
Thompson, Simon (1992) Are subsets necessary in Martin-Lof type theory? 
 In: Myers Jr, J.P. and O'Donnell, M.J., eds. Constructivity in Computer 
Science Summer Symposium. Lecture Notes in Computer Science . Springer, 
Berlin, Germany, pp. 46-57. ISBN 978-3-540-55631-2. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21078/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1007/BFb0021082

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
Document Type: Proceedings Paper

Conference Information: 1991 SUMMER SYMP ON CONSTRUCTIVITY IN COMPUTER SCIENCE 

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/21078/
https://doi.org/10.1007/BFb0021082
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


Are subsets necessary in Martin�L�of type

theory�

Simon Thompson

Computing Laboratory� University of Kent at Canterbury

Canterbury� CT� �NF� U�K�

e�mail� sjt�ukc�ac�uk

Introduction

Martin�L�of�s theory of types� expounded in ��� �	 and discussed at greater length
in �
� ��	 is a theory of types and functions or alternatively of propositions
and proofs which has attracted much recent interest in the computing science
community
 There seems to have emerged a consensus that the system provides a
good foundation for integrated program development and proof� but that for the
system to be usable in practical projects a number of additions need to be made
to it
 Pre�eminent among these is the proposal to add a subset construction to
the system� so that members of the type

f x �A j B g

are those members of A with the property B
 This is in contrast to the repre�
sentation of such a type by

��x �A� � B

whose members consist of pairs �a� p� with a � A and p � B�a�x	 a proof of or
witness to the fact that the property B is true of a
 This latter representation
is faithful to the principle of complete presentation which requires that it should
be evident from any object that it has the type asserted of it
 The witness is a
proof of this fact


In this paper after presenting an overview of the two important subset con�
structions we examine the reasons given for the addition of the subset type and
argue that we can achieve the desired results without complicating the system
by such an augmentation


The �rst reason for adding a subset type is that it allows for the separation of
the computational information in an object from the proof theoretic information
it might contain � this we examine in sections � and � where we argue that this
separation is better achieved by naming the appropriate portions of an object�
using the axiom of choice where necessary to identify these portions


Note that we take the axiom of choice as valid � this is the case for all
Martin�L�of�s systems� and is a simple consequence of the strong elimination rule
for the existential quanti�er� which allows the second projection from a pair to
have dependent type
 We should also observe that for most constructivists the
axiom of choice is unexceptionable � given the interpretation of the quanti�ers�
a choice function can be read o� in the obvious way




The other reason advanced for the subset type is that it can contribute to the
e�ciency of evaluation� since by suppressing the proof�theoretic portion of an
expression� any evaluation in this portion will no longer be necessary
 We argue
in section � that exactly the same e�ect is achieved if we use lazy evaluation to
implement the system


It is therefore evident that we can achieve the e�ects required without adding
to and therefore complicating the system of type theory� as expounded in Martin�
L�of�s original papers� as long as we are prepared to work in a lazy implementation
of the theory
 Lazy implementations used to have the reputation of being slow�
but recent work �see� for example� ���	� has shown that this need not be the
case


� Type theory

In this section we provide a short review of those aspects of constructive type
theory relevant to the discussion which follows


The basic intuition underlying the system of type theory is that

to prove is to construct


In particular�

� a proof of A �B is a pair of proofs of A and B�
� a proof of A� B is a transformation of proofs of A into proofs of B�
� a proof of A �B is either a proof of A or a proof of B�
� a proof of ��x �A� � B�x� takes a in A to a proof of B�a�� and
� a proof of ��x �A� � B�x� is a witness a in A together with a proof of B�a�


This intuitive presentation can be formalised in a collection of deduction rules
which mention the judgement

a �A

which is thought of as expressing

a is a proof of the formula A

Four rules are presented for each connective
 A formation rule describes how the
formula is formed� it is a rule of syntax in other words

Formation Rule for �

A is a formula B is a formula

�A �B� is a formula
��F �

A second rule gives circumstances under which a proof of the formula can be
found � this is the introduction rule
 In the case of conjunction� a proof can be
formed from proofs of the component formulas




Introduction Rule for �

p �A q �B

�p� q� � �A�B�
��I�

The elimination rule or rules embody the fact that proofs can only be con�
structed according to the introduction rule�s�� any proof of a conjunction can be
decomposed to yield proofs of the individual components


Elimination Rules for �

r � �A�B�

fst r �A
��E��

r � �A�B�

snd r �B
��E��

Moreover� if we form a proof �a� b� of A�B from proofs of A and B and extract
the proofs of A and B from �a� b� using ��E� we derive the proofs we started
with � this is described by the computation rules


Computation Rules for �

fst �p� q� � p snd �p� q� � q

It is striking that these rules can also be thought of as rules for a typed functional
programming language� if we replace �� � � is a formula� by �� � � is a type�
 The
rules for the conjunction are those for the product type


In a similar way� implication can be thought of as forming the function space�
disjunction a sum type and the absurd proposition an empty type
 Rules for the
function type are given in Figure �
 The connective � is introduced by means of
a ��abstraction� the assumption of the object x of A is discharged in the process
of forming ��x � A� � e� as the variable x has become bound
 The discharge is
indicated by the surrounding brackets �� � �	


A is a type B is a type
�A� B� is a type

�� F �

�x �A	





e �B
��x �A� � e � �A� B�

�� I�

q � �A� B� a �A
�q a� � B

�� E� ���x �A� � e� a � e�a�x	

Fig� �� Rules for function space

The formal system of type theory contains as well as the propositional con�
nectives we have discussed� both basic types such as the natural numbers and



lists and the quanti�ers � we turn to these now
 Further details of the full rules
for systems of type theory can be found in ���	 and elsewhere


The universal quanti�er can be thought of as de�ning a generalised function
space in which the type of the result of a function depends upon the value of
the argument�s�


Formation Rule for �

A is a formula

�x �A	





P is a formula

��x �A� � P is a formula
��F �

The dependence can be seen here from the fact that P can contain the variable x
free� and so depend upon a value of type A
 The universal quanti�er is introduced
by a ��abstraction� where it is assumed that x occurs free in no other assumption
than x �A


Introduction Rule for �

�x � A	





p �P

��x �A� � p � ��x �A� � P
��I�

The elimination and computation rules generalise those for implication


Elimination Rule for �

a �A f � ��x �A� � P

f a � P �a�x	
��E�

Computation Rule for �

���x �A� � p� a � p�a�x	

A constructive interpretation of the existential quanti�er takes objects of exis�
tential type to be pairs� the �rst half of which gives the witnessing element� and
the second half the proof that this element has the property required


Formation Rule for �

A is a formula

�x �A	





P is a formula

��x �A� � P is a formula
��F �

Introduction Rule for �

a �A p �P �a�x	

�a� p� � ��x �A� � P
��I�



The elimination and computation rules show the decomposition of an existential
proof object into its component parts


Elimination Rules for �

p � ��x �A� � P

Fst p � A
��E�

��
p � ��x �A� � P

Snd p � P �Fst p�x	
��E�

��

Computation Rules for �

Fst �p� q� � p Snd �p� q� � q

The existential quanti�er can be thought of as a type constructor in a number
of di�erent ways
 It forms an in�nitary sum of the types B�a� as a varies over
the tag type A� it can be thought of as forming modules� when the type A is a
universe� and most importantly here� it forms a subset of A� consisting of those
elements of A with the property B
 In keeping with a constructivist approach�
the element a carries with it the proof that it belongs to the subset � otherwise
how can it be said to reside there�

The elimination rule ��E�

�� is unusual in that its conclusion contains the
proof object p on the right�hand side of a judgement� this is in contrast to the
other rules of the system
 These other rules reduce to the rules of �rst�order
intuitionistic predicate calculus if the proof objects are omitted� this cannot
be done with ��E�

�� since the proof object appears in the formula part of the
judgement
 The rules presented are equivalent to the strong elimination rule�

p � ��x �A� � B

�x �A� y �B	





c �C��x� y��z	

Casesx�y p c � C�p�z	
��E�

In turn� this rule has been shown in ���	 to be equivalent to the axiom of choice
plus a weaker rule of elimination which corresponds to the usual rule of elimi�
nation in �rst�order logic
 We show the derivability of the axiom of choice from
the strong rule now


The axiom of choice has the statement

��x �A� � ��y �B� � C�x� y�� ��g �A� B� � ��x �A� � C�x� �g x��

Suppose that f � ��x �A� � ��y �B� � C�x� y� then

Fst �f x� � B

and

Snd �f x� � C�x� Fst�f x��

Therefore

�xA � �Fst �f x�� � �A� B�



and we write g for this function
 Also�

�xA � �Snd �f x�� � ��x �A� � C�x� Fst�f x��

giving
�xA � �Snd �f x�� � ��x �A� � C�x� �g x��

We thus have an object

��xA � �Fst �f x�� � �xA � �Snd �f x���

of type
��g �A� B� � ��x �A� � C�x� �g x��

Abstracting over f gives the proof of the axiom of choice


� The subset type

What are the formal rules for the subset type� The rules we give now were �rst
proposed in ��	� and used in ��	� page ���� and ��	� section �
�
�
 Formation is
completely straightforward

Formation Rule for Set

A is a type

�x �A	





B is a type

f x �A j B g is a type
�SetF �

as is the introduction rule�

Introduction Rule for Set

a �A p �B�a�x	

a � f x �A j B g
�SetI�

How should a set be eliminated� If we know that a �fx �A j B g then we certainly
know that a �A� but also that B�a�x	
 What we don�t have is a speci�c proof
that B�a�x	� so how could we encapsulate this� We can modify the existential
elimination rule ��E� so that the hypothetical judgement c � C is derived
assuming some y �B�a�x	� but that c and C cannot depend upon this y
 We use
the fact that B�a�x	 is provable� but we cannot depend on the proof y itself�

Elimination Rule for Set

a �fx �A j B g

�x �A� y �B	





c�x� �C�x�

c�a� � C�a�
�SetE�



where y is not free in c or C
 Since no new operator is added by the elimination
rule� there is no computation rule for the subset type
 We should note that this
makes these rules di�erent from others in type theory
 This is also evident from
the fact that they fail to satisfy the inversion principle of ���	

���	 shows that these rules are weaker than might at �rst be thought� espe�
cially if we adopt an intensional version of type theory
 In fact� we cannot in a
consistent manner derive the formula

��x �f z �A j P �z� g� � P �x� ���

for most formulas P 
 This has the consequence that we cannot derive functions
to take the head and tail of a non�empty list� if we choose to represent the type
of non�empty lists by a subset type�

f l � �A	 j nonempty l g

where the predicate nonempty is de�ned by a recursion over a universe thus�

nonempty � 	 �df 	
nonempty �a �� x� �df 


The situation in the extensional theory is better� but there are still cases of the
formula ��� which are not derivable consistently
 Because of these weaknesses�
Martin�L�of proposed a new subset theory which incorporates the judgement
P is true into the system


If the representation of the judgement is to be an improvement on TT � as far
as subsets are concerned� it is desirable that the system validates the rule

a � f x �A j P g
P �a� is true

���

This can be done if we move to a system in which propositions and types are
distinct
 In �
	 can be found the subset theory in which the new judgements

P prop and P is true

are added to the system� together with a set of logical connectives� distinct
from the type forming operations introduced in their extensional version of type
theory
 This system does allow the derivation of ��� but at the cost of losing
the isomorphism between propositions and types and making the system more
complex


� What is a speci�cation�

The judgement a �A can be thought of as expressing �a proves the proposition
A� and �a is an object of type A�� but it has also been proposed� in ��� �	 for
example� that it be read as saying

a is a program which meets the speci�cation A �y�



It is misleading to apply this interpretation to every judgement a �A
 Take for
instance the case of a function f which sorts lists� this has type �A	 � �A	� and
so�

f � �A	 � �A	

Should we therefore say that it meets the speci�cation �A	 � �A	� It does� but
then so do the identity and the reverse functions� The type of a function is but
one aspect of its speci�cation� which should describe the relation between its
input and output
 This characterisation takes the form

The result �f l� is ordered and a permutation of the list l

for which we will write S�f�
 To assert that the speci�cation can be met by some
implementation� we write

��f � �A	 � �A	� � S�f�

What form do objects of this type take� They are pairs �f� p� with f � �A	 � �A	
and p a proof that f has the property S�f�
 The confusion in �y� is thus that
the object a consists not of a program meeting the speci�cation� but of such a
program together with a proof that it meets that speci�cation


In the light of the discussion above� it seems sensible to suggest that we
conceive of speci�cations as statements ��o �T � � P � and that the formal assertion

�o� p� � ��o �T � � P

be interpreted as saying

The object o� of type T � is shown to meet the speci�cation P by the
proof object p


an interpretation which combines the logical and programming interpretations
of the language in an elegant way
 This would be obvious to a constructivist�
who would argue that we can only assert �y� if we have the appropriate evidence�
namely the proof object


In developing a proof of the formula ��o �T � � P we construct a pair consisting
of an object of type T and a proof that the object has the property P 
 Such a
pair keeps separate the computational and logical aspects of the development�
so that we can extract directly the computational part simply by choosing the
�rst element of the pair


There is a variation on this theme� mentioned in �
	 for instance� which sug�
gests that a speci�cation of a function should be of the form

��x �A� � ��y �B� � P �x� y� ���

Elements of this type are functions F so that for all x �A�

F x � ��y �B� � P �x� y�



and each of these values will be a pair �yx� px� with

yx �B and px �P �x� y�

The pair consists of value and proof information� showing that under this ap�
proach the program and its veri�cation are inextricably mixed
 It has been ar�
gued that the only way to achieve this separation is to replace the inner existen�
tial type with a subset type� which removes the proof information px
 This can
be done� but the intermingling can be avoided without augmenting the system
� we simply have to give the intended function a name
 That such a naming
can be achieved in general is a simple consequence of the axiom of choice� which
states that

��x �A� � ��y �B� � P �x� y�� ��f �A� B� � ��x �A� � P �x� f x�

Applying modus ponens to this and ��� we deduce the speci�cation

��f �A� B� � ��x �A� � P �x� f x� ���

Note that the converse implication to that of the axiom of choice is easily deriv�
able� making the two forms of the speci�cation logically equivalent


It is worth noting that some functions are not speci�ed simply by their in�
put�output relation� one example being a hashing function�
 This means that
speci�cations will necessarily have the ��o �T � � P form in general


This analysis of speci�cations makes it clear that when we seek a program
to meet a speci�cation� we look for the �rst component of a member of an
existential type� the second proves that the program meets the constraint part
of the speci�cation
 As long as we realise this� it seems irrelevant whether or not
our system includes a type of �rst components� which is what the subset type
consists of
 There are other arguments for the introduction of a subset type�
which we turn to now


� Subsets in speci�cations

We have seen that the intermingling of computation and veri�cation which ap�
pears to result from an interpretation of speci�cations as propositions can be
avoided by the expedient of using the axiom of choice in the obvious way


In this section we look at other uses of the subset type within speci�cations
and show that in many of these we can again avoid the subset type by separating
from a complex speci�cation exactly the part which is computationally relevant
in some sense
 This is to be done by naming in an appropriate manner the
operations and objects sought� as we did in the previous section when we changed
the �� speci�cation into an �� form
 This reversal of quanti�ers which arises by
naming the function is known to logicians as Skolemizing the quanti�ers
 We
believe the alternative is superior for two reasons�

� I am grateful to Michael O�Donnell for this observation�



� it is a solution which requires no addition to the system of type theory� and
� it allows for more delicate distinctions between proof and computation


The method of Skolemizing can be used in more complex situations� as we now
see


Take as an example a simpli�cation of the speci�cation of the Dutch �or
Polish� national �ag problem as given in �
	
 We now show how it may be written
without the subset type
 The original speci�cation has the form

��x �A� � f y �f y� �B j C�y�� g j P �x� y� g

with the intention that for each a we �nd b in the subset f y� �B j C�y�� g of B
with the property P �a� b�
 If we replace the subsets by existential types� we have

��x �A� � ��y � ��y� �B� � C�y��� � P �x� y�

This is logically equivalent to

��x �A� � ��y �B� � �C�y� � P �x� y� � ���

and by the axiom of choice to

��f �A� B� � ��x �A� � �C�f x� � P �x� �f x�� �

which is inhabited by functions together with proofs of their correctness
 It can
be argued that this expresses in a clear way what was rather more implicit in the
speci�cation based on sets � the formation of an existential type bundles together
data and proof� the transformation to ��� makes explicit the unbundling process


As a second example� consider a problem in which we are asked to produce
for each a in A with the property D�a� some b with the property P �a� b�
 There
is an important question of whether the b depends just upon the a� or upon both
the a and the proof that it has the property D�a�
 In the latter case we could
write the speci�cation thus�

��x � ��x� �A� � D�x��� � ��y �B� � P �x� y�

and Skolemize to give

��f � ��x� �A� � D�x�� � B� � ��x � ��x� �A� � D�x��� � P �x� �f x��

If we use the equivalence between the types

���x �X� � P � � Q ��x �X� � �P � Q�

�which is the logical version of the isomorphism between �curried� and �uncurried�
versions of binary functions� we have

��f � ��z �A� � �D�z� � B�� � ��x� �A� � ��p �D�x��� � P ��x�� p�� �f x� p��

which makes manifest the functional dependence required
 Observe that we could
indeed have written this formal speci�cation directly on the basis of the informal
version from which we started




If we do not wish the object sought to depend upon the proof of the property
D� we can write the following speci�cation�

��f �A� B� � ��x� �A� � ��p �D�x��� � P ��x�� p�� �f x��� ���

in which it is plain that the object �f x�� in B is not dependent on the proof
object p �D�x��
 Observe that there is still dependence of the property P on the
proof p� if we were to use a subset type to express the speci�cation� thus� we
would have something of the form

��x� �f x� �A j D�x�� g� � ��y �B� � P ��x�� y�

where the property P ��x� y� relates x� � A and y � B
 This is equivalent to the
speci�cation

��f �A� B� � ��x� �A� � ��p �D�x��� � P ��x�� �f x���

in which the property P � must not mention the proof object p� so that with our
more explicit approach we have been able to express the speci�cation ��� which
cannot be expressed under the na� ve subset discipline


� Computational Irrelevance	 Lazy Evaluation

The natural de�nition of the �head� function on lists is over the type of non�
empty lists� given thus�

�nelist A��df ��l � �A	� � �nonempty l�

where the predicate nonempty was de�ned above
 The head function itself� hd�
is given by

hd � �nelist A� � A
hd �� 	� p� �df abortA p
hd ��a �� x�� p� �df a

which is formalised in type theory by a primitive recursion over the list compo�
nent of the pair


Given an application
hd ��� �� � � ��� � � ��

computation of the result to � can proceed in the absence of any information
about the elided portions
 In particular� the proof information is not necessary
for the process of computation to proceed in such a case
 Nonetheless� the proof
information is crucial in showing that the application is properly typed� we
cannot apply the function to a bare list� as that list might be empty
 There is
thus a tension between what are usually thought of as the dynamic and static

parts of the language
 In particular it has been argued that if no separation
is achieved� then the e�ciency of programs will be impaired by the welter of
irrelevant information which they carry around � see section �
� of ��	 and section
��
� of ��	




Any conclusion about the e�ciency of an object or program is predicated on
the evaluation mechanism for the system under consideration� and we now argue
that a lazy or outermost �rst strategy has the advantage of not evaluating the
computationally irrelevant


If we work in an intensional system of type theory� then using the results
of ��	 the system is both strongly normalising and has the Church Rosser prop�
erty
 This means that every sequence of reductions will lead us to the same
result
 Similar results are valid if we evaluate to weak head normal form in the
extensional case


We can therefore choose how expressions are to be evaluated
 There are
two obvious choices
 Strict evaluation is the norm for imperative languages
and many functional languages �Standard ML� ��	� is an example�
 Under this
discipline� in an application like

f a� � � � an

the arguments ai are evaluated fully before the whole expression is evaluated

In such a situation� if an argument ak is computationally irrelevant� then its
evaluation will degrade the e�ciency of the program
 The alternative� of nor�
mal order evaluation is to begin evaluation of the whole expression� prior to
argument evaluation� if the value of an argument is unnecessary� then it is not
evaluated


To be formal about the de�nition� we say that evaluation in which we always
choose the leftmost outermost redex is normal order evaluation
 If in addition
we ensure that no redex is evaluated more than once we call the evaluation lazy

�For more details on evaluation strategies for functional languages� see ���	� for
example�


In a language with structured data such as pairs and lists� there is a further
clause to the de�nition� when an argument is evaluated it need not be evaluated
to normal form� it is only evaluated to the extent that is necessary for computa�
tion to proceed
 This will usually imply that it is evaluated to weak head normal
form �see ���	�
 This means that� for example� an argument of the product type
A � B will be reduced to a pair �a� b�� with the sub�expressions a and b as yet
unevaluated
 These may or may not be evaluated in subsequent computation


Under lazy evaluation computationally irrelevant objects or components of
structured objects will simply be ignored� and so no additional computational
overhead is imposed
 Indeed� it can be argued that the proper de�nition of com�
putational relevance would be that which chose just that portion of an expression
which is used in calculating a result under a lazy evaluation discipline


Another example is given by the following example of the quicksort function
over lists
 Quicksort is de�ned by

qsort l �df qsort
� l �!l� p

where p is the canonical proof that �!l� � �!l�
 The auxiliary function is given
by

qsort� � ��n �N � � ��l � �N 	� � ��!l� n� � �N 	�



qsort� n � 	 p �df � 	
qsort� � �a �� x� p �df abort�N �p

�

qsort� �n " �� �a �� x� p
�df qsort� n �filter �lesseq a� x� p�

"" �a	 ""
qsort� n �filter �greater a� x� p�

The function has three parameters� a list �l�� a natural number �n�� and a proof
that the length of l is less that or equal to n
 In the second clause of the de��
nition we use the proof p to construct a proof p� that � is smaller than itself� a
contradiction
 In the recursive calls to the function� we construct proofs p� and
p� which witness the facts that �filter �lesseq a� x� and �filter �greater a� x�
have length at most n if x has


We have built an implementation of a system of type theory without uni�
verses by means of a translation of it into Miranda which is implemented in a
lazy fashion
 The quicksort function above will sort a list without calculating
any of the terms pi in any of the invocations of the function � proof of their
computational irrelevance


There is one drawback to the lazy implementation � no irrelevant terms are
evaluated� but there are cases in which tuples are formed and destroyed� as were
the tuples in the quicksort example
 It seems too high a price to pay for the
programmer to have to include for her� or himself an indication of how a pro�
gram may be optimised� especially as this kind of use analysis can be performed
most e�ectively by the techniques of abstract interpretation� as discussed in ��	
for instance
 Linked to this is the syntactic characterisation of computational
relevance� which involves an examination of the di�erent forms that types �i�e�
propositions� can take � to be found in section �
� of ��	
 It is not hard to see that
under lazy evaluation the objects deemed to be irrelevant will not contribute to
the �nal result� and will remain unevaluated



 Conclusion

To summarise� there are two responses to the use of subsets in type theory
 Their
use in separating the computational from the proof theoretic can be achieved
using the appropriate names for functions whose existence is assured by the
validity of the axiom of choice in type theory


If proof theoretic information remains in an expression� we contend that
if it is indeed irrelevant to the computational behaviour of a function� it will
not be evaluated under a lazy evaluation strategy� and so we advocate this as
an implementation technique which avoids the unnecessary evaluation which
is a consequence of a strict evaluation scheme
 As we mentioned earlier� there
will be some cases in which structures are formed needlessly � we see their
elimination as the role of the implementation of the system� and would view
abstract interpretation as an ideal tool for this purpose


Using the subset type to represent a subset brings problems� as we saw in
the previous section� it is not possible in general to recover the witnessing in�



formation from a subset type� especially in an intensional system like TT � and
so in these cases� the existential type should be used� retaining the witnessing
information
 Even in cases where such information can be recovered� we gain
this only at the cost of having to work in a more complex system� especially in
the case where the addition of the judgement P is true will give a confusion
between similar results in the type and proposition modes


References

	� Samson Abramsky and Chris Hankin� editors� Abstract Interpretation of Declara�

tive Languages� Ellis�Horwood� 	
���

�� Roland Backhouse� Paul Chisholm� Grant Malcolm� and Erik Saaman� Do�it�

yourself type theory� Formal Aspects of Computing� 	� 	
�
�

�� Robert L� Constable et al� Implementing Mathematics with the Nuprl Proof De�

velopment System� Prentice�Hall Inc�� 	
�
�

�� Robert Harper� Introduction to Standard ML� Technical Report ECS�LFCS��
�

	�� Laboratory for Foundations of Computer Science� Department of Computer

Science� University of Edinburgh� November 	
�
�

�� Per Martin�L�of� An intuitionistic theory of types� Predicative part� In H� Rose

and J� C� Shepherdson� editors� Logic Colloquium ����� North�Holland� 	
���


� Per Martin�L�of� Constructive mathematics and computer programming� In

C� A� R� Hoare� editor� Mathematical Logic and Programming Languages� Prentice�

Hall� 	
���

�� Bengt Nordstr�om and Kent Petersson� Types and speci�cations� In IFIP����

Elsevier� 	
���

�� Bengt Nordstr�om� Kent Petersson� and Jan M� Smith� Programming in Martin�

L	of�s Type Theory 
 An Introduction� volume � of International Series of Mono�

graphs on Computer Science� Oxford University Press� 	

��


� Kent Petersson and Jan Smith� Program derivation in type theory� The Polish �ag

problem� In Peter Dybjer et al�� editors� Proceedings of the Workshop on Speci�ca�

tion and Derivation of Programs� Programming Methodology Group� University of

Goteborg and Chalmers University of Technology� 	
��� Technical Report� number

	��

	�� Simon Peyton Jones� The Implementation of Functional Programming Languages�

Prentice Hall� 	
���

		� Anne Salvesen and Jan Smith� The strength of the subset type in Martin�L�of�s

type theory� In Proceedings of the Third Annual Symposium on Logic in Computer

Science� IEEE Computer Society Press� 	
�
�

	�� Peter Schroeder�Heister� Judgements of higher levels and standardized rules for

logical constants in Martin�L�of�s theory of logic� In Peter Dybjer et al�� editors�

Proceedings of the Workshop on Programming Logic� Programming Methodology

Group� University of Goteborg and Chalmers University of Technology� 	
�
� Tech�

nical Report� number ��� This paper was written in 	
���

	�� Marco D� G� Swaen� Weak and Strong Sum�Elimination in Intuitionistic Type

Theory� PhD thesis� University of Amsterdam� 	
�
�

	�� Simon J� Thompson� Type Theory and Functional Programming� Addison Wesley�

	

	�

This article was processed using the LaTEX macro package with LLNCS style


