
Computer S
ien
e at Kent

Input/Output Abstra
tionof State Based Systems
Eerke Boiten
Te
hni
al Report No. 12-04June 2004

Copyright

 2004 University of Kent at CanterburyPublished by the Computing Laboratory,University of Kent, Canterbury, Kent, CT2 7NF, UK

Input/Output Abstra
tionof State Based Systems
Eerke BoitenJune 2004
Abstra
tAbstra
tion of spe
i�
ations is a method of making veri�
ationand validation of spe
i�
ations and implementations more tra
table.This paper
onsiders the spe
ial
ase where the abstra
tion is de�nedby eliding input or output variables in state based spe
i�
ations { inparti
ular,
onditions for su
h abstra
tions to be sound and
ompletewith respe
t to a re�nement semanti
s. Output abstra
tions turn outto be un
onditionally sound, and
ombinations of output abstra
tionsare
omplete in
ertain
ir
umstan
es. Con
rete results are developedin the state-based notation Z, and then
onsidered in the underlyingsemanti
 framework and for similar languages.

1 Introdu
tion: Abstra
tion and Veri�
ationThe
omplexity and size of spe
i�
ations and implementations form a se-rious impediment to veri�
ation. Model
he
king is able to deal with everin
reasing state spa
es, through advan
es in te
hnology and implementa-tion methods; however, there will always be larger or even in�nite spa
esof interest to be explored. Full veri�
ation, for example using re�nement[7, 9℄, of a
andidate implementation with respe
t to a spe
i�
ation, is onlysparingly applied to \real" systems.Abstra
tion makes these kinds of veri�
ation e�orts more tra
table. Inmodel
he
king, where one
he
ks whether a \model" satis�es a \property"by exhaustive sear
h of the model's state spa
e, one may abstra
t the model.This redu
es the state spa
e to be sear
hed, and preserves positive results:if the abstra
t model
an be shown to satisfy a property, so does the originalmodel. In veri�
ation, one may abstra
t the spe
i�
ation instead, leadingto a preservation of negative results. Su
h abstra
tions may be viewed as
1

tests [1, 16℄, des
ribing a subset of the originally required properties. Of
ourse, if a
andidate implementation fails the test (i.e., it produ
es a resultin
onsistent with the abstra
tion), then it will also fail the original spe
i�-
ation. For appropriate de�nitions of re�nement and abstra
tion (namely:set in
lusion over \properties of interest"), they are ea
h others'
onverse.This paper
onsiders a parti
ular kind of abstra
tion: namely, removinginput and output variables from state based systems. The notation used isZ [15℄, whi
h has a well-developed theory of re�nement [9, 17℄.In Se
tion 2 we des
ribe how Z is used as a state-based spe
i�
ationnotation, its standard notion of re�nement, and existing approa
hes to \ab-stra
tion as testing" in Z. Se
tion 3 presents synta
ti
 and semanti
 methodsof abstra
ting over input and output variables. Se
tion 4 then des
ribes the ageneralised notion of re�nement, ne
essary to verify these abstra
tions, viz.,IO re�nement. The subsequent se
tions investigate \soundness": whetherabstra
tions are indeed
onverse IO re�nements. For input variables,
ondi-tions for this are derived in Se
tion 5. For output variables, an un
onditionalsoundness result is given in Se
tion 6. Se
tion 7 shows that
ombinationsof output abstra
tions may also be jointly \
omplete" in
ertain situations.The �nal se
tion
on
ludes, dis
ussing how the paper's results transfer tothe underlying semanti
 model and other spe
i�
ation languages.
2 Z, Re�nement, Abstra
tion, TestingWe �rst des
ribe how abstra
t data types (ADTs) are spe
i�ed in Z, thenpresent the standard notion of re�nement for su
h ADTs, and �nally dis
ussexisting approa
hes to abstra
tion and testing based on this.2.1 Abstra
t Data Types in ZState-based systems are
ommonly des
ribed in Z using the \states-and-operations" style. An ADT is given by a state spa
e, an initialisation, anda
olle
tion of operations. All of these are des
ribed by Z \s
hemas", whi
hdes
ribe sets of \bindings", essentially labelled produ
ts. The labels maybe viewed as names of variables, whi
h are indi
ative of their roles: primedvariables represent \after-states", inputs end in question marks, outputs inex
lamation marks.Example 1 The �nan
ial a�airs of a traditional monar
hy may be repre-

sented by the data type (Treasury ; Init ; fTax ;Spendg) whereTreasurym : N InitTreasury 0m 0 > 0Initially, the treasury is non-empty. Taxing the
itizens by a value in? resultsin a
orresponding in
rease of the treasury; the new balan
e is reportedto the treasurer (output m!); the king only observes that the balan
e hasin
reased (output in
!). If there are suÆ
ient funds, the king may requestto spend an amount req?, whi
h leads to the (identi
al) amount out ! beingspent. Tax�Treasuryin? : Zm! : Nin
! : Bin? > 0m 0 = m + in?m! = m 0in
! = (m 0 > m)

Spend�Treasuryreq? : Nout ! : Nout ! = req?m 0 = m � out !
2The signature �S of a s
hema S is de�ned as a s
hema
ontaining all itsde
larations (normalised1) with the predi
ate \true". Formally, �S = S _:S . Any s
hema S su
h that S = �S will be
alled a signature. Thesubsignature relation on signatures is de�ned by S v T == (S ^ T) � T .Important subsignatures for an operation Op are ?Op whi
h returns thesignature of the inputs, and !Op whi
h gives the signature of the outputs.The pre
ondition preOp (in general not a signature) returns only the before-state and inputs, existentially quantifying over after-state and outputs.2.2 Re�nementRe�nement of Z ADTs is normally de�ned on two levels. Operation re-�nement, or \algorithmi
 re�nement", whi
h leaves the state un
hanged, isde�ned at the level of individual operations.1Normalisation repla
es any de
laration x : S by x : X where X is the maximal set
ontaining S , and an extra predi
ate x 2 S .

De�nition 1 (Operation re�nement) An operation COp is an opera-tion re�nement of an operation AOp over the same state spa
e State i�Corre
tness8State; State 0; ?AOp; !AOp � preAOp ^ COp) AOpAppli
ability8State; ?AOp � preAOp) preCOp 2The two
onditions impli
itly represent two ways in whi
h an operation
an be re�ned: by redu
tion of non-determinism, and by widening the areawhere the operation is guaranteed to be well-behaved, respe
tively. As theoperations in our example are already deterministi
, they
an only be re�nedby weakening their pre
onditions, e.g., Tax may be re�ned by removing therestri
tion in? > 0.Data re�nement is a generalisation of operation re�nement whi
h ex-ploits the data type being abstra
t , i.e., the state may be
hanged providedthe externally visible behaviour is preserved, and in general ADTs need tobe re�ned in their entirety. Based on the relational re�nement of He, Hoareand Sanders [11℄, this re�nement theory for Z is des
ribed in full detail inthe monograph [9℄. The standard method of verifying data re�nement isthrough upward and downward simulations, whi
h are sound and jointly
omplete. As the former do not
ontribute to this paper, we only give:De�nition 2 (Downward simulation) Given ADTs A = (AState;AInit ;fAOpigi2I) and C = (CState;CInit ; fCOpigi2I), where
orresponding op-erations have identi
al input and output signatures. The relation R onAState ^ CState is a downward simulation from A to C if8CState 0 � CInit) 9AState 0 � AInit ^ R0and for all i 2 I :8AState; CState; ?AOpi � preAOpi ^ R) preCOpi8AState; CState; CState 0; ?AOpi ; !AOpi �preAOpi ^ R ^ COpi) 9AState 0 � R0 ^ AOpi 2

2.3 Re�nement and TestingMethods for test
ase generation based on re�nement te
hniques often em-ploy \horizontal" de
ompositions of the state spa
e, inputs and outputs, i.e.,
onsidering partitions. For horizontal de
omposition of the Spend operationone might look at the variable m : N whi
h may or may not be zero, i.e.,use the disjun
tion m = 0 _m > 0 (1)as the basis of a de
omposition. In the PROST-Obje
ts testing methoddes
ribed by Stepney [16℄, a test
ase might be derived by using one of thesedisjun
ts to weaken the operation, e.g.,SpendZero�Treasuryreq? : Nout ! : Nm = 0) (out ! = req? ^m 0 = m � out !)
It is
lear that SpendZero is an abstra
tion of Spend : it is only required tobehave like Spend on part of its domain.Di
k and Faivre [10℄ des
ribed a method of test
ase generation basedon \disjun
tive normal forms" (DNFs). Properties like (1) are used to de-
ompose operations into disjun
tions of partial operations, with ea
h su
hpartial operation leading to a test
ase. Using property (1) leads to threesub-operations, distinguishing whether m = 0, either before or after theoperation. (The fourth
ase, m = 0 ^m 0 > 0,
annot arise as Spend neverin
reases the treasury.)Spend == Spend1 _ Spend2 _ Spend3

Spend1�Treasuryreq? : Nout ! : Nout ! = req?m 0 = m � out !m 0 > 0

Spend2�Treasuryreq? : N 1out ! : N 1out ! = req?m 0 = m � out !m 0 = 0

Spend3�Treasuryreq? : Nout ! : Nout ! = req? = 0m 0 = m = 0

By
onstru
tion, su
h sub-operations will be disjoint, and together
over theoriginal operation. They will not, in general, be abstra
tions of the originaloperation, be
ause they impose restri
tions on after-states.In previous work [8℄, we explored the intera
tion between data re�ne-ment and DNF-based test
ase generation, in parti
ular how disjointnessand
overing of
al
ulated
on
rete test
ases may be preserved.
3 Input and Output Abstra
tions in ZComplementary to the \horizontal" de
omposition approa
hes des
ribed inthe previous se
tion, this paper explores a \verti
al" de
omposition,
on
en-trating on hiding inputs and outputs only. Re
all that Z ADTs are abstra
t ,in the sense that the state variables are not dire
tly observable. Thus, pro-je
tion on IO variables rather than on state variables is more pertinent,as it refers to dire
tly observable behaviour. In terms of testing, an ab-stra
tion over an output variable represents disregarding the value of thatoutput; an abstra
tion over an input variable represents the use of an arbi-trary (\randomly" generated) input value. Both of these represent simplertests than those where all inputs should be provided and the values of alloutputs should be
he
ked, and thereby potentially a useful simpli�
ationof the testing pro
ess.In general, removal of
ertain input or output variables
annot be donepurely synta
ti
ally. For example, if we remove out ! from Spend , with allthe predi
ates that refer to it, we obtain

�Treasuryreq? : N
whi
h is not an abstra
tion of Spend : it removes the
onstraint that req? �m. In other words, it guarantees a well-de�ned result in an area whereSpend did not.A more appropriate way of hiding variables is semanti
ally based, al-though it
an be expressed synta
ti
ally in Z, viz. through existential quan-ti�
ation. For example, the output out ! is hidden in Spend as2:2In fa
t, an expli
it hiding operator n exists in Z with the same semanti
s.

9 out ! : N � Spend�Treasuryreq? : N9 out ! : N � out ! = req?m 0 = m � out !
whose predi
ates simplify to m 0 = m � req?.Although su
h \abstra
tions" over input and output variables are basedon the standard semanti
s (logi
 and set theory), they are not thereforeguaranteed to lead to
onverse re�nements. As des
ribed in [4, 9℄, re�ne-ment essentially provides a se
ond layer of semanti
s on top of the standardsemanti
s. In fa
t, these abstra
tions are even guaranteed not to satisfy there�nement
onditions, as they fail the
ondition that abstra
t and
on
reteoperations have the same input and output signatures. This gap is bridgedby the notion of IO re�nement presented in the next se
tion.
4 IO Re�nementIO re�nement [5, 3℄ allows
hanges of inputs and outputs, and thereby
hanges the boundaries of the system. It is a stri
t generalisation of tra-ditional Z re�nement [15, 17℄, whi
h does not allow su
h
hanges. Inputand output form part of the observable behaviour. Thus, when performingIO-re�nement we need to keep tra
k of all
hanges to the inputs and out-puts; this book-keeping is elided here, and for the te
hni
alities (
on
erning\original input and output transformers") we refer to [9℄.Before de�ning IO re�nement, we present the method used for modifyinginputs and outputs: through
omposition with \IO transformers", whi
h aredegenerate operations whi
h have no state, just inputs and outputs.De�nition 3 (IO transformer) A Z s
hema S is an IO transformer i��S = ?S ^ !S , i.e., the signature of S
ontains only input and output
omponents. 2For example, the s
hemaAnITreq?; req ! : Zreq ! = req? + 1

is an IO transformer: ?AnIT == [req? : Z ℄, !AnIT == [req ! : Z ℄.Sometimes the
onverses of IO transformers need to be used; they arede�ned by swapping input and output roles. This is indi
ated by overlining,in analogy with CCS [13℄.De�nition 4 (IO de
orations) For all
omponent names x , let x? be thename x !, and let x ! be the name x?. This de�nition is extended to IOtransformers, analogous to the normal Z s
hema de
oration
onventions. 2The
onverse of AnIT above isAnITreq?; req ! : Zreq ! = req?� 1
An IO transformer is an input transformer for an operation if its outputsexa
tly mat
h the operation's inputs, and analogously for output transform-ers. Parti
ular IO transformers a
t as identities on the input and outputside.De�nition 5 (Input and output transformers and identities)An IO transformer T is an input transformer for an operation Op i� ?Op =!T and it is an output transformer for Op i� !Op = ?T .For a s
hema S its input identity is de�ned by IId S == [?S ; ?S j �?S =�?S ℄ and its output identity by OId S == [!S ; !S j �!S = �!S ℄. 2An input transformer IT is applied to operation Op in IT >> Op. In theabsen
e of name
apture, the meaning of this is the
onjun
tion of Op andIT , equating and hiding the mat
hing inputs of Op and outputs of IT ; anoutput transformer OT is applied in Op >>OT .Example 2 The IO transformer AnIT above is an input transformer forSpend , its appli
ation leads toAnIT >> Spend�Treasuryreq? : Nout ! : N 1out ! = req? + 1m 0 = m � out !

An output transformer for Tax is for exampleDelIn
m?;m! : Nin
? : Bm? = m!in
? = (m? > 0)
and its appli
ation to Tax leads to the removal of the output in
!:Tax >>DelIn
�Treasuryin? : Zm! : Nin? > 0m 0 = m + in?m! = m 0 2Derivations of
onditions for IO re�nement are given in [9℄, using thestandard relational model for Z. The rules derived generalise data re�ne-ment, with rules for both upward and downward simulation. In this paperwe will only need the
ase where
on
rete and abstra
t state spa
es
oin
ide,whi
h is
overed by the a

ordingly restri
ted downward IO simulation rulebelow.De�nition 6 (Downward IO simulation) Consider ADTs A = (State;Init ; fAOpigi2I) and C = (State; Init ; fCOpigi2I). Let IT be an inputtransformer for COpi whi
h is total on ?AOpi . Let OT be a total inje
tiveoutput transformer for AOpi . C is a downward IO simulation of A i� forall i 2 I8State; ?COpi � pre(IT >>AOpi)) preCOpi8State; ?AOpi ; State 0; !COpi �preAOpi ^ (IT >> COpi)) (AOpi >>OT) 2Example 3 For any suitable operation Op, using AnIT above, AnIT>>Opor Op >> AnIT is a downward IO simulation, as AnIT represents a totalbije
tion.

Example 4 Due to the predi
ate on in
?, DelIn
 is inje
tive, and thusTax >>DelIn
 is a downward IO simulation of Tax . Intuitively, this showsthat an output variable may be removed provided its value
an be derivedfrom the other outputs. 2Parti
ular
onsequen
es of the downward IO simulation rule are embodiedin the following theorem.Theorem 1 (Simple input and output re�nement) For any ADT,adding a de
laration of a new output (from a non-empty set) to one ofthe operations
onstitutes a valid downward IO simulation.For any ADT, adding a de
laration of a new input (from a non-emptyset) to one of the operations
onstitutes a valid downward IO simulation. 2
5 Soundness of Input Abstra
tionIn this se
tion we investigate the
ir
umstan
es in whi
h hiding of inputvariables
onstitutes a (
onverse) IO re�nement. We
onsider two datatypes3 with a single operation ea
h4:D = (State; Init ; fDOpg)E = (State; Init ; fEOpg)where Inp is a signature su
h that Inp v ?DOp and the operation in E isobtained by abstra
tion over Inp in D , i.e.,EOp = 9 Inp � DOpas a
onsequen
e, ?EOp, the input signature of EOp, is the s
hema
ontain-ing the remaining inputs, and we have that5 ?DOp = Inp ^ ?EOp. Anotherway of expressing EOp, using an input transformer, isEOp = (Inp ^ IId (?EOp))>>DOpIn proofs, we use the fa
t that (partial) IO identities have no e�e
t in piping,in parti
ular it is also the
ase thatEOp = Inp >>DOp3They are, for on
e, not
alled A and C as we will
onsider possible re�nement in bothdire
tions.4There are situations, for example when
onsidering refusals, where the restri
tion to asingle operation allows stronger results. However, in this
ase the more general treatmentwould still be operation-by-operation, leading to a
luttered presentation.5S
hema
onjun
tion for disjoint signatures is really a Cartesian produ
t.

The
ase where we might have expe
ted re�nement to hold is where the\
on
rete" spe
i�
ation has input variables that the abstra
t one does nothave. However, there is a proviso.Theorem 2 D is a downward IO simulation of E if8State; ?EOp � (9 Inp � preDOp)) (8 Inp � preDOp)(Informally: if DOp is enabled in any state for parti
ular input from Inp, itis enabled in that state for all inputs from Inp.)ProofThe relevant input transformer is Inp^ IId (?EOp), whi
h is total. The onlynon-trivial
ondition is appli
ability, whi
h redu
es topre(Inp >> Inp >>DOp)) preDOpwhi
h is equivalent to the stated
ondition. 2Wemight also state this
ondition as: the pre
onditions of the operationsare independent of the values of the variables in Inp. A
orrespondingtheorem
an be proved for upward IO simulation, with the same
ondition.Example 5 Consider the Tax operation, whose pre
ondition in
ludes the
ondition in? > 0. Thus, it does not satisfy the
ondition of Theorem 2,and indeed the following is not a
onverse re�nement of Tax :9 in? : Z � Tax�Treasurym! : Nin
! : B9 in? : Z � in? > 0m 0 = m + in?m! = m 0in
! = (m 0 > m)We earlier observed that Tax allowed a re�nement dropping the
onditionin > 0, and
onsequently also the post
ondition that m 0 > m. The aboveoperation does not allow su
h a re�nement. 2For
ompleteness' sake, we also state the following.Theorem 3 E and D are downward IO simulation equivalent if8State; State 0; ?DOp; !DOp �(preDOp ^ Inp >> Inp >>DOp), DOp 2

The informal interpretation of this
ondition is that the input is irrelevant inDOp (note that Inp >> Inp represents the full relation on Inp). Obviouslythis implies that the input is also irrelevant in the pre
ondition of DOp.The downward IO simulation between E and D requires the)-part of this
ondition to guarantee
orre
tness; the reverse impli
ation always holds.
6 Soundness of Output Abstra
tionIn this se
tion we investigate when abstra
tion over output variables
onsti-tutes a
onverse IO re�nement. We
onsider data typesD = (State; Init ; fDOpg)F = (State; Init ; fFOpg)with some signature Outp v !DOp where the operation in F is obtained byabstra
tion over Outp in D , i.e.,FOp = 9Outp � DOpThus, !FOp
hara
terises the outputs of DOp that remain present in FOp.An alternative
hara
terisation isFOp = DOp >>OutpObserve that the pre
onditions of linked operations
oin
ide in this
ase:preFOp= 9State 0; !FOp � FOp= 9State 0; !FOp � 9Outp � DOp= 9State 0; !DOp � DOp= preDOpWhenever Outp has more than one possible value, the output transformerOId (!FOp)^Outp is not inje
tive, and thus F
an never be an IO downward(or upward) simulation of D using that output transformer. For that reason,we only need to
onsider whether D is an IO re�nement of F . Observe thatTheorem 1 does not apply, as that requires DOp >>Outp >>Outp = DOp,whi
h is only the
ase if, whenever one output is possible in any parti
ularstate, all other outputs are possible there, too.However, there is still an un
onditional positive result in this
ase:Theorem 4 D is a downward IO simulation of F .

ProofThe required output transformer is OId (!FOp)^Outp, taking the \abstra
t"outputs for F and adding Outp to those as \
on
rete" outputs for D . Thisis
learly inje
tive.Initialisation is una�e
ted. Due to equality of pre
onditions, appli
abil-ity is guaranteed. Finally,
orre
tness requires that DOp) EOp >> Outpwhi
h does indeed hold. 2Example 6 In Example 4 we showed that 9 in
! : N � Tax = Tax>>DelIn
was an IO re�nement of Tax ; in
ombination with the above result we
annow
on
lude that they are even equivalent with respe
t to IO re�nement.2
7 Completeness of Output Abstra
tionThe previous se
tions have investigated situations where abstra
tions of in-put and output variables were valid tests of a spe
i�
ation with respe
t toIO re�nement. One might view these as soundness
onditions: passing su
ha test is a ne
essary
ondition for any implementation to be
orre
t withrespe
t to the spe
i�
ation.In this se
tion, we
onsider situations in whi
h passing su
h a test is alsoa suÆ
ient
ondition. As the input abstra
tions were only
onditionallysound, we
on
entrate here on
ompleteness of output abstra
tions.Clearly, in general, we
annot expe
t to be able to test a system bynever
he
king a parti
ular output. Example 6 gave an ex
eption: whereone output is fully determined by another, we might as well not
he
k the�rst output.Viewing these abstra
tions as \proje
tions" of a spe
i�
ation invites ageometri
 analogy: we might wonder what the requirements would be forthe sets of variables proje
ted onto to be a basis, i.e., when the proje
tionstogether determine the spe
i�
ation as a whole.We
annot
hara
terise this dire
tly by re�nement: the spe
i�
ation is are�nement of ea
h of its proje
tions, but the reverse only holds if the spe
-i�
ation and ea
h proje
tion are all equivalent. However, we
an identifya spe
i�
ation with the set of all its re�nements; if all joint re�nements ofall proje
tions are also re�nements of the original spe
i�
ation, then theproje
tions and the original spe
i�
ation are \equivalent". (Compare the
onstru
tion of least
ommon data re�nements in [6℄.) This is
hara
terisedin the following de�nition.

De�nition 7 (Basis) Consider an ADT D = (State; Init ; fDOpg). LetfNFjgj2J be a
olle
tion of subsignatures of !DOp, and let Fj = 9NFj �DOp be the
orresponding
olle
tion of output abstra
tions.Then, fNFjgj2J is a basis of D i� for all ADTs H = (State; Init ; fHOpg)with input and output signatures identi
al to D , whenever H is a downwardIO simulation of ea
h of Fj with respe
t to output transformer NFj , HOpis an operation re�nement of DOp. 2Be
ause NFj is an output signature, the operation Fj >>NFj has the samebehaviour as DOp, ex
ept for produ
ing arbitrary values for outputs in NFj .Thus, Fj and Fj >>NFj are equivalent when interpreted as predi
ates in a
ontext where �Dop is de�ned.Note that a basis is represented by sets of variables that are hidden ratherthan their
omplements, the variables proje
ted onto. In parti
ular, in
lud-ing the empty subsignature (i.e., proje
ting onto the full set of variables)will always lead to a basis.Using the parti
ular relation between DOp and Fj , we
an eliminate thequanti�
ation over all H in De�nition 7:Theorem 5 (Basis
ondition) For nonempty J , fNFjgj2J is a basis forD if 8State; State 0; ?DOp; !DOp � (8 j : J � 9NFj � DOp)) DOpProof We need to prove that HOp is an operation re�nement of DOp,using the fa
t that H is a downward IO simulation of ea
h of Fj . Re
allthat the
onditions of operation re�nement are8State; ?DOp � preDOp) preHOp8 State; State 0; ?DOp; !DOp � HOp ^ preDOp) DOpThe �rst (\appli
ability")
ondition requires that J is non-empty. FromIO-re�nement from Fj to H (with the identity input transformer), we getpreFj) preHOpand we also have thatpreFj = preDOpby the
onstru
tion of Fj . Together these prove the �rst
ondition.

For the
orre
tness
ondition, we have from IO-re�nement that8 j : J � preFj ^HOp) Fj >>NFjwhi
h, using preFj = preDOp is equivalent to8 j : J � preDOp ^HOp) Fj >>NFjand thus topreDOp ^ HOp) 8 j : J � Fj >>NFjAssuming the
ondition of the theorem, this proves the
orre
tness
ondition.2The interpretation of the basis
ondition is: outputs
an be veri�ed inde-pendently, provided that all
onstraints on their values
an be de�ned interms of the values of state variables and inputs only .Example 7 As we already showed that Tax and Tax >>DelIn
 are equiv-alent, it follows that proje
tions on in
! and m! separately or jointly, or onm! only, are bases for Tax .Note that the values of these two outputs are not independent of ea
hother; however, in any given state, the value of ea
h
an be determinedindependently from the other from the state only. 2Example 8 For an operation whi
h has no output proje
tions whi
h forma basis apart from itself,
onsider the operation where the king's treasury isnon-deterministi
ally split between his sons.Su

ession�Treasurywilliam!; harry ! : Nwilliam! + harry ! = mm 0 = 0The proje
tion on one of the outputs (the other is symmetri
) is:9william! : N � Su

ession�Treasuryharry ! : Nharry ! � mm 0 = 0

and the
onjun
tion of the two proje
tions is weaker than Su

ession: it
ontains harry ! � m ^ william! � m rather than harry ! + william! = m.Thus, the
olle
tion of proje
tions on individual outputs fails the basis
ondition. 2
8 Con
luding CommentsThe results in this paper were developed in Z, using a non-standard re�ne-ment relation. The out
omes were reasonably intuitive: hiding an output isalways sound, hiding an input may not be; outputs
an sometimes be veri-�ed independently. In the underlying semanti
 framework [9, 11, 17℄, inputsand outputs are in
luded in sequen
es, whi
h are both part of the \hidden"lo
al state and the \visible" global state. As su
h, they play a similar role to\normal" [7℄ or visible variables in guarded
ommand language based re�ne-ment, and our results should
arry over to su
h a
ontext. In the
ontext of(deterministi
) programming languages, proje
tions over su
h sets of visiblevariables are a spe
ial
ase of sli
ing [14℄, using a statement that exhibitstheir values. Sli
ing is an a

epted basis for program veri�
ation and testingin that
ontext [2, 12℄.Finally, note that most of our results were developed for data types witha single operation. This is no fundamental restri
tion, as the simple kindsof IO re�nement
onsidered lead to
onditions per individual operation.Analogous results for ADTs with multiple operations would be obs
ured bythe abundan
e of i -indexed sets of proje
tions and IO transformers.A
knowledgementJohn Derri
k provided useful
omments on an earlier version of this paper.
Referen
es[1℄ B.K. Ai
hernig. Test-
ase
al
ulation through abstra
tion. In J.N.Oliveira and P. Zave, editors, FME 2001, volume 2021 of Le
ture Notesin Computer S
ien
e, pages 571{589. Springer-Verlag, 2001.[2℄ S. Bates and S. Horwitz. In
remental program testing using programdependen
e graphs. In Conferen
e Re
ord of the Twentieth ACM Sym-posium on Prin
iples of Programming Languages, pages 384{396. ACM,1993.

[3℄ E. A. Boiten and J. Derri
k. Liberating data re�nement. In R. C.Ba
khouse and J. N. Oliveira, editors, Mathemati
s of Program Con-stru
tion, volume 1837 of Le
ture Notes in Computer S
ien
e, pages144{166. Springer-Verlag, 2000.[4℄ E.A. Boiten. Loose spe
i�
ation and re�nement in Z. In D. Bert, J.P.Bowen, M.C. Henson, and K. Robinson, editors, ZB 2002, volume 2272of Le
ture Notes in Computer S
ien
e, pages 226{241. Springer-Verlag,2002.[5℄ E.A. Boiten and J. Derri
k. IO-re�nement in Z. In A. Evans, D. Duke,and T. Clark, editors, 3rd BCS-FACS Northern Formal Methods Work-shop. Springer-Verlag, September 1998. http://www.ewi
.org.uk/.[6℄ E.A. Boiten, J. Derri
k, H. Bowman, and M. Steen. Constru
tive
on-sisten
y
he
king for partial spe
i�
ation in Z. S
ien
e of ComputerProgramming, 35(1):29{75, September 1999.[7℄ W.-P. de Roever and K. Engelhardt. Data Re�nement: Model-OrientedProof Methods and their Comparison, volume 47 of Cambridge Tra
tsin Theoreti
al Computer S
ien
e. Cambridge University Press, 1998.[8℄ J. Derri
k and E. A. Boiten. Testing re�nements of state-based for-mal spe
i�
ations. Software Testing, Veri�
ation & Reliability, 9:27{50,1999.[9℄ J. Derri
k and E.A. Boiten. Re�nement in Z and Obje
t-Z: Foundationsand Advan
ed Appli
ations. FACIT. Springer Verlag, May 2001.[10℄ J. Di
k and A. Faivre. Automating the generation and sequen
ing oftest
ases from model-based spe
i�
ations. In J. C. P. Wood
o
k andP. G. Larsen, editors, FME'93: Industrial-Strength Formal Methods,pages 268{284. Formal Methods Europe, Springer-Verlag, April 1993.Le
ture Notes in Computer S
ien
e 670.[11℄ He Jifeng, C. A. R. Hoare, and J. W. Sanders. Data re�nement re�ned.In B. Robinet and R. Wilhelm, editors, Pro
. ESOP'86, volume 213of Le
ture Notes in Computer S
ien
e, pages 187{196. Springer-Verlag,1986.[12℄ R.M. Hierons, M. Harman, C. Fox, L. Ouarbya, and M. Daoudi. Condi-tioned sli
ing supports partition testing. Software Testing, Veri�
ationand Reliability, 12:23{28, Mar
h 2002.

[13℄ R. Milner. Communi
ation and Con
urren
y. Prenti
e-Hall, 1989.[14℄ T. Reps and T. Turnidge. Program spe
ialization via program sli
ing.In O. Danvy, R. Glue
k, and P. Thiemann, editors, Pro
eedings of theDagstuhl Seminar on Partial Evaluation, volume 1110 of Le
ture Notesin Computer S
ien
e, pages 409{429. Springer-Verlag, 1996.[15℄ J. M. Spivey. The Z Notation: A Referen
e Manual. InternationalSeries in Computer S
ien
e. Prenti
e Hall, 2nd edition, 1992.[16℄ S. Stepney. Testing as Abstra
tion. In J. P. Bowen and M. G. Hin
hey,editors, Ninth Annual Z User Workshop, LNCS 967, pages 137{151,Limeri
k, September 1995. Springer-Verlag.[17℄ J.C.P. Wood
o
k and J. Davies. Using Z: Spe
i�
ation, Re�nement,and Proof. Prenti
e Hall, 1996.
NoteSe
tion 7
an probably be simpli�ed by �rst proving that every HOp inDe�nition 7 is an operation re�nement of 8 j : J � Fj >> NFj , whi
h Isuspe
t is the least
ommon IO re�nement of all Fj . Note that the reverseimpli
ation of the basis
ondition is universally true. All in all this shouldlead to "i�" in Theorem 5.

