enroll! Bailing out!\n");
pvm_exit () ;
exit (-1);

}

/* Get master’s id */

mastertid=pvm parent () ;

if (mastertid<0) {
printf ("Failure on pvm parent! Bailing out!\n");
pvm_exit () ;
exit (-1);

}

/* Set socket connections */
#ifdef SUN4
infopvm=pvm advise (PvmRouteDirect) ;
#telse
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infopvm=pvm_ advise (PvmDontRoute) ;
#endif
if (infopvm<0) {
printf ("Failure on pvm _advise! Bailing out!\n");
pvm_exit () ;
exit (-1);

}

/* Receive myid */

msgtype=50;

bufid=pvm recv(mastertid,msgtype) ;

if (bufid<0) {
printf ("Error on pvm recv! Bailing out!\n");
pvm_exit () ;
exit (-1);

}

infopvm=pvm upkint (&myid, 1,1) ;

#ifdef SUN4

getrusage (RUSAGE_SELF, &ru0) ;
telse

to=clock () ;
#endif

/* Define function */
funcdef (&nroots, rr,ri) ;

/* Loop for messages */
nruns=0;
die=0;
while (die!=1) {
nruns++;
bufid=pvm recv(mastertid, -1);
if (bufid<0) {
printf ("Error on pvm recv! Bailing out!\n");
pvm_exit () ;
exit (-1);
}

infopvm=pvm bufinfo (bufid, &bytes, &msgtype, &recvtid) ;

switch (msgtype) {
/* New region */
case 100: /* Unpack region from message buffer */
infopvm=pvm upkdouble (aregion,4,1) ;
infopvm=pvm upkint (&nx,1,1) ;
infopvm=pvm upkint (&ny,1,1) ;

/* Scan new region */
zgcan (aregion[0] ,aregion([1l],nx,
aregion[2] ,aregion[3],ny,
IRSIZE,nroots,rr,ri,r, &nr, &info) ;
if (info<0) {
printf ("Error on zscan, info=%d !
Bailing out!\n", info) ;
pvm_exit;
exit (-1);
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}

if (nr!=0) {
/* New region has been created */
msgtype=200;
#ifdef UNIQUE
bufid=pvm initsend (PvmDataRaw) ;
#telse
bufid=pvm_initsend(PvmDataDefault) ;
#endif
infopvm=pvm pkint (&nr,1,1);
infopvm=pvm pkdouble (r,nr*4,1) ;
infopvm=pvm send (mastertid, msgtype) ;
}
else {
/* No new region has been found */
msgtype=300;
#ifdef UNIQUE
bufid=pvm initsend (PvmDataRaw) ;
#telse
bufid=pvm initsend (PvmDataDefault) ;
#endif
infopvm=pvm send (mastertid, msgtype) ;

}

break;

/* My master requested my statistics of usage */
case 400: /* Get execution time */
#ifdef SUN4
getrusage (RUSAGE_SELF, &ru) ;
tu=(ru.ru _utime.tv_sec-ru0.ru utime.tv_sec)*
1000000+ru.ru_utime.tv usec-
rul.ru _utime.tv_usec;
ts=(ru.ru_stime.tv_sec-ru0.ru stime.tv_sec)*
1000000+ru.ru_stime.tv usec-
ru0.ru_stime.tv_usec;
t=((float) (tu+ts))/1000000.0;
#else
tl=clock() ;
t=((float) (t1-t0)) /CLOCKS_PER_SEC;
#endif

/* Send time to master */
msgtype=500;
#ifdef UNIQUE
bufid=pvm initsend (PvmDataRaw) ;
#telse
bufid=pvm_initsend(PvmDataDefault) ;
#endif
infopvm=pvm pkint (&myid,1,1);
infopvm=pvm pkfloat (&t,1,1);
infopvm=pvm pkint (&nruns,1,1) ;
infopvm=pvm send (mastertid,msgtype) ;

break;
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/* My master ordered me to die. */
case 600: /* Unenroll from PVM */
pvm_exit () ;

/* Die swiftly! */
die=1;
break;

exit (0) ;
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A5 Function-based application
Display program

#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <math.h>
#include <local/wn.h>
#include <local/menu3.h>

/* NIC is number of intermediate colours */
#define NIC 38

#define NCOLS 5*NIC+6

#define NCOLS1 NCOLS+2

#define MAX BRIGHTNESS 65535

#define MYNAME "dispelepot"
#define DAPPROG "elepot"
#define DAPSUN "dapsun.ukc.ac.uk"

#define PSIZE 32

#define WSIZE 520

#define USABLEWSIZE 480

#define BOXSIZE (USABLEWSIZE/PSIZE)

#define STARTMAPPOS 20

#define SLIDESIZE 40

#define SLIDEBOXSIZE 2

#define STARTSLIDEPOSX WSIZE

#define STARTSLIDEPOSY STARTMAPPOS+PSIZE*BOXSIZE-1

#define EVNTMSK EV_BUTTON_ DOWN
#include "create C colourmap.c"

int

main (argc,argv)
int argc;

char **argv;

{

int wn;

int X,y,1;

int width, height;

int nbx, nby;

event t ev;

colour_t colourmap [NCOLS1] ;
int colour [PSIZE] [PSIZE] ;
float interval [NCOLS] ;
float cinc;

char s[20];

/* PVM variables */
int info, dap, msgtype;

/* Variables for the DAP */
int maxit;
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float eps;
float pot [PSIZE] [PSIZE] ;
float minpot, maxpot;

if (enroll (MYNAME)<0)
printf ("Failure to enroll \"%s\"\n",MYNAME) ;
exit (0) ;

}

if ((dap=initiateM (DAPPROG,DAPSUN) )<0) {
printf ("Failure to enroll \"%s\"\n",DAPPROG) ;
exit (0) ;

}

maxit=100;
eps=0.00001;

/* Send maxit and eps to DAP part */

msgtype=100;

initsend() ;

info=putnint (&maxit, 1) ;

info=putnfloat (&eps, 1) ;

if ((info=vsnd (DAPPROG,dap,msgtype))<0) {
printf ("Failure to send\n") ;
info=terminate (DAPPROG, dap) ;
exit (0) ;

}

/* Receive from DAP the electric potential values */
msgtype=200;

info=vrcv (msgtype) ;

info=getnfloat (&minpot, 1) ;

info=getnfloat (&maxpot, 1) ;
info=getnfloat (pot, PSIZE*PSIZE) ;

/* DAP application finished, leave PVM */
leave () ;

/* Compute colour interval */
cinc= (maxpot-minpot) / (NCOLS-1) ;
for (i=0;i<NCOLS;i++) interval[i]=minpot+i*cinc;

/* Set colours to potential values */
for (y=0;y<PSIZE;y++) {
for (x=0;x<PSIZE;x++) {
for (i=0;i<(NCOLS-1) ;i++)

if ((potly] [x]>=interval[i])&&(pot [y] [x]<=interval [1+1])) {
colour[y] [x]=1+2;
break;

}
}
}

/* Open window */
wn_suggest window size (WSIZE+SLIDESIZE,WSIZE) ;
if ((wn = wn_open stdwin()) < 0) {

48



fprintf (stderr, "Can’t create the standard window\n") ;
exit (1) ;

create C colourmap (colourmap,NCOLS1) ;

/* Display electric potential */

wn_get window_ size (wn, &width, &height) ;
/* clear the window */

wn_set area(wn,0,0,width,height, WN_BG) ;

/* Write text */
wn_btext (wn,
"Electrical Potential (2 Sun SPARC2 + 1 AMT DAP-500)",
110,15,WN_FG,WN_BG) ;

/* Display slide */

x=STARTSLIDEPOSX;

y=STARTSLIDEPOSY;

sprintf (s, "%2.2f", minpot) ;

wn_btext (wn, s, x+SLIDEBOXSIZE+3,y,WN FG,WN BG) ;

for (i=2;i<NCOLS1;i++) {
wn_set area (wn,x,y,SLIDEBOXSIZE, SLIDEBOXSIZE,

colourmap[i] .co_pixel);

y=y-SLIDEBOXSIZE;

}

sprintf (s, "%2.2f", maxpot) ;

wn_btext (wn, s, x+SLIDEBOXSIZE+3,y+11,WN FG,WN_ BG) ;

/* Display map */
y=STARTMAPPOS;
for (nby=0;nby<PSIZE;nby++) {
x=STARTMAPPOS ;
for (nbx=0;nbx<PSIZE;nbx++) {
wn_set_area(wn,x,y,BOXSIZE,BOXSIZE,
colourmap [colour [nby] [nbx]] .co_pixel) ;
x=X+BOXSIZE;

}

y=y+BOXSIZE;

}
/* Wait for mouse click to finish */
for (;;) {

wn_next event (wn, EVNTMSK, ev) ;

if ((ev.ev_flags & B_LEFT) && (ev.ev_type & EV_BUTTON_ DOWN) )
wn_close window (wn) ;
exit (0) ;
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Compute program (DAP host)

program elepot
parameter (isize=32)

integer psize,niter,maxit,status
real pot(isize,isize),eps,minpot, maxpot

common /bl0001/ psize,maxit,eps
common /bl0002/ niter, status
common /bl10003/ pot

common /bl10004/ minpot,maxpot

integer dapcon
external dapcon

c PVM declarations

integer myid, info,msgtype, hostnum
character*14 myname, hostname

c Enroll on PVM
hostname="dispelepot\0"
hostnum=0

myname="elepot\0"

call fenroll (myname,myid)

if (myid.1lt.0) then
print *,’failure in fenroll on ’,myname
stop

endif

¢ Receive maxit and eps
msgtype=100
call fvrcv(msgtype, info)
call fgetnint (maxit,1,info)
call fgetnfloat (eps,1,info)

psize=isize

¢ Connect DAP part
if (dapcon(’elepot.dap’).ne.0) then
print *,’Failed to load DAP part ...’
else
¢ Send data to DAP
call dapsen(’'bl0001’,psize,3)

¢ Initiate DAP part
call dapent (’'elepotdap’)

¢ Receive data from DAP
call daprec(’'bl0002’,niter,2)
call daprec(’'bl0003’,pot,isize*isize)

call daprec('bl0004’,minpot,2)

c Release DAP
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call

daprel

c Send data back to PVM host
msgtype=200

call
call
call
call
call

endif

¢ Leave PVM

finitsend ()

fputnfloat (minpot, 1, info)

fputnfloat (maxpot, 1, info)

fputnfloat (pot,isize*isize, info)
fvend (hostname, hostnum, msgtype, info)

call fleave ()

stop
end
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Compute program (DAP)

entry subroutine elepotdap
parameter (isize=32)

integer psize,niter,maxit,status
real pot(*isize, *igsize), eps,minpot, maxpot

common /bl0001/ psize,maxit,eps
common /bl0002/ niter, status
common /bl10003/ pot

common /bl10004/ minpot,maxpot

c Converts data from host mode to dap mode

call convhtod (psize, 3)
call convhtod (pot,1)

c Performs the actual root-finder algorithm

call quadrant (pot,psize,eps,niter,maxit, status)

¢ Obtains minimum and maximum values of pot

minpot=minv (pot)
maxpot=maxv (pot)

c Converts data back to host mode

¢ Dec

c Set

call convdtoh (niter, 2)
call convdtoh (pot,1)
call convdtoh (minpot, 2)

return
end

subroutine quadrant (p,psize,eps,niter,maxit, status)
integer psize,maxit,niter, status

laration of arrays in Fortran* format

real p(*psize, *psize) ,p0 (*psize, *psize), eps

logical curved(*psize, *psize),inside (*psize, *psize),
1 outside (*psize, *psize)

integer square (*psize),xory(*psize)

status=1

boundary conditions
outside=.false.
outside(1,)=.true.
outside(,1)=.true.
p=0.0

call index vec (xory)
sSguare=xXory*xory

curved= (matc (square, psize) +matr (square,psize)) .ge. (psize-1) **2
p (curved)=1.0

outside=outside.or.curved
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Q00 QaQa

inside=.not.outside

Set initial guess
p(inside)=0.5

Solve Laplacian
do 10 niter=1,maxit

p0=p
The expression below is one of the features of
Fortran*; it indicates to operate with the
elements one column ahead "p(,+)" and behind "p(,-)"
and similarly one row above "p(+,)" and below "p(-,)"
only for those "inside" the region.

p(inside)=.25* (p(,+)+p(,-)+p(+,)+p(-,))

if (maxv(abs(p-p0)).lt.eps) return

10 continue

status=0

return
end
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A.6 Paralld file access

program readfilep
include ’fpvm3.h’'

integer i,myid,mytid,numt,info,m,r,firstrec,lastrec,nrecs,
1mxtsk, mxtskl

integer tids(16)

character*8 arch

character*12 task

parameter (nrecs=8000)

character*80 infil,buffer

logical fex

real etime,t0(2),t1(2),t(2),et0,etl, et
external etime

c Begin
¢ Enroll this program in PVM
call pvmfmytid (mytid)
if (mytid.lt.0) then
print *,’failure in pvmfmytid on readfilep’
stop
endif

call pvmfparent (tids (1))
if (tids (1) .1t.0) then

print *,’Number of tasks?’
read *,mxtsk
mxtskl=mxtsk-1

c I am process 0
myid=0
tids (myid+1) =mytid

c¢ Initiate ntasks instances of readfilep program
task='"readfilep’
arch='*"’
do 10 i=1,mxtskl
call pvmfspawn (task, PYMDEFAULT, arch,1,tids (i+1) ,numt)
if (numt.lt.0) then
print *,’Failure in pvmfspawn at task’, i
stop
endif
10 continue

¢ Send number of tasks
msgtype=8
call pvmfinitsend (PVMDEFAULT, info)
call pvmfpack (INTEGER4,mxtsk,1,1,info)
call pvmfmcast (mxtskl,tids(2),msgtype, info)

¢ Broadcast task ids
msgtype=9
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call pvmfinitsend (PVMDEFAULT, info)
call pvmfpack (INTEGER4, tids, mxtsk,1,info)
call pvmfmcast (mxtskl,tids(2),msgtype, info)

else

c¢ I am other process
msgtype=8
call pvmfrecv(tids (1) ,msgtype, info)
call pvmfunpack (INTEGER4,mxtsk,1,1,info)
mxtskl=mxtsk-1

msgtype=9
call pvmfrecv(tids (1) ,msgtype, info)
call pvmfunpack (INTEGER4, tids, mxtsk,1,info)

do 15 i=2,mxtsk
if (mytid.eq.tids(i)) myid=i-1
15 continue
endif

c Open the file infil

infil='test.dat’

inquire(file=infil, exist=£fex)

if (fex) then
open(l,file=infil,access='direct’,recl=80,status='0ld’)

else
write(6,20)

20 format ('File not found! Exiting!’)

goto 999

end if

c¢ Set first and last records to read
m=nint (nrecs/mxtsk)
r=nrecs-m*mxtsk
if (r.eq.0) then
¢ Simplest case, all processes read "m" records
firstrec=myid*m+1
lastrec=firstrec+m-1
else if (myid.lt.r) then
¢ Otherwise, the first "r" processes read "m+1l" records
firstrec=myid*m+myid+1
lastrec=firstrec+m
else
¢ and the remaining "mxtsk-r" processes read "m" records
firstrec=myid*m+r+1
lastrec=firstrec+m-1
endif

etO=etime (t0)
do 30 i=firstrec, lastrec
read (1,40, rec=1i)buffer
40 format (a80)
30 continue
etl=etime (tl)
et=etl-etO0
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t(1)=t1(1)-t0(1)
t(2)=t1(2)-t0(2)
write(6,50)m

50 format(’Read ’,1i5,’ records from file’)
write(6,1000)t(1),t(2),et
1000 format ('User-time(s): +,f15.8/,'System-time(s): ',f15.8/,
&'Elapsed-time(s) :’,£15.8)
close (1)

999 continue

¢ Program finished, leave PVM before exiting
call pvmfexit (info)

stop
end
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