
Wood, David C. (1992) The Computation of Polylogarithms. Technical report.
UKC, University of Kent, Canterbury, UK

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21052/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21052/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

The Computation of Polylogarithms

David C. Wood

ABSTRACT

The polylogarithm function, Lip(z), is defined, and a number of algorithms are
derived for its computation, valid in different ranges of its real parameter p and complex
argument z. These are sufficient to evaluate it numerically, with reasonable efficiency, in
all cases.

1. Definition

The polylogarithm may be defined as the function

Lip(z) =
G(p)

z_____

0

¥

e t - z

t p - 1______dt, for p > 0 . (1.1)

In the following, p will represent the real parameter, and z the complex argument. In the important
case where the parameter is an integer, it will be represented by n (or -n when negative).

It is often convenient to write the argument as ew (or sometimes -e w); for example

Lip(ew) =
G(p)

1_____

0

¥

e t - w - 1

t p - 1________dt . (1.2)

In this case, w is normally restricted to the range | Im(w) | £ p.

2. Introduction

Special cases of this function, particularly the dilogarithm (§ 7), have been studied at least since the
time of Euler, usually with small integer parameters (n = 2, 3, . . .). Lewin ([1]) gives a detailed account
of this and related functions for this case.

Truesdell ([2]) covers most of the properties of the function for real parameters.

Some work has been done on this function with a complex parameters ([3]). This is not considered
here, although most of the formulae hold with real p relaced by p + iq.

It arises in physics, often in the form of the Fermi–Dirac or Bose–Einstein functions, usually with
parameters of the form n + ⁄1

2 (§ 18).

It is a special case of Lerch’s function (§ 19).

It has appeared under many names; that used here is due to Lewin.

All other notation is that used by Abramowitz and Stegun ([4]), except where stated otherwise.

3. General Behaviour

Because of the singularity in the integrand of Eqn (1.2) at t = w, the integral is singular at w = 0 (and
w = –2pi etc.), where it becomes infinite for p £ 1, and it is multi-valued. The principal branch is chosen to
be that for which Lip(eu) is real for real u < 0, and which is continuous except on the positive real axis,
where a cut is made from w = 0 to infinity, such that -p < arg(-w) £ p.

- 2 -

It follows that the function is complex for real arguments u > 0, x = eu > 1. The imaginary part is

Im[Lip(eu)] = -
G(p)

pu p - 1______ , (3.1)

so

Im[Li-n (eu)] = 0, for n = 0, 1, 2,

4. Derivatives

From Eqn (1.2),

dw
d___Lip(ew) = Lip - 1(ew),

dwm

d m_____Lip(ew) = Lip - m(ew) ; (4.1)

or

z
dz
d___Lip(z) = Lip - 1(z),

�
�
�
z

dz
d___��
�

m

Lip(z) = Lip - m(z) . (4.2)

5. Special Values of the Argument

Obviously,

Lip(0) = 0 . (5.1)

For z = –1 and z = –i, the polylogarithm reduces to the Riemann zeta function and related functions
([4] § 23.2):

Lip(1) = z(p), for p > 1 , (5.2)

Lip(-1) = -h(p) , (5.3)

and

Lip(–i) = 2-p h(p) – i b(p) ; (5.4)

where

z(p) =
G(p)

1_____

0

¥

e t - 1

t p - 1______dt =
k = 1
S
¥

kp

1___ ,

h(p) =
G(p)

1_____

0

¥

e t + 1

t p - 1______dt = -
k = 1
S
¥

kp

(-1)k_____ = (1 - 21 - p) z(p), h(1) = ln(2) ,

and

b(p) =
G(p)

1_____

0

¥

e t + e-t

t p - 1_______dt =
k = 0
S
¥

(2k + 1)p

(-1)k________ .

Another related function will be required later:

l(p) =
G(p)

1_____

0

¥

e t - e -t

t p - 1_______dt =
k = 0
S
¥

(2k + 1)p

1________ = (1 - 2-p) z(p) .

- 3 -

6. Special Values of the Parameter

From Eqn (1.1),

Li1(z) = -ln(1 - z) . (6.1)

Hence, by Eqn (4.2),

Li0(z) =
1 - z

z_____, Li-1 (z) =
(1 - z)2

z_______, Li-2 (z) =
(1 - z)3

z (z + 1)________, (6.2)

In general, Lin(z) is easy to compute for integer n £ 1:

Li-n (z) =
(1 - z)n + 1

1_________

k = 1
S
n

an, k zk, for n > 0 , (6.3)

or

Li-n (z) =
k = 1
S

n + 1

(1 - z)k

bn, k_______, for n > 0 , (6.4)

where the coefficients can be obtained by the recurrence equations:

an, k = (n + 1 - k) an - 1, k - 1 + k an - 1, k

and

bn, k = (k - 1) bn - 1, k - 1 - k bn - 1, k .

The first few of these coefficients are tabulated below.

 an, k bn, k___
n k 1 2 3 4 5 6 0 1 2 3 4 5 6 7___
0 1 1 1
1 1 –1 1
2 1 1 1 –3 2
3 1 4 1 –1 7 –12 6
4 1 11 11 1 1 –15 50 –60 24
5 1 26 66 26 1 –1 31 –180 390 –360 120
6 1 57 302 302 57 1 1 –63 602 –2100 3360 –2520 720___��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

The case n = 0, which is somewhat anomalous in both representations, is included.

The b coefficients can be expressed as

bn, k = (-1)n + k + 1(k - 1)! Tn + 1
(k) ,

where Tn
(k) is the Stirling number of the second kind ([4] § 24.1.4), defined by

(e t - 1)k = k!
j = k
S
¥

Tj
(k)

j !
t j___ .

(This notation is not standard. The script S recommended in [4], even when available, may not be easily
distinguishable from italic, which is reserved for the Stirling numbers of the first kind.)

For negative real arguments, | Li-n (-x) | £ | h(-n) | ~~ 2n !/pn + 1, but the sum of the a coefficients is
n !, so the algorithm suffers from cancellation errors for large n; see § 13.

A minor practical difficulty is that an array of about n elements is required for these coefficients,
which is a limitation in Fortran where the size of the array must be a constant. However, cancellation or
overflow will occur before this becomes a real problem, so other methods must be used anyway.

- 4 -

7. The Dilogarithm

The case Li2(z), the dilogarithm ([4] § 27.7),

Li2(z) = -
0

z

t
ln(1 - t)________dt , (7.1)

is of particular importance, since it arises in many integrals that cannot be expressed in terms of elementary
functions. For this reason, it is included in many computer algebra systems, such as Maple ([5]), where it
takes the form dilog(z) = Li2(1 - z).

The name of the function comes from the fact that it is derived from the logarithm in much the same
way as the logarithm is derived from simple rational functions.

It has many special properties, as well as those of the general polylogarithm. In particular,

Li2(z) + Li2(1 - z) =
6
p2___ - ln(z) ln(1 - z) ; (7.2)

and

Li2(z) + Li2(1/z) = -
6
p2___ - ⁄1

2ln(-z)2 , (7.3)

which is a special case of Eqn (10.1–2). These equations, together with the group of transformations

x,
x
1__, 1 - x,

1 - x
1_____,

x
x - 1_____, and

x - 1
x_____ ,

allow any real argument to be reduced to | x | £ ⁄1
2, so Li2(x) can be computed efficiently using Eqn (8.1).

The three remaining cases are

Li2(x) - Li2
�
�
� 1 - x

1_____��
�
 = -

6
p2___ + ⁄1

2ln(1 - x) ln
�
�
� x2

1 - x_____��
�
 ,

Li2(x) - Li2
�
�
� x

x - 1_____��
�
 =

6
p2___ + ⁄1

2ln(x) ln
�
�
� (1 - x)2

x_______��
�
 ,

and

Li2(x) + Li2
�
�
� x - 1

x_____��
�
 = - ⁄1

2ln(1 - x)2 .

The trilogarithm, Li3(z), etc. satisfy related equations of increasing complexity, but they are not
generally useful for computation.

8. Power Series in z

Writing Eqn (1.1) as

Lip(z) =
G(p)

z_____

0

¥

1 - ze -t

e -t t p - 1_______dt ,

the integrand can be expanded by the binomial theorem and integrated term by term, giving

Lip(z) =
k = 1
S
¥

kp

zk___, for | z | < 1 . (8.1)

The inequality is strict only for p £ 0, or p £ 1 when z = 1, so Eqn (5.2–4) follow in those ranges.

The remainder after a finite number of terms is given by

Lip(z) =
k = 1
S
m

kp

zk___ +
G(p)
zm + 1_____

0

¥

e t - z

e -mt t p - 1________dt , (8.2)

- 5 -

by integration by parts.

For integer parameters n, this series in works well for | z | << 1. The powers are simpler to compute
for small n, but the series converges faster for larger n.

The case Lin + ⁄1
2
(z) is of practical importance. Computing kn + ⁄1

2 as kn k is reasonably fast; or, if the
maximum number of terms required is known in advance, a pre-computed table of square roots can be used.

For real parameters p this algorithm is much slower, since the powers must be computed by
kp = epln(k). Again, if the number of terms is known, a considerable saving can be obtained by using a pre-
computed array of ln(k).

In principle, only the powers of primes need be computed directly (using a table of their logarithms),
the powers of composite numbers being obtained from those of their factors. However, the additional
complication of this algorithm costs more time than it saves, though it is very advantageous in computing
the zeta function (§ 23).

9. Power Series in w

By Taylor’s theorem, using Eqn (4.1),

Lip(ec + w) =
k = 0
S
¥

Lip - k(ec)
k!
wk___, for | w | < | c | . (9.1)

In particular,

Lip(-e w) = -
k = 0
S
¥

h(p - k)
k!
wk___, for | w | < p . (9.2)

To obtain the corresponding series for Lip(ew), consider the Mellin transform of Lip(e -u) with
respect to u ([6]):

Mp(q) =
G(p)

1_____

0

¥

0

¥

e t + u - 1

t p - 1u q - 1_________dt du .

Note the symmetry of the integrand.

The change of variable t = rs, u = r (1 - s) allows the integrals to be separated:

Mp(q) =
G(p)

1_____

0

1

s q - 1(1 - s)p - 1ds
0

¥

e r - 1

r p + q + 1_______dr

= G(q) z(p + q) ;

and the original function is recovered through the inverse Mellin transform:

Lip(e -u) =
2pi
1____

c - i ¥

c + i¥

G(q) z(p + q)u -q dq .

where c is a constant to the right of the poles of the integrand.

The path of integration may be converted into a closed contour, and the poles of are those of G(q) at
q = 0, -1, -2, . . . , and z(p + q) at q = 1 - p. Summing the residues gives

Lip(ew) =
k = 0
S
¥

z(p - k)
k!
wk___ + G(1 - p) (-w)p - 1, for | w | < 2p, p „ 1, 2, 3, (9.3)

- 6 -

Integer Parameters

If the parameter is a positive integer, n, both the term in k = n - 1 and the gamma function become
infinite, although their sum does not. This gives rise to computational difficulties when p is very close to a
positive integer. The sum of the two large terms can be expanded in powers of e, where p = n + e, | e | << 1:

Lin + e(ew) =

k „ n - 1
k = 0
S
¥

z(n + e - k)
k!
wk___ + Q

(n - 1)!
wn - 1_______ , (9.4)

where

Q = z(1 + e) + G(1 - n - e) (-w)n + e - 1

= g + y(n) - ln(-w) +
�
�
�
g1 -

2
[y(n) - ln(-w)]2_______________ +

6
p2___ +

2
y¢(n)_____��

�
e

+
�
�
�
g2 +

6
[y(n) - ln(-w)]3_______________ +

	
�

 6

p2___ +
2

y¢(n)_____��
�
[y(n) - ln(-w)] +

6
y¢¢(n)______��

�
e2 + O (e3) .

Here gn is the generalized Euler constant ([4] § 23.2.5):

gn =
m fi ¥
lim

�
�
�k = 1

S
m

k
ln(k)n______ -

n + 1
ln(m)n + 1________��

�
, g = g0 ;

y(n) is the digamma function, the logarithmic derivative of the gamma function ([4] § 6.3):

y(p) =
dp
d___ln(G(p)), y(n) = Hn - 1 - g ,

where Hn is the harmonic number

Hn =
k = 1
S
n

k
1__ ;

and y(m)(n) is the polygamma function ([4] § 6.4):

y(m)(p) =
dp m

d m____y(p), y(m)(n) = (-1)m m!
�
�
�k = 1

S
n - 1

k -(m + 1) - z(m + 1)
�
�
�
 .

For positive integer parameters, the limit as e fi 0 gives

Lin(ew) =

k „ n - 1
k = 0
S
¥

z(n - k)
k!
wk___ + [Hn - 1 - ln(-w)]

(n - 1)!
wn - 1_______, for | w | < 2p, n = 1, 2, 3, (9.5)

An Optimization

The Riemann zeta function for negative arguments must be computed using ([4] § 23.2.6)

z(p) = 2 (2p)p - 1sin(⁄1
2pp) G(1 - p) z(1 - p) .

Hence the computation of Eqn (9.3) can be made more efficient by re-writing it as

Lip(ew) =
k = 0
S
m

z(p - k)
k!
wk___ (9.6)

+ 2 (2p)p - 1

k = m + 1
S
¥

sin(⁄1
2p[p - k]) G(1 - p + k) z(1 - p + k)

k!
(w/2p)k________

+ G(1 - p) (-w)p - 1 ,

where m =
p�. For p < 0, the first sum disappears.

- 7 -

This not only saves the computation of many separate sines and gamma functions, as each can be
obtained from the previous one:

sin(⁄1
2p[p - 1]) = -cos(⁄1

2pp), cos(⁄1
2p[p - 1]) = sin(⁄1

2pp) ,

and

G(p + 1) = p G(p) ;

but also simplifies the test for convergence, since the oscillatory factor is separated from the zeta function.

The same optimization can also be applied to Eqn (9.4–5). For integer parameters, half the terms in
the second sum are zero, the sines in the remaining terms reduce to –1, and the gamma function becomes a
factorial:

Lin(ew) =
k = 0
S

n - 2

z(n - k)
k!
wk___ + [Hn - 1 - ln(-w)]

(n - 1)!
wn - 1_______ -

2n !
wn____ (9.7)

 -
2p2

wn + 1______

j = 0
S
¥

z(2 j + 2)
(2j + n + 1)!

(2j + 1)!___________[-(w /2p)2]j .

Similarly, when p = n + ⁄1
2, the sines reduce to –1 / 2. The gamma functions could again be

simplified to factorials:

G(n + ⁄1
2) = (2p) ⁄1

2 2 ⁄1
2 - 2n

(n - 1)!
(2n - 1)!________ .

However, in both these cases, it is more efficient to use pre-computed tables of the zeta and gamma
functions.

The eta series, Eqn (9.2), can be treated like the zeta series, using

h(p) = -2pp - 1sin(⁄1
2pp) G(1 - p) l(1 - p) .

In this case there is no problem with integer parameters.

Convergence

The circles of convergence of these series, and of Eqn (18.2), are determined by the distance from the
singularity at w = 0 (or, in the case of Eqn (9.3–5), from those at w = –2pi).

In terms of z, the regions of convergence are more complicated. For Eqn (9.2), the boundary crosses
the negative real axis at z = -e –p , and the imaginary axis at z = –ie – 3p /2; it touches the positive real axis,
from both sides, at z = 1. For (9.3–5), for the region corresponding to | Im(w) | £ p, it crosses the positive
real axis at z = e–2p , the imaginary axis at z = –ie – 15p /2, and meets the negative real axis at z = -e – 3p .
The region for the eta series is wholly contained in that for the zeta series, and it is faster only in a small
area around z = -1. However, it is sometimes useful, particularly for computing Lip(x) for real x < 0,
where the zeta series requires the use of complex arithmetic.

In principle, Eqn (9.1) provides a method of computing Lip(ew) for | w | ‡ 2p, but it is obviously
very inefficient, and better algorithms are given below. It is still useful for checking.

- 8 -

10. Reciprocal Formulae

Terms involving zeta functions of odd arguments can be eliminated between the series for Lin(ew)
and Lin(e -w) in Eqn (9.5). Then, because z(-2k) = 0,

Lin(ew) + (-1)n Lin(e -w) = 2
k = 0
S

n/2�

z(2k)
(n - 2k)!

wn - 2k________ - ip
(n - 1)!
wn - 1_______ (10.1)

= -
j = 0
S
n

Bj j !
(2pi)j______

(n - j)!
wn - j_______

= -
n !
2pi____Bn

�
�
� 2pi

w____��
�

,

and from Eqn (9.2),

Lin(-e w) + (-1)n Lin(-e -w) = -2
k = 0
S

n/2�

h(2k)
(n - 2k)!

wn - 2k________ (10.2)

=
j = 0
S
n

(1 - 21 - j)Bj j !
(2pi)j______

(n - j)!
wn - j_______ .

The Bernoulli polynomials and numbers ([4] § 23.1) are defined by

e t - 1

te xt_____ =
k = 0
S
¥

Bk(x)
k!
t k___, Bk = Bk(0) ;

where

B0 = 1, B1 = -
2
1__, B2k = (-1)k + 1

(2p)2k

2 (2k)!______z(2k), and B2k + 1 = 0, for k = 1, 2, 3,

Computationally, it is more convenient to use tables of zeta and eta functions.

These formulae are conveniently used in conjunction with Eqn (8.1) for arguments | z | > 1. The two
forms are useful when the argument is real, to avoid complex arithmetic.

For n < 0, the sums on the right are zero, so

Li-n (z) + (-1)n Li-n (1/z) = 0, for n = 1, 2, 3, (10.3)

Real Parameters

For real parameters, an equation related to Eqn (10.1) is:

Lip(ew) + e ipp Lip(e -w) =
G(p)

e ipp /2(2p)p__________z
�
�
�
1 - p,

2pi
w____��

�
 , (10.4)

where

z(p, a) =
k = 0
S
¥

(k + a)p

1________, for p > 1

= 2(2p)p - 1G(1 - p)
k = 1
S
¥

kp - 1sin(2pka + ⁄1
2pp), for p < 1

is the generalized zeta function of Hurwitz ([7] § 13.11, [8] § 1.10). The first form is just half of Eqn (13.1),
and the second can be obtained from Eqn (8.1) for | z | = 1 (where it is least useful). Neither seems helpful
computationally.

- 9 -

11. Asymptotic Formulae

Consider

Lip(-e w) = -
G(p)

1_____

0

¥

e t - w + 1

t p - 1________dt ,

where w = u + iv. The denominator of the integrand is close to one for t << u, and very large for t >> u,
which suggests splitting the range of integration at t = u, giving

Lip(-e w) = -
G(p)

1_____

�
�
�
�
�

0

u

t p - 1dt +
0

u

ew - t + 1

t p - 1________dt +
u

¥

e t - w + 1

t p - 1________dt

�
�
�
�
�

 .

Putting s = w - t in the second integral and s = t - w in the third gives

Lip(-e w) = -
G(p + 1)

wp________ +
G(p)

1_____

0

¥

e s + 1

(w - s)p - 1 - (w + s)p - 1_____________________ds +
G(p)

1_____

u

¥

e s + 1

(w - s)p - 1__________ds .

Reverting to t = s - w in the last integral gives (-1)p - 1 Lip(-e -w), so

Lip(-e w) + (-1)p Lip(-e -w) = -
G(p + 1)

wp________ +
G(p)

1_____

0

¥

e s + 1

(w - s)p - 1 - (s - w)p - 1_____________________ds .

If p is a positive integer, expanding the terms in the numerator of the integrand and integrating term
by term gives Eqn (10.2). Otherwise, the binomial theorem holds only for s < | u | , but for u >> 1 the
integrand is so small beyond this point that the error incurred is O (e -w). The second term on the left is of
the same order, so it may be dropped, giving

Lip(-e w) ~ -2
k = 0
S
¥

h(2k)
G(p - 2k + 1)

wp - 2k____________ + O (e -w), for Re(w) >> 1 . (11.1)

Similarly, with a little extra care over the singularity,

Lip(ew) ~ 2
k = 0
S
¥

z(2k)
G(p - 2k + 1)

wp - 2k____________ - i p
G(p)
wp - 1______ + O (e -w), for Re(w) >> 1 , (11.2)

Again, the two forms are useful for real arguments. In each case the leading term is

Lip(–e w) ~ -
G(p + 1)

wp________ . (11.3)

12. Contour Integral

Eqn (1.2) may be extended to negative values of p by the standard technique of writing it as a contour
integral ([7] § 12.22):

Lip(ew) = -
2pi

G(1 - p)________

¥

(0+)

e t - w - 1

(-t)p - 1________dt , (12.1)

where the contour starts at infinity on the positive real axis, circles the origin anticlockwise, and returns to
infinity.

13. Series for Negative Parameter

The contour in Eqn (12.1) can be modified so that it encloses the poles of the integrand, at
t = w – 2kpi, and the integral can be evaluated as the sum of the residues:

Lip(ew) = G(1 - p)
k = -¥
S
¥

(2kpi - w)p - 1, for p < 0 . (13.1)

- 10 -

Expanding (1 - w /2kpi)p - 1 by the binomial theorem gives an alternative derivation of Eqn (9.3). (It
actually gives the form of Eqn (9.6) more directly.)

This series can be summed using the Euler–Maclaurin formula ([4] § 23.1.30):

Lip(ew) = G(1 - p)
�
�
� k = l + 1

S
m - 1

(2kpi - w)p - 1 (13.2)

+
2pp

i____ 	

(2mpi - w)p - (2lpi - w)p�

�

+
2
1__ 	

(2mpi - w)p - 1 + (2lpi - w)p - 1�

�

- i
j = 1
S
¥

p
z(2 j)_____

G(p - 2j + 1)
G(p)____________ 	

(2mpi - w)p - 2j - (2lpi - w)p - 2j�
�
�
�
�

.

As in Eqn (10.1–2), the coefficients are more concisely expressed as Bernoulli numbers, but the form above
is computationally more convenient.

The values of l and m can be chosen to make the first and last terms in the first sum approximately
equal in magnitude, and to minimize the total amount of computation required. The second sum is easier to
compute than the first, since each new term can be generated from the previous one, but it is only an
asymptotic series, so sufficient terms in the first sum are needed before the second can give the required
accuracy.

For integer parameters n << 0, this algorithm is preferable to the rational expressions, Eqn (6.2–4),
since it is not subject to cancellation.

14. Square Formula

From Eqn (1.1),

Lip(z) + Lip(-z) = 21 - pLip(z2) . (14.1)

This provides a way of computing Lip(x) for negative real x in terms of functions of positive arguments.

To a limited extent, successive application also does the opposite:

Lip(z) = -
k = 0
S

m -1

2k (1 - p)Lip(-z 2k

) + 2m(1 - p)Lip(z2m

) , (14.2)

which converges for | z | < 1, and

Lip(z) =
k = 1
S
m

2k(p - 1)Lip(-z 2-k

) + 2m(p - 1)Lip(z2-m

) . (14.3)

The first of these has been proposed ([9], [10]), but generally these formulae are not useful for computation.

15. mth-Root Formula

Eqn (14.1) may be re-written as

Lip(z) = 2p - 1[Lip(z) + Lip(- z)] . (15.1)

This provides a method of expressing functions of large arguments, | z | >> 1, (or indeed | z | << 1, though
this is unlikely to be useful) in terms of those with | z | closer to one. This can be applied recursively until
| z | is small enough (or large enough) for Eqn (9.3–5) to be used; for example,

Lip(z) = 4p - 1[Lip(4z) + Lip(-4 z) + Lip(i4z) + Lip(-i 4z)] .

In practice, this is not a useful algorithm, partly because of the difficulty of implementing recursion
in Fortran, but more importantly because of the inefficiency of computing many polylogarithms separately.

- 11 -

In fact, Eqn (15.1) is a special case of a more general property. Consider the factorization

(am - 1) =
k = 0
P

m - 1

(wk a - 1), where w = e2pi /m .

Applying this to the denominator of

Lip(ew) =
G(p)
mp_____

0

¥

emt - w - 1

t p - 1_________dt

and expanding in partial fractions gives

Lip(ew) = mp - 1

k = 0
S

m - 1

Lip (e (w + 2kpi)/m) , (15.2)

where the sum is over the m complex mth roots of the argument.

Combining this with the zeta series, Eqn (9.3), and interchanging the order of summation, the zeta
functions need be computed only once each, so the algorithm is reasonably efficient:

Lip(ew) = mp - 1
�
�
�k = 0

S
¥

k!
z(p - k)________

j = l
S

l + m - 1 	
�

 m

w + 2jpi________��
�

k

+ G(1 - p)
j = l
S

l + m - 1 	
�

-

m
w + 2jpi________��

�

p - 1�
�
�
 . (15.3)

Because of the periodicity of the exponential function in Eqn (15.2), l can be chosen to reduce the
imaginary parts of the expressions (w + 2jpi)/m to the range –p.

For all k > 0, each term in the inner sum can easily be obtained from the corresponding term for
k - 1. This computation requires two arrays of m elements. However, since Eqn (11.1–2) can be used for
very large arguments, these arrays need be of only moderate size.

The region of convergence of this algorithm is the intersection of the circles of convergence of the
functions in the sum, so all the arguments must lie within the circle of convergence of the zeta series,
Eqn (9.3–5). A sufficient condition for this is | Re(w)/m – i p | < 2p , or | Re(w) | < m 3p.

For a given w, the requirement is m > | Re(w) | / 3p, but computationally the choice of m is not
critical; larger values give faster convergence of the outer sum, at the cost of more terms in the inner.

The same process can be applied using Eqn (9.4–7), although there is probably no reason to use it for
integer parameters.

16. Debye Functions

Changing the variable in Eqn (1.2) to s = t - w and expanding the numerator by the binomial
theorem gives

Lin(ew) =
k = 0
S

n - 1

Zn - k(-w)
k!
wk___, for n > 0 , (16.1)

where

Zp(z) =
G(p)

1_____

z

¥

e t - 1

t p - 1______dt, Z1(z) = -ln(1 - e -z), Zp(0) = z(p) ,

is the ‘incomplete zeta function’ ([2] § 4), or Debye function ([4] § 27.1). This function is interesting in its
own right, but not always easy to compute. One method is

Zn(z) =
k = 0
S

n - 1

Lin - k(e -z)
k!
zk___, for n > 0 . (16.2)

The symmetry with Eqn (16.1) is remarkable, but not helpful here.

(This function has no generally accepted name; that used here is from [2].)

- 12 -

17. Real Arguments

For real argument x, it is convenient to ignore the imaginary part of the function for x > 1, which is
in any case elementary (Eqn (3.1)), and deal only with the real part. Many of the formulae appear in two
forms, convenient for positive and negative real arguments. Otherwise, most of the algorithms are
essentially unchanged, though obviously real arithmetic is faster than complex.

Eqn (13.1) is fundamentally complex, but a significant optimization can still be made. For a positive
real arguments, eu, the double-sided sum can be ‘folded’, with the term in k = 0 taken out:

Lip(eu) = G(1 - p)
�
�
�
(-u)p - 1 +

k = 1
S
¥ 	

(2kpi - u)p - 1 + (-2k pi - u)p - 1�
�
�
�
�

. (17.1)

= G(1 - p)
�
�
�
(-u)p - 1 + 2

k = 1
S
¥

r k
p - 1cos([p - 1]qk)

�
�
�

,

where rkcos(qk) = -u and rksin(qk) = 2kp. The summand is 2 Re[(2kpi - u)p - 1].

Negative arguments, -e u = eu–i p , can be treated similarly, the even multiples of pi becoming odd
multiples:

Lip(-e u) = G(1 - p)
k = 0
S
¥ 	

([2k + 1]pi - u)p - 1 + (-[2k + 1]pi - u)p - 1�
� . (17.2)

 = 2G(1 - p)
k = 0
S
¥

r k
 p - 1cos([p - 1]qk) ,

where rkcos(qk) = -u and rksin(qk) = (2k + 1)p.

The Euler–Maclaurin series, Eqn (13.2), can be treated in the same way, with l + m = 0 for positive
arguments, and l + m + 1 = 0 for negative.

Eqn (15.3) is again complex. For real arguments, symmetry roughly halves the number of different
terms that need to be calculated in the inner sum, but the computation of the zeta functions cannot be
reduced, so the advantage is not great.

18. Related Functions

Inverse Tangent Integrals

For pure imaginary arguments, z = iy = iev,

Lip(–iy) = 2-p Lip(-y 2) – i Tip(y) , (18.1)

where Tip(y) is the inverse tangent integral ([1] Ch. VII § 1.2). Its properties follow directly from those of
the polylogarithm, or can be derived in very similar ways. They are simply listed here.

From Eqn (5.4):

Tip(–1) = –b(p) .

From Eqn (6.1–2):

Ti1(y) = tan-1 (y), Ti0(y) =
1 + y2

y______, Ti-1 (y) =
(1 + y2)2

y(1 - y 2)_________,

The name of the function derives from:

Ti2(y) =
0

y

t
tan-1 (t)_______dt .

From Eqn (8.1):

Tip(y) =
k = 0
S
¥

(2k + 1)p

(-1)k y2k + 1__________, for | y | < 1 .

- 13 -

From Eqn (9.1):

Tip(–e v) = –
k = 1
S
¥

b(p - k)
k!
vk___, for | v | <

2
p__ . (18.2)

The technique of Eqn (9.6) can be applied, using ([8] § 1.12)

b(p) = (⁄1
2p)p - 1cos(⁄1

2pp) G(1 - p) b(1 - p) .

As in Eqn (10.1–2), because b(- 2k - 1) = 0:

Tin(ev) - (-1)n Tin(e -v) = 2
k = 1
S
	n/2�

b(2k - 1)
(n - 2k + 1)!

vn - 2k + 1___________ .

As in Eqn (11.1–2):

Tip(ev) ~ 2
k = 1
S
¥

b(2k - 1)
G(p - 2k + 2)

vp - 2k + 1____________ + O(e -v) .

From Eqn (13.1):

Tip(ev) = - ⁄1
2i G(1 - p)

k = -¥
S
¥

(-1)k ([k - ⁄1
2]pi - v)p - 1 .

Legendre’s Chi Function

Legendre’s chi function ([1] Ch. VII § 1.1, [11]) is

cp (z) = ⁄1
2[Lip(z) - Lip(-z)] (18.3)

= Lip(z) - 2-p Lip(z2)

= iTip(iz) .

Again, the properties of this function follow directly from those of the polylogarithm.

As in Eqn (5.2–4):

cp (–1) = –l(p) .

From Eqn (6.1–2):

c1 (z) = tanh-1 (z), c0 (z) =
1 - z 2

z______, c-1 (z) =
(1 - z 2)2

z(1 + z2)________,

From Eqn (8.1):

cp (z) =
k = 0
S
¥

(2k + 1)p

z2k + 1________, for | z | < 1 .

From Eqn (9.3) and Eqn (9.5):

cp (ew) =
k = 0
S
¥

l(p - k)
k!
wk___ + ⁄1

2G(1 - p)(-w)p - 1, for | w | < p, p „ 1, 2, 3, . . . ,

and

cn (ew) =

k „ n - 1
k = 0
S
¥

l(n - k)
k!
wk___ + ⁄1

2[Hn - 1 - ln(- ⁄1
2w)]

(n - 1)!
wn - 1_______, for | w | < p, n = 1, 2, 3

These can be optimized, as in Eqn (9.6–7), using

l(p) = -pp - 1sin(⁄1
2pp) G(1 - p) h(1 - p) .

- 14 -

From Eqn (10.1):

cn (ew) + (-1)n c(e -w) = 2
k = 0
S

n/2�

l(2k)
(n - 2k)!

wn - 2k________ - i
2
p__

(n - 1)!
wn - 1_______ .

From Eqn (11.2):

cp (ew) ~ 2
k = 0
S
¥

l(2k)
G(p - 2k + 1)

wp - 2k____________ - i
2
p__

G(p)
wp - 1______ + O(e -w) .

From Eqn (13.1):

cp (ew) = ⁄1
2G(1 - p)

k = -¥
S
¥

(-1)k (kpi - w)p - 1, for p < 1 .

Clausen’s Integral and Related Functions

Polylogarithms with pure imaginary w = iq give a family of functions including Clausen’s integral
([1] Ch. VII § 1.4, [4] § 27.8):

Lip(e–i q) = Cip(q) – iSip(q) . (18.4)

Some of their properties are summarized below.

Cip(-q) = Cip (q) , Sip(-q) = -Sip (q) ;

Cip(p - q) = Cip (p + q) , Sip(p - q) = -Sip (p + q) .

From Eqn (4.1):

dq
d___Sip(q) = Cip + 1(q) ,

dq
d___Cip(q) = -Sip + 1(q) .

From Eqn (5.2–4):

Cip(0) = z(p), for p > 1 , Sip(0) = 0, for p > 1 ;

Cip(–p /3) = ⁄1
2(1 - 31 - p)h(p) ;

Cip(–p /2) = -2-p h(p) , Sip(–p /2) = –b(p) ;

Cip(–2p /3) = - ⁄1
2(1 - 31 - p)z(p) ;

Cip(–p) = -h(p) , Sip(–p) = 0 .

From Eqn (6.1–2):

Ci1(q) = -ln[2 | sin(⁄1
2q) |] , Si1(q) = ⁄1

2(sign(q)p - q), for | q | < 2p ;

Ci0(q) = - ⁄1
2 , Si0(q) = ⁄1

2cot(⁄1
2q) ;

Ci-1 (q) = - ⁄1
4csc(⁄1

2q)2 , Si-1 (q) = 0 .

Clausen’s integral itself is

Si2(q) = -
0

q

ln[2 sin(⁄1
2f)]d f .

From Eqn (8.1):

Cip(q) =
k = 1
S
¥

kp

cos(kq)_______, for
�
�
�p > 0, otherwise

p > 1, q = 2mp
 Sip(q) =

k = 1
S
¥

kp

sin(kq)_______, for p > 0 .

- 15 -

There are too many variants of the equations deriving from Eqn (9.1–5) to list here, for real and
integer (odd and even) parameters, and with or without the optimization of Eqn (9.6–7). The eta series,
Eqn (9.2), is faster than the zeta series, Eqn (9.3), for | q | > 2p /3 (or | q - p | < p /3). It may even be worth
using the beta series, Eqn (18.2), for | q | close to p /2.

For integer parameters, Eqn (10.1) gives the closed forms

Ci2n(q) =
k = 0
S
n

z(2k)
(2n - 2k)!
(-q2)n - k_________ -

2
p__

(2n - 1)!
| q | (-q2)n - 1___________, for | q | < 2p ,

and

Si2n + 1(q) = q
�
�
�k = 0

S
n

z(2k)
(2n - 2k + 1)!

(-q2)n - k____________ -
2
p__

(2n)!
| q | (-q2)n - 1___________��

�
, for | q | < 2p ;

in particular,

Ci-2n (q) = Si-2n + 1(q) = 0, for n = 1, 2, 3,

Eqn (10.2) gives similar expressions:

Ci2n(q + p) = -
k = 0
S
n

h(2k)
(2n - 2k)!
(-q2)n - k_________, for | q | < p ,

and

Si2n + 1(q + p) = - q
k = 0
S
n

h(2k)
(2n - 2k + 1)!

(-q2)n - k____________, for | q | < p .

From Eqn (15.2),

Cip(mq) = mn - 1

k = 0
S

m - 1

Cip (q + 2pk/m) , Sip(mq) = mn - 1

k = 0
S

m - 1

Sip (q + 2pk/m) .

(This notation is not standard. Lewin uses Cl2n(q) = Si2n(q) and Cl2n + 1(q) = Ci2n + 1(q), so Clausen’s
integral is Cl2(q); and Gl2n(q) = Ci2n(q) and Gl2n + 1(q) = Si2n + 1(q) for the polynomial forms. However,
these names cannot be extended to real parameters.)

The Fermi–Dirac and Bose–Einstein Functions

The Fermi–Dirac ([12]) and Bose–Einstein functions ([6], [9]) are

Fp (w) =
0

¥

e t - w + 1

t p________dt = -G(p + 1) Lip + 1(-e w)

and

Gp(w) =
0

¥

e t - w - 1

t p________dt = G(p + 1) Lip + 1(ew)

respectively. Note that many of the equations above are given in terms of Lip(–e w), so this may sometimes
be a more natural representation.

19. Generalizations

Lerch’s Function

Lerch’s function, F(z, p, a) ([8] § 1.11), bears the same relation to the Hurwitz zeta function,
z(p, a), as Lip(z) does to the Riemann zeta function, z(p). Many properties of the polylogarithm follow.
In terms of this function, Lip(z) = z F(z, p, 1) and cp (z) = 2-p z F(z 2, p, ⁄1

2).

- 16 -

F(z, p, a) =
G(p)

1_____

0

¥

e t - z

e (1 - a)t t p - 1__________dt

=
k = 0
S
¥

(k + a)p

zp________ .

Nielsen’s Generalized Polylogarithms

Another generalization is due to Nielsen ([13]):

Sm, n(z) =
(m - 1)! n !

(-1)m + n__________

0

1

t
ln(t)m + 1ln(1 - zt)n________________dt

=
k = 0
S
¥

(n + k)!

(-1)k Sn + k
(n)

(n + k)m

zn + k________, for | z | < 1 ,

where Sk
(n) is the Stirling number of the first kind ([4] § 24.1.3), defined by

ln(1 + t)n = n !
k = n
S
¥

Sk
(n)

k!
t k___ .

Hence Lin(z) = Sn- 1, 1(z).

It is not clear how this can be generalized to real parameters.

The Debye function (§ 16) can also be expressed as Zn(z) = z(n) - S 1, n - 1(1 - e -z).

20. Summary

The following table lists the ranges over which the various algorithms are valid. The parameter is
represented by n when an integer, and p when real, and the argument is z = ew.

Parameter Argument Algorithm Equation___

— z = 0 w = -¥ 0 (5.1)
p < 1 z = 1 w = 0 z(p) (5.2)

— z = -1 w = –i p -h(p) (5.3)
— z = –i w = –i p /2 2-p h(p) – ib(p) (5.4)

n £ 0 — — Rational (6.2–4)
n = 1 — — -ln(1 - z) = -ln(1 - ew) (6.1)
n = 2 — — Dilogarithm transformations (7.2–3)
p < 0 — — ‘Complex’ series (13.1–2)

— | z | < 1 Re(w) < 0 Power series in z (8.1)
n ‡ 0 | z | > 1 Re(w) > 0 Reciprocal formulae (10.1–2)
n < 0 — — Reciprocal formula (10.3)

p | z | >> 1 Re(w) >> 1 Asymptotic formulae (11.1–2)
p | ln(z) | < 2p | w | < 2p z series (9.3/6)

n + e | ln(z) | < 2p | w | < 2p z series (9.4)
n > 0 | ln(z) | < 2p | w | < 2p z series (9.5/7)

— | ln(-z) | < p | w – ip | < p h series (9.2)
— | ln(–iz) | < p /2 | w – ip /2 | < p /2 b series (18.1–2)
— | z | < ~e m 3p Re(w) < ~m 3p mth-root formula (15.2–3)

n > 0 — — Debye functions (16.1)___��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

For integer parameters n > 1, (8.1) can be used for small | z | , (10.1–2) for large, and (9.5/7) for
intermediate values (or (9.2) for negative real arguments). For n £ 1, where these series converge more
slowly, (6.1–4) are available, or (13.2) if cancellation is a problem.

- 17 -

Similarly, for real parameters p, (8.1) can be used for small arguments, but there is a gap between
(9.3/6), for intermediate values, and (11.1–2), which work only for very large arguments. Here (15.3) can
be used. Again, for p < 0, where the convergence of these series becomes slow, another algorithm, (13.2),
is available.

21. Zeros, Maxima, and Minima

The numerator in Eqn (6.2–3) is a polynomial of degree n, so Li-n (z) has n zeros for n > 0. It is easy
to show that they are all real, and, excluding z = 0, negative. From Eqn (10.3), they occur in reciprocal
pairs; that is, if x is a zero, so is 1/x. Hence Li-2n (-1) = 0, which also follows from Eqn (5.3).

Taking the first two terms of the power series, Eqn (8.1), shows that, for sufficiently large p, Li-p (x)
has a zero near -2-p . This is actually an upper bound; -2n is a lower bound for the zeros of Li-n (x)

For p >> 0, even a single term of Eqn (17.2) gives a good estimate of the zeros of Li-p (-e u); for
example, Li-(4n + 1)(-e

–p) ~~ 0.

Li-p (z) has 	p� zeros. Lip(z) has no zeros, other than z = 0, for p ‡ 0.

Since the derivative is as easy to compute as the function, by Eqn (4.2), the Newton–Raphson
algorithm can be used to compute zeros accurately.

Again by Eqn (4.2), maxima and minima with respect to z are easily computed.

22. Limits

From Eqn (1.1),

| z | fi 0
lim Lip(z) =

p fi ¥
lim Lip(z) = z .

From Eqn (11.3),

Re(w) fi ¥
lim Lip(ew) = -

G(p + 1)
wp________, for p „ -1, -2, -3,

From Eqn (10.3),

Re(w) fi ¥
lim Li-n (ew) = -(-1)n e -w , for n = 1, 2, 3

From Eqn (9.3),

| w | fi 0
lim Lip(ew) = G(1 - p)(-w)p, for p < 1 .

23. Implementation

The algorithms have been implemented in Fortran 77 ([14]), because no other available language
supports complex arithmetic, which is essential in this problem. ‘Complex*16’ (double-precision complex)
arithmetic is used throughout. This is not a standard feature of Fortran, but is very widely available.

There are at least four versions of most of the functions: for real and integer (and sometimes half-
integer) parameter, and real (sometimes positive and negative) and complex argument.

The many constants involved, such as tables of zeta and eta functions of integer (and half-integer)
arguments, as well as multiples of p, ln(2), etc., have all been computed to high precision (greater than
required for IEEE 64-bit floating-point arithmetic ([15])) using the computer algebra systems Maple and
Mathematica ([16]), or the arbitrary-precision calculator bc ([17]).

The Euler–Maclaurin formula is used to compute the Riemann zeta function ([18] Ch. IX § 1) for
positive arguments:

z(p) =
k = 1
S

m - 1

kp

1___ +
(p - 1)m p - 1

1___________ +
2mp

1_____ +
G(p)

1_____

k = 1
S
¥

(2k)!mp + 2k - 1

B2kG(p + 2k - 1)_______________, for p ‡ 0 ,

the powers of composite numbers being derived from those of their prime factors ([19]), using a table of

- 18 -

ln(k). A table of

(2k)!m2k - 1

B2k__________

is used for the second sum. For negative arguments,

z(p) = 2 (2p)p - 1sin(⁄1
2pp) G(1 - p) z(1 - p) , for p < 0 .

The division between these formulae is actually taken at a small negative value of p, to avoid the
occurrence of z(1) in the second.

The eta function is normally computed as h(p) = (1 - e (1 - p)ln(2))z(p), but for arguments near one,
where zeta becomes infinite, it can be expanded as a power series, starting

h(1 + e) = ln(2) + [g ln(2) - ⁄1
2ln(2)2]e - [g1 ln(2) + ⁄1

2gln(2)2 - ln(2)3 /6]e2 + O (e3) .

The form of the coefficients is not important here; they can be found, in analytical or numerical form, using
Maple.

Pre-computed tables are used for the zeta, eta, beta, and lambda functions of integer and half-integer
arguments, from zero to the point where the functions become indistinguishable from one in machine
arithmetic, and for G(n + ⁄1

2), over the whole range in which it is representable.

24. Optimization

Many optimizations have already been mentioned, particularly the use of pre-computed tables of
powers, zeta functions, etc. when the parameter is an integer, n (or n + ⁄1

2).

In this case, if the number of terms required in the series is known, as a function of the parameter and
argument, then nested multiplication can be used, and a loop of the form

repeat
k := k + 1;
power := power*z;
term := power*coeft[k];
sum := sum + term

until | term | < e;

can be replaced by

for k := max downto 1 do
sum := sum*z + coeft[k];

The saving is usually so great that only a crude upper bound is sufficient; however, this method is probably
not feasible except for particular values of the parameter, such as the dilogarithm.

25. Mass Production

If many values of Lin + p(z) are required for a range of integers n but fixed p and z, a great deal of
computation can be saved in most of the algorithms by re-using terms from one value of n for the next. For
example, in Eqn (8.1),

kp

zk___ =
kp - 1

zk_____ ·
k
1__ ;

in Eqn (9.3) etc.,

z(p - k)
k!
wk___ = z(p - k)

(k - 1)!
wk - 1_______ ·

k
w__ ;

and in Eqn (13.1),

(2kpi - w)p - 1 = (2kpi - w)p - 2 · (2k pi - w) .

There are several situations where such sequences are required, for example Eqn (9.1) and Eqn (16.2).

- 19 -

26. References

[1] L. Lewin, Dilogarithms and Associated Functions, Macdonald, 1958.

[2] C. Truesdell, ‘On a function which occurs in the theory of the structure of polymers’, Annals of
Mathematics, Series 2, 46, No 1, pp. 144–1457, 1945.

[3] B. Fornberg and K. S. Ko
..
lbig, ‘Complex zeros of the Jonquière or polylogarithm function’,

Mathematics of Computation, 29, 130, pp. 582–599, 1975.

[4] M. Abramowitz and I. A. Stegun (ed.), Handbook of Mathematical Functions, National Bureau of
Standards, 1964; reprinted Dover Publications, 1965.

[5] B. W. Char et al., Maple V Language Reference Manual and Maple V Library Reference Manual,
Springer-Verlag, 1991.

[6] J. E. Robinson, ‘Note on the Bose–Einstein integral functions’, Physical Review, Series 2, 83,
pp. 678–679, 1951.

[7] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge, 1927.

[8] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions,
Vol. 1, McGraw-Hill, 1953.

[9] J. Clunie, ‘On Bose–Einstein functions’, Proceedings of the Physical Society, Section A, 67,
pp. 632–636, 1954.

[10] E. Schro
..
dinger, Statistical Thermodynamics, Cambridge, 1952.

[11] J. Boersma and J. P. Dempsey, ‘On the evaluation of Legendre’s chi-function’, Mathematics of
Computation, 59, 199, pp. 157–163, 1992.

[12] J. McDougall and E. C. Stoner, ‘The computation of Fermi–Dirac functions’, Philosophical
Transactions of the Royal Society, Series A, 237, pp. 67–104, 1939.

[13] K. S. Ko
..
lbig, J. A. Mignaco, and E. Remiddi, ‘On Nielsen’s generalized polylogarithms and their

numerical calculation’, BIT, 10, pp. 38–74, 1970.

[14] American National Standard Programming Language FORTRAN, ANSI X3.9-1978, American
National Standards Institute, 1978.

[15] IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985, The Institute of
Electrical and Electronic Engineers, 1985.

[16] S. Wolfram, Mathematica: A Systemfor doing Mathematics by Computer, Addison-Wesley, 1988.

[17] L. L. Cherry and R. Morris, BC — An Arbitrary Precision Desk-Calculator Language, Bell
Laboratories, 1978.

[18] E. Jahnke and F. Emde, Tables of Functions with Formulae and Curves, Dover, 1945.

[19] B. Markman, ‘The Riemann Zeta function’, BIT, 5, pp. 138–141, 1965.

