
Computer Science at Kent

Turtle Graphics:
Exercises in Haskell

Eerke Boiten

Technical Report No. 11- 04
June 2004

Copyright c© 2004 University of Kent at Canterbury
Published by the Computing Laboratory,
University of Kent, Canterbury, Kent, CT2 7NF, UK

1 Introduction

This document contains a collection of programming exercises in the func-
tional programming language Haskell. The exercises are all concerned with
Turtle Graphics – interpreting and generating programs for “turtles”.

Full solutions to the exercises have not been included (these are avail-
able on request). However, the document contains both hints for students
and comments for teachers (the latter in small italics). The difficulty level of
exercises is marked with stars. The next section gives the teaching context
in which this material was used – in particular, it lists assumptions made
about the students’ knowledge.

2 History

The module CO312 Case Studies was introduced into the first year of the
BSc Computer Science programme at the University of Kent in 1996. Its
purpose was to reinforce teaching in other first year modules through the use
of larger case studies. I was responsible for the ”functional programming”
component of the module from the start, to supplement the first year module
on Functional Programming and Logic. Initially this was taught in Miranda;
in recent years, Haskell was used. Textbooks by Simon Thompson were
used throughout – since 1999, the second edition of “Haskell: The Craft of
Functional Programming” [3]. This edition differs from the previous one and
the Miranda textbook by starting with a combinator library for “pictures”
before the traditional build up through topics such as recursion and list
algorithms. A notation from this book used here is that ~> means “evaluates
to”. For visualising turtle graphics, the exercises below use the Picture

module from Thompson’s book, but little knowledge of the internals of this
is required here.

By the time the students started on their CO312 Haskell case studies,
they would typically have covered:

• basic types Bool, Int and Char with operations;

• tuples; lists, list comprehensions, list library functions;

• list programs through pattern matching and recursion;

• very simple algebraic types (enumerated types).

They would have seen library functions on lists, but often not the higher
order ones, and without much awareness of parametric polymorphism; they
would not have seen complicated algebraic types or type classes.

The module was assessed through 50% coursework and 50% exam. A
series of seven lectures would build up to the coursework assessment, by
offering preparatory exercises, to be solved individually or in a class. Correct
and incorrect solutions to these exercises would be discussed in the following
lecture. Students would then have a few weeks to do the final assessment.
The exam would consist of a model solution to this assessment (also handed
out well in advance) with a number of questions related to modifications or
extensions of the code, e.g. based on changes to the problem or the suggested
solution.

3 Turtle Graphics

This is a famous example in introductory programming, invented by Sey-
mour Papert [2]. The treatment of it here is inspired by the one in the
textbook by Bird and Wadler [1, Section 4.4]; an important difference is
that turtle commands are defined in an algebraic type here rather than
directly as functions; also, we add the generation of turtle programs.

A turtle lives in a (potentially infinite) two-dimensional grid.

type Location = (Int,Int)

(Note: all locations will be integer pairs.) Besides a location, it has a pen
which is Up or Down, and it faces a direction which is North, South, (which
means that when it next moves, it will increase or decrease its y coordinate),
East, or West (increasing or decreasing x).

-

y

x�

6

?

N

S

EW

data Direction = North | East | South | West

deriving (Show,Eq)

data Pen = Up | Down

deriving (Show,Eq)

type Turtle = (Location, Direction, Pen)

I would explain deriving (Show,Eq) as a useful idiom by itself for enumerated

types – type classes had not yet been covered.

3.1 Exercises (*)

Define functions which get the components of a turtle state:

1. myX :: Turtle -> Int

2. myY :: Turtle -> Int

3. face :: Turtle -> Direction

4. pen :: Turtle -> Pen

Although the main point of these exercises is to use the right patterns for the Turtle

arguments (including possibly _), the existence of these functions may actually dis-

suade students from using the right patterns in later exercises . . .

4 Turtle Commands

A turtle knows the following commands:

data Cmd = Step | PenUp | PenDown | RotR | RotL

deriving (Show,Eq)

It can do one step in the direction it is facing; it can put the pen up or
down; and rotate 90 degrees to the left or to the right.

5. (**) Define the function

execute :: Cmd -> Turtle -> Turtle

for the given set of commands and the given interpretations. Auxiliary
functions you might use are

step :: Turtle -> Turtle

rotr :: Direction -> Direction

for executing a single step, and rotating right.

Pitfalls: capitalisation of constructors matters; confusion between a command

and its interpretation; use of _ on the right hand side to denote unchanged

components.

6. (**) Define a function

executes :: [Cmd] -> Turtle -> Turtle

which uses execute to execute a sequence of commands.

The cynical view of introductory functional programming: as soon as you

have fixed the type errors in a typical exercise, the answer is probably correct.

Using this principle and the idea that parameters and computed results need

to be used gets you far here. The main source of error is that the recursive

call to executes and the call to execute both produce a Turtle, possibly

leading to reverse execution of the sequence.

5 Programs for Turtles

We will not just be interpreting programs for turtles, but also generating
them. A program is just a sequence of commands. (“Real” turtle graphics
languages such as Logo [2] offer more control structures and other con-
structs.)

type Tprog = [Cmd]

The specifications of these programs use executes.

7. (**) Give a program for any turtle that moves the turtle to the x-axis
(i.e., where y = 0).

moveX :: Turtle -> Tprog

The property that will need to hold (for any t) is

myY (executes (moveX t) t) ~> 0

You need to ensure the turtle faces in the right direction, and then use
replicate and the Step command.

8. (**) Define

moveToX :: Turtle -> Tprog

which satisfies, in addition, that

face (executes (moveToX t) t) == face t ~> True

(i.e., it needs to turn back the way it was facing originally).

9. (**) Analogously, define

moveY :: Turtle -> Tprog

and as a challenge

moveToY :: Turtle -> Tprog

10. (*) Assuming that you have available moveToX and moveToY as defined
above, define

moveTo0:: Turtle -> Tprog

such that

myY (executes (moveTo0 t) t) ~> 0

myX (executes (moveTo0 t) t) ~> 0

face (executes (moveTo0 t) t) == face t ~> True

pen (executes (moveTo0 t) t) == pen t ~> True

11. (**) Define

mirror :: Turtle -> Tprog

such that

myY (executes (mirror t) t) == - (myY t) ~> True

myX (executes (mirror t) t) == - (myX t) ~> True

You may of course use the functions defined above.

6 Turtle Trails

So far, we have not actually recorded the paths taken by a turtle with pen
down, there have been turtles but no “graphics”.

The strategy is to replace executes by a function which also records the
points touched, define windows, display the points which are in a window
(as a Picture = [[Char]]!)

12. (*) Define a function

locs :: [Turtle] -> [Location]

which lists all locations in the list of turtle states.

13. (*) Define a (slightly different) function

dots :: [Turtle] -> [Location]

which lists all locations in the list of turtle states where the turtle’s
pen was Down.

E.g.

t1 =[((0,0),North,Up),((0,0),North,Down),((0,1),North,Down)]

locs t1 ~> [(0,0), (0,0), (0,1)]

dots t1 ~> [(0,0), (0,1)]

14. (**) Define a function

trail :: Tprog -> Turtle -> [Turtle]

such that trail cs t records all turtle states obtained by a turtle
executing cs starting from state t.

E.g.

trail [PenDown,Step] ((0,0),North,Up) ~> t1 (see above)

trail [Step] ((0,0),North,Up)

~> [((0,0),North,Up), ((0,1),North,Up)]

The structure of this function is similar to that of executes.

Pitfall: forgetting the first or last position.

15. (*) Define a function

alldots :: Tprog -> Turtle -> [Location]

such that alldots cs t records all locations visited with the pen
down by a turtle executing cs starting from state t.

16. (**) Give a recursive definition of alldots which does not use trail.

7 Pictures in Windows

A window is denoted by a pair of locations: the bottom-left (bl) and the
top-right (tr) of the window.

type Window = (Location,Location)

A window is OK if its bl corner is not to the right of, and not above its tr
corner. All further windows are assumed to be OK.

windowOK :: Window -> Bool

windowOK (bl,tr) = leftBelow bl tr

17. (*) Define the function

leftBelow :: Location -> Location -> Bool

18. (*) Points can be either inside or outside a window. The “edges” of
the window count as inside.

Define the function

isInWin :: Location -> Window -> Bool

such that isInWin l w evaluates to True whenever location l is in
the window w.

19. (*) Define the function

locsInWin :: [Location] -> Window -> [Location]

which picks, from a list of locations, all those within the window.

Given a window, we can create a Picture [3, Chapter 1] from it. Remember
that

type Picture = [[Char]]

with the character ’#’ representing black, and ’.’ representing white.

20. (**) To generate a completely “white” picture from a given window
((blx,bly),(trx,try)), we would have to take, for each y (going
down from try to bly), a line of ’.’, one for each x (going up from
blx to trx).

Complete the definition below.

winToPic :: Window -> Picture

winToPic ((blx,bly), (trx,try))

= [??? | y <- downto ???? ??]

where downto m n = reverse [n..m]

??? is itself a list comprehension.

Note that winToPic could also be defined using replicate (twice) but
that solution would not be useful for the next question.

21. (***) Instead of a completely white picture, we could also produce a
picture with dots taken from a list of locations.

Modify the definition of winToPic to get a function

locsToPic:: [Location] -> Window -> Picture

such that the size of the resulting picture is the size of its input window,
and such that it is ‘black’ for all given locations and ‘white’ for all
others.

You may assume that the locations are all within the window. You
will need to check for certain (x,y) whether they are in the input list
of locations – use the function elem, do not attempt to optimise this
(yet).

22. (****) The function locsToPic can be optimised by sorting the loca-
tions into the order in which they occur in the picture (i.e. first by
decreasing y, then by increasing x). You can then always check for
just the first of the remaining locations rather than use elem. The

downside of this is: the list comprehensions will have to be replaced
by recursion.

Assuming the list of locations is sorted in this way, define a more
efficient version of locsToPic.

8 Turtle Objects and Pictures

We will develop a function that, from an abstract description of a “picture”
(as a collection of geometric shapes inside a window), generates a turtle
program which will let a turtle “draw” that picture.

A turtle picture consists of a window (the “frame” of the picture) and a
list of turtle picture objects.

type TPic = (Window, [TObj])

In the definition of TObj, we will use a type Nat, defined by

type Nat = Int

to indicate which values can always be assumed to be ≥ 0.
Turtle picture objects may be:

data TObj = Dot Location |

a dot in a given location, or

Rect Location Nat Nat Bool |

a rectangle (bottom left corner, horizontal size, vertical size, filled in?), or

Square Location Nat |

a square (bottom left, size, not filled in). The size of a square or rectangle
is the difference between its coordinates, so a rectangle of width two and
height one will occupy six locations. Finally, it could be

Line Location (Int,Int) Nat

a line starting from a location with given slope and extent (see later).

8.1 Drawing Lines

When we have Line f s x we are thinking of a line that starts in location
f, has slope s and horizontal extent x. E.g., Line (1,3) (2,-1) 8 runs
from (1,3) to (9,-1). (Draw a picture!) The exception is when the line
is vertical, i.e., the slope is (0,y), then x gives the vertical extent. So:
the extent is usually the absolute difference between x coordinates of the
endpoints of the line, except for vertical lines, where it is the difference
between y coordinates.

Every slope can be assumed to satisfy okslope.

okslope :: (Int,Int) -> Bool

okslope (x,y) = (gcd(abs x)(abs y) ==1)

I.e., x and y have no common divisor > 1.
Since we are only interested in integer points, the line specified by Line

(1,3) (2,-1) 8 runs from (1,3) to (9,-1), and it visits (3,2), (5,1),
(7,0) on the way. But what does it do between those points? We don’t draw
diagonals, so . . . we have to approximate them. In this case, that would be by
taking (1,3), (1,2), (2,2), (3,2), (3,1), (4,1), (5,1) etc (primi-
tive), or by (1,3), (2,3), (3,3), (3,2), (4,2), (5,2), (5,1) etc or
even (smooth) (1,3), (2,3), (2,2), (3,2), (4,2), (4,1), (5,1) etc.
(Again, draw pictures to understand this.) Using moveToFrom between the
endpoints of the line only leads to the least smooth line of all.

8.2 Exercises

Where you are asked to write functions that generate turtle programs, do
not optimise these turtle programs; this will be done in Exercise 33.

20. (*) Define functions

base, limit :: TObj -> Location

such that the base of any TObj is the Location given in its definition,
and the limit is the “opposite end” – this will be the same location
for a dot, the top right corner for a rectangle or square, and the other
endpoint for a line.

For lines you will need to distinguish between slopes of (0, y) and oth-
ers, and take into account that slopes may have negative coordinates.

21. (**) Define a function

rectangle :: Int -> Int -> Bool -> Tprog

such that executing rectangle x y b “draws” (with the pen down!)
a rectangle, whose first and third side are length x, and second and
fourth sides are length y. The first side should be in the direction the
turtle is facing; then at every corner the turtle should turn left for b

== True or right for b == False.

Note that the current state of the turtle is irrelevant and thus not a
parameter of the function.

22. (**) It is hard to put together generated turtle programs without losing
track of where the turtle is.

Define a function

andThen :: (Turtle -> Tprog)

-> (Turtle -> Tprog)

-> Turtle

-> Tprog.

such that andThen p1 p2 t (which can also be written as:
p1 ‘andThen‘ p2) gives a turtle program which starts with p1 t and
then p2 applied to the turtle state you get from executing p1 t.

Reformulate moveTo0 using andThen.

23. (**) Define a function

doAll :: [(Turtle->Tprog)] -> Turtle -> Tprog

such that

doAll [p1,p2,p3,p4] t

= (andThen p1 (andThen p2 (andThen p3 p4))) t

etcetera.

24. (*) Define a constant house :: TPic as a picture of a square ”house”
with a pointed roof, a rectangular door in the middle of the house,
with a door knob.

25. (*) Define a value of type TPic which represents your name, your login,
or some other originality. It should contain a list of at least 8 TObj.
E.g., mine could be

(((0,0),(18,8)) ,

[Line (0,0) (0,1) 8, Line (0,0) (1,0) 4,

Line (4,4) (-1,0) 4, Line (0,8) (1,0) 4,

Line (6,0) (1,4) 2, Line (10,0) (-1,4) 2,

Line (7,4) (1,0) 2, Rect (12,0) 4 8 False,

Square (12,4) 4, Rect (18,0) 0 0 True])

�
�
�
�
�
�
�
�

C
C
C
C
C
C
C
C

r

26. (*) Define a function

fits :: TObj -> Window -> Bool

which checks whether a given picture object is within a Window. (Use
previous functions.)

27. (*) Define a function

checkObj :: TObj -> Window -> Bool

which checks whether a given picture object is within a Window, and
if it is a (non-vertical) Line, also whether its extent is divisible by the
x coordinate of its slope. (I.e.,the slope fits into the extent an entire
number of times.)

28. (*) Define a function

checkTPic :: TPic -> Bool

which checks whether all the turtle picture objects in the Tpic pass
the checkObj test, using the Tpic’s window.

29. (**) Define a function

moveToFrom :: Location -> Turtle -> Tprog

which gives the Tprog to move a turtle (its current state is given in the
Turtle argument) to a specified Location. The pen position should
remain unchanged throughout this program, and the turtle orientation
should be the same after this program as it was before. I.e., one should
have that

executes (moveToFrom (xn,yn) ((x,y),d,p)) ((x,y),d,p)

~> ((xn,yn),d,p)

30. (**) Define a function

drawDot :: Location -> Turtle -> Tprog

which produces a turtle program that, from a given initial turtle po-
sition, will move to the given location and “put a # there”.

8.3 How to Fill a Rectangle

The function rectangle does a lot of work for “open” rectangles already,
but it doesn’t cover “filled in” rectangles.

However, drawing

Rect (3,5) 7 4 True

should have the same result as drawing all of

Rect (3,5) 7 4 False

Rect (4,6) 5 2 False

Rect (5,7) 3 0 False

(Draw a picture. Note that the last of these is essential, and this shows why
we do have Rect with sides possibly 0.)

8.4 Exercises, Continued

31. (***) Define a function

drawObj :: TObj -> Turtle -> Tprog

such that drawObj tob t gives the turtle program to draw picture
object tob for a turtle which has to start from state t. (So this function
should deal with dots, squares, open rectangles, filled in rectangles, and
lines.)

Could award bonus marks for smooth lines. Pitfalls: trying to draw rectangles

from the “nearest” corner and getting that wrong; the booleans in rectangle

and Rect are unrelated; lines: forgetting (downward) vertical lines, division

by 0 errors from vertical lines, incorrect endpoints when negative slope com-

ponents.

32. (**) Define a function

drawTPic :: TPic -> Turtle -> Tprog

such that drawTPic tp t gives the turtle program to draw picture tp
for a turtle which has to start from state t.

The program losing track of where the turtle is is normally found out by using

drawTPic pic ((-4,4),West,Up).

33. (**) Define a function

optimise :: Tprog -> Tprog

to optimise the turtle programs you have generated.

It should optimise every subsequence of unnecessary rotations (e.g. 7
RotR should go to a single RotL, and RotR should never be followed
immediately by RotL and vice versa). It also should optimise adjacent
pen movement, e.g. 2 PenUp followed by a PenDown can be replaced
by a single PenDown. (You need to be careful with pen optimisations
– the pattern [PenDown,PenUp] cannot be optimised.)

Other pitfalls: indexing rather than recursion, take i1 xs++drop i2 xs is

inefficient and usually wrong. Optimising [PenUp,RotR,PenUp,RotR,PenUp,

RotR,PenDown,RotR] to [PenDown] requires a non-obvious approach.

34. (***) Nested pictures.

Extend the declaration of TObj with

Nest Location TPic

which has the meaning of including a picture as an object in another
picture, such that the inner picture’s (0,0) coincides with the location
given.

There are essentially two ways of dealing with a nested picture: either
flatten it (i.e. replace it by all the objects in it, with their bases possibly
changed), or deal with it directly. The former seems easier.

Extend the definitions given earlier (and base etc) to also cover Nest.
There are two possible interpretations for a nested picture “fitting”:
either all the objects in it fit, or it fulfills checkTPic and its entire
window fits. Either of these is fine.

“Wallpaper” from an existing 10x10 picture mypic:

wallp :: TPic

wallp = (((0,0),(40,20)), [Nest (0,0) mypic,

Nest (0,10) mypic, Nest (10,0) mypic,

Nest (10,10) mypic, Nest (20,0) mypic,

Nest (20,10) mypic, Nest (30,0) mypic,

Nest (30,10) mypic])

9 Exam Questions

Exam papers for CO312 consisted of a “case study” (a model solution to
the year’s major assessment) which had been handed out well in advance,
with questions such as the following.

1. Select a part of the code that, in your view, has been done in a clumsy
or inefficient way, and present an alternative solution for it. Explain
in which respect your solution improves the solution given.

2. Imagine we are modeling a new generation of turtles (or are they now
frogs?), which have the same repertoire of commands, plus a new com-
mand called Jump. In terms of the type definitions, that would only
change the type Cmd. The interpretation of Jump is similar to that of
Step, except that the turtle moves two steps in whichever direction it is
facing. For example, a turtle starting from state ((0,2), East, Down)

would end up at state ((2,2), East, Down) after executing a Jump.
For drawing purposes, the location “jumped over” does not count –
so in the example, location (1,2) would not be drawn. As a conse-
quence, Jump is only useful for “speeding up” turtle movement when
the turtle is not drawing.

Go through the code systematically, and indicate which changes would
have to be made in order to accommodate this new command. For

functions that generate and optimise turtle programs, at which point
do you think Jump commands were best introduced? Why, and how?

3. Define a function

union :: Window -> Window -> Window

such that union w1 w2 is the smallest window which contains all
points in w1 and w2. This may also include points in neither, for
example (6,4) is in neither of ((0,-1),(6,3)) and ((-1,0),(5,5))

but in their union, as

union ((0,-1),(6,3)) ((-1,0),(5,5)) ~> ((-1,-1),(6,5))

4. Using the function union, define a function

merge :: TPic -> TPic -> TPic

which combines two turtle pictures into one, using the union of their
windows and including all objects of both pictures.

5. Define a function

createLine :: Location -> Location -> TObj

which, given two locations, returns a line connecting them. The result
of this function should satisfy the properties of Line objects: positive
extent, okslope. Ensure that the function returns an error (using
error::String -> a) in the one circumstance where it is not possible
to return such a line.

6. Using the function createLine define a function

connectAll :: [Location] -> [TObj]

which, given a list of n ≥ 1 locations, returns the list of n − 1 lines
connecting every pair of locations adjacent in the list. For example,
connectAll [a,b,c] should return a list containing two lines, one
between a and b and one between b and c.

7. Imagine we are modeling a new generation of smarter turtles, which
have eight instead of four possible orientations: they can face NE, NW,
SE, or SW (northeast, northwest, etc) as well. In terms of types, that
would only change the type Direction. The set of commands would
not change, but the interpretation of rotations left/right would be
45 degrees (used to be 90) and a Step could also lead to a diagonal
movement. For example, a turtle facing SE at location (3,4) would
end up in (4,3) if it did a Step.

Go through the code systematically, and indicate which changes would
have to be made in order to accommodate this new version of turtles
and changed interpretation of some command.

The most complicated change is the one possible in moveTo0 (which is
likely to change moveToFrom and line drawing functions) that makes
profitable use of the availability of diagonal turtle movement. For this,
first sketch how you would let the turtle move as quickly as possible
to (0,0) when it can also move diagonally, and only then write the
code which produces such a turtle program.

8. Imagine we are modeling a new generation of smarter turtles, which
have the same repertoire of commands, plus a new command: Flip.
In terms of types, that would only change the type Cmd. The interpre-
tation of Flip is like two RotR or RotL commands, i.e., a 180 degree
rotation.

Go through the code systematically, and indicate which changes would
have to be made in order to accommodate this new command.

Use of the Flip command could also be a way of generating shorter
turtle programs. There are essentially two ways (sections of the code)
for doing this. Which are they, how would it be done, and which of
the two ways would you prefer, and for what reason?

Acknowledgements

I would like to thank the CO312 students from 1997/98 to 1999/2000 for
their feedback and ideas.

References

[1] Richard Bird and Philip Wadler, “Introduction to Functional Program-
ming”, Prentice Hall, 1988.

[2] Seymour Papert, “Mindstorms; Children, Computers and Powerful
Ideas”, Basic Books, 1980.

[3] Simon Thompson, “Haskell: The Craft of Functional Programming”,
2nd edition, Addison-Wesley, 1999.

