Computer Science at Kent

Input/Output Abstraction
of State Based Systems

Eerke Boiten

Technical Report No. 12-04
June 2004

Copyright (©) 2004 University of Kent at Canterbury
Published by the Computing Laboratory,
University of Kent, Canterbury, Kent, CT2 7TNF, UK

Input/Output Abstraction
of State Based Systems

Eerke Boiten

June 2004

Abstract

Abstraction of specifications is a method of making verification
and validation of specifications and implementations more tractable.
This paper considers the special case where the abstraction is defined
by eliding input or output variables in state based specifications — in
particular, conditions for such abstractions to be sound and complete
with respect to a refinement semantics. Output abstractions turn out
to be unconditionally sound, and combinations of output abstractions
are complete in certain circumstances. Concrete results are developed
in the state-based notation Z, and then considered in the underlying
semantic framework and for similar languages.

1 Introduction: Abstraction and Verification

The complexity and size of specifications and implementations form a se-
rious impediment to verification. Model checking is able to deal with ever
increasing state spaces, through advances in technology and implementa-
tion methods; however, there will always be larger or even infinite spaces
of interest to be explored. Full verification, for example using refinement
[7, 9], of a candidate implementation with respect to a specification, is only
sparingly applied to “real” systems.

Abstraction makes these kinds of verification efforts more tractable. In
model checking, where one checks whether a “model” satisfies a “property”
by exhaustive search of the model’s state space, one may abstract the model.
This reduces the state space to be searched, and preserves positive results:
if the abstract model can be shown to satisfy a property, so does the original
model. In verification, one may abstract the specification instead, leading
to a preservation of negative results. Such abstractions may be viewed as

tests [1, 16], describing a subset of the originally required properties. Of
course, if a candidate implementation fails the test (i.e., it produces a result
inconsistent with the abstraction), then it will also fail the original specifi-
cation. For appropriate definitions of refinement and abstraction (namely:
set inclusion over “properties of interest”), they are each others’ converse.

This paper considers a particular kind of abstraction: namely, removing
input and output variables from state based systems. The notation used is
Z [15], which has a well-developed theory of refinement [9, 17].

In Section 2 we describe how Z is used as a state-based specification
notation, its standard notion of refinement, and existing approaches to “ab-
straction as testing” in Z. Section 3 presents syntactic and semantic methods
of abstracting over input and output variables. Section 4 then describes the a
generalised notion of refinement, necessary to verify these abstractions, viz.,
IO refinement. The subsequent sections investigate “soundness”: whether
abstractions are indeed converse 10 refinements. For input variables, condi-
tions for this are derived in Section 5. For output variables, an unconditional
soundness result is given in Section 6. Section 7 shows that combinations
of output abstractions may also be jointly “complete” in certain situations.
The final section concludes, discussing how the paper’s results transfer to
the underlying semantic model and other specification languages.

2 7, Refinement, Abstraction, Testing

We first describe how abstract data types (ADTSs) are specified in Z, then
present the standard notion of refinement for such ADTs, and finally discuss
existing approaches to abstraction and testing based on this.

2.1 Abstract Data Types in Z

State-based systems are commonly described in Z using the “states-and-
operations” style. An ADT is given by a state space, an initialisation, and
a collection of operations. All of these are described by Z “schemas”, which
describe sets of “bindings”, essentially labelled products. The labels may
be viewed as names of variables, which are indicative of their roles: primed
variables represent “after-states”, inputs end in question marks, outputs in
exclamation marks.

Example 1 The financial affairs of a traditional monarchy may be repre-

sented by the data type (Treasury, Init,{ Taz, Spend}) where

Treasury _Init
m: N Treasury’
m' >0

Initially, the treasury is non-empty. Taxing the citizens by a value in? results
in a corresponding increase of the treasury; the new balance is reported
to the treasurer (output m!); the king only observes that the balance has
increased (output inc!). If there are sufficient funds, the king may request
to spend an amount reg?, which leads to the (identical) amount out! being
spent.

_Tax _ Spend
A Treasury A Treasury
n?: 7 req? : N
m!: N out! : N
inc! : B out! = req?
in? >0 m' = m — out!
m' = m + in?
m! =m/

inc! = (m' > m)

O

The signature XS of a schema S is defined as a schema containing all its
declarations (normalisedl) with the predicate “true”. Formally, X5 = SV
=S. Any schema S such that § = %S will be called a signature. The
subsignature relation on signatures is defined by SC T'== (SA T) = T.
Important subsignatures for an operation Op are ?Op which returns the
signature of the inputs, and !Op which gives the signature of the outputs.
The precondition pre Op (in general not a signature) returns only the before-
state and inputs, existentially quantifying over after-state and outputs.

2.2 Refinement

Refinement of Z ADTs is normally defined on two levels. Operation re-
finement, or “algorithmic refinement”, which leaves the state unchanged, is
defined at the level of individual operations.

!Normalisation replaces any declaration z : S by z : X where X is the maximal set
containing S, and an extra predicate x € S.

Definition 1 (Operation refinement) An operation COp is an opera-
tion refinement of an operation AOp over the same state space State iff

Correctness

Y State; State’; TAOp; 'AOp e pre AOp A COp = AOp

Applicability

V State; 7AOp e pre AOp = pre COp
O

The two conditions implicitly represent two ways in which an operation
can be refined: by reduction of non-determinism, and by widening the area
where the operation is guaranteed to be well-behaved, respectively. As the
operations in our example are already deterministic, they can only be refined
by weakening their preconditions, e.g., Tax may be refined by removing the
restriction in? > 0.

Data refinement is a generalisation of operation refinement which ex-
ploits the data type being abstract, i.e., the state may be changed provided
the externally visible behaviour is preserved, and in general ADTs need to
be refined in their entirety. Based on the relational refinement of He, Hoare
and Sanders [11], this refinement theory for Z is described in full detail in
the monograph [9]. The standard method of verifying data refinement is
through upward and downward simulations, which are sound and jointly
complete. As the former do not contribute to this paper, we only give:

Definition 2 (Downward simulation) Given ADTs A = (AState, AlInit,
{AOp;}icr) and C = (CState, CInit,{ COp; };cr), where corresponding op-
erations have identical input and output signatures. The relation R on
AState A CState is a downward simulation from A to C if

Y CState’ o Clnit = 3 AState' ® AInit A R’
and for all 7 € I:

VY AState; CState; ?AOp; pre AOp; A R = pre COp;
V AState; CState; CState’; 7AOp;; 'AOp; o
pre AOp; AN R A COp; = 3 AState’ @« R’ N AOp;

2.3 Refinement and Testing

Methods for test case generation based on refinement techniques often em-
ploy “horizontal” decompositions of the state space, inputs and outputs, i.e.,
considering partitions. For horizontal decomposition of the Spend operation
one might look at the variable m : N which may or may not be zero, i.e.,
use the disjunction

m=0Vm>0 (1)

as the basis of a decomposition. In the PROST-Objects testing method
described by Stepney [16], a test case might be derived by using one of these
disjuncts to weaken the operation, e.g.,

— SpendZero
A Treasury
req? : N
out! : N

m =0 = (out! = req? A m' = m — out!)

It is clear that SpendZero is an abstraction of Spend: it is only required to
behave like Spend on part of its domain.

Dick and Faivre [10] described a method of test case generation based
on “disjunctive normal forms” (DNFs). Properties like (1) are used to de-
compose operations into disjunctions of partial operations, with each such
partial operation leading to a test case. Using property (1) leads to three
sub-operations, distinguishing whether m = 0, either before or after the
operation. (The fourth case, m = 0 A m' > 0, cannot arise as Spend never
increases the treasury.)

Spend == Spend; V Spends V Spends

_Spend; _ Spends _ Spends
A Treasury A Treasury A Treasury
req? : N req? : Ny req? : N
out! : N out! : Ny out! : N

out! = req?
m' = m — out!
m' >0

out! = req?
m' = m — out!
m' =0

out! = req? =0
m' =m=20

By construction, such sub-operations will be disjoint, and together cover the
original operation. They will not, in general, be abstractions of the original
operation, because they impose restrictions on after-states.

In previous work [8], we explored the interaction between data refine-
ment and DNF-based test case generation, in particular how disjointness
and covering of calculated concrete test cases may be preserved.

3 Input and Output Abstractions in Z

Complementary to the “horizontal” decomposition approaches described in
the previous section, this paper explores a “vertical” decomposition, concen-
trating on hiding inputs and outputs only. Recall that Z ADTs are abstract,
in the sense that the state variables are not directly observable. Thus, pro-
jection on IO variables rather than on state variables is more pertinent,
as it refers to directly observable behaviour. In terms of testing, an ab-
straction over an output variable represents disregarding the value of that
output; an abstraction over an input variable represents the use of an arbi-
trary (“randomly” generated) input value. Both of these represent simpler
tests than those where all inputs should be provided and the values of all
outputs should be checked, and thereby potentially a useful simplification
of the testing process.

In general, removal of certain input or output variables cannot be done
purely syntactically. For example, if we remove out! from Spend, with all
the predicates that refer to it, we obtain

A Treasury
req? : N

which is not an abstraction of Spend: it removes the constraint that req? <
m. In other words, it guarantees a well-defined result in an area where
Spend did not.

A more appropriate way of hiding variables is semantically based, al-
though it can be expressed syntactically in Z, viz. through existential quan-
tification. For example, the output out! is hidden in Spend as:

2In fact, an explicit hiding operator \ exists in Z with the same semantics.

__Jout! : N e Spend
A Treasury
req? : N

Jout! : N e out! = req?
m' = m — out!

whose predicates simplify to m' = m — req?.

Although such “abstractions” over input and output variables are based
on the standard semantics (logic and set theory), they are not therefore
guaranteed to lead to converse refinements. As described in [4, 9], refine-
ment essentially provides a second layer of semantics on top of the standard
semantics. In fact, these abstractions are even guaranteed not to satisfy the
refinement conditions, as they fail the condition that abstract and concrete
operations have the same input and output signatures. This gap is bridged
by the notion of 10 refinement presented in the next section.

4 10 Refinement

IO refinement [5, 3] allows changes of inputs and outputs, and thereby
changes the boundaries of the system. It is a strict generalisation of tra-
ditional Z refinement [15, 17], which does not allow such changes. Input
and output form part of the observable behaviour. Thus, when performing
[O-refinement we need to keep track of all changes to the inputs and out-
puts; this book-keeping is elided here, and for the technicalities (concerning
“original input and output transformers”) we refer to [9].

Before defining 10 refinement, we present the method used for modifying
inputs and outputs: through composition with “IO transformers”, which are
degenerate operations which have no state, just inputs and outputs.

Definition 3 (IO transformer) A Z schema S is an IO transformer iff
S = 75 A 1S, ie., the signature of S contains only input and output
components. d

For example, the schema

__AnIT
req?, req! : 7

req! = req? + 1

is an IO transformer: ?AnIT == [req? : Z], AnIT == [req! : Z].

Sometimes the converses of IO transformers need to be used; they are
defined by swapping input and output roles. This is indicated by overlining,
in analogy with CCS [13].

Definition 4 (IO decorations) For all component names z, let z? be the
name z!, and let z! be the name z?. This definition is extended to IO
transformers, analogous to the normal Z schema decoration conventions. O

The converse of AnIT above is

__AnIT
req?, req! : 7

req! = req? — 1

An IO transformer is an input transformer for an operation if its outputs
exactly match the operation’s inputs, and analogously for output transform-
ers. Particular IO transformers act as identities on the input and output
side.

Definition 5 (Input and output transformers and identities)
An IO transformer T is an input transformer for an operation Op iff 70p =
I'T and it is an output transformer for Op iff 1Op =7 T.

For a schema § its input identity is defined by IId § == [?75; 75078 =
675] and its output identity by OId S == [!S; IS | 015 = 615]. 0

An input transformer IT is applied to operation Op in IT >> Op. In the
absence of name capture, the meaning of this is the conjunction of Op and
IT, equating and hiding the matching inputs of Op and outputs of IT; an
output transformer OT is applied in Op >> OT.

Example 2 The 10 transformer AnIT above is an input transformer for
Spend, its application leads to

— AnIT >> Spend
A Treasury
req? : N
out! : Ny

out! = req? + 1
m' = m — out!

An output transformer for Taz is for example

__Dellnc
m?,m! : N
mnc? : B

m? = m!
inc? = (m? > 0)

and its application to Taz leads to the removal of the output inc!:

__Tax >> Dellnc
A Treasury
n? 7
m!: N

m? >0
m =m+ in?
m! =m/

O

Derivations of conditions for IO refinement are given in [9], using the
standard relational model for Z. The rules derived generalise data refine-
ment, with rules for both upward and downward simulation. In this paper
we will only need the case where concrete and abstract state spaces coincide,
which is covered by the accordingly restricted downward IO simulation rule
below.

Definition 6 (Downward IO simulation) Consider ADTs A = (State,
Init,{AOp;}icr) and C = (State, Init,{COp;}ic1). Let IT be an input
transformer for COp; which is total on 7AOp;. Let OT be a total injective
output transformer for AOp;. C is a downward IO simulation of A iff for
all i eI

V State; ?COp; e pre(IT >> AOp;) = pre COp;
V State; 7AOp;; State’; 'COp; o
pre AOp; A (IT >> COp;) = (AOp; >> OT)
O

Example 3 For any suitable operation Op, using AnIT above, AnIT >> Op
or Op >> AnIT is a downward IO simulation, as AnIT represents a total
bijection.

Example 4 Due to the predicate on inc?, Dellnc is injective, and thus
Tax >> Dellnc is a downward IO simulation of Taz. Intuitively, this shows
that an output variable may be removed provided its value can be derived
from the other outputs. O

Particular consequences of the downward IO simulation rule are embodied
in the following theorem.

Theorem 1 (Simple input and output refinement) For any ADT,
adding a declaration of a new output (from a non-empty set) to one of
the operations constitutes a valid downward IO simulation.

For any ADT, adding a declaration of a new input (from a non-empty
set) to one of the operations constitutes a valid downward IO simulation. O

5 Soundness of Input Abstraction

In this section we investigate the circumstances in which hiding of input
variables constitutes a (converse) IO refinement. We consider two data
types® with a single operation each:

D = (State, Init,{ DOp})
E = (State, Init, { EOp})

where Inp is a signature such that Inp C ?7D0Op and the operation in E is
obtained by abstraction over Inp in D, i.e.,

EOp =d1Inp e DOp

as a consequence, ? EOp, the input signature of EQOp, is the schema contain-
ing the remaining inputs, and we have that® ?2DOp = Inp A ?EOp. Another
way of expressing FOp, using an input transformer, is

EOp = (Inp AN11d (?EOp)) >> DOp

In proofs, we use the fact that (partial) IO identities have no effect in piping,
in particular it is also the case that

EOp = Inp >> DOp

3They are, for once, not called A and C as we will consider possible refinement in both
directions.

“There are situations, for example when considering refusals, where the restriction to a
single operation allows stronger results. However, in this case the more general treatment
would still be operation-by-operation, leading to a cluttered presentation.

®Schema conjunction for disjoint signatures is really a Cartesian product.

The case where we might have expected refinement to hold is where the
“concrete” specification has input variables that the abstract one does not
have. However, there is a proviso.

Theorem 2 D is a downward IO simulation of F if
V State; TEOp e (3 Inp e pre DOp) = (V¥ Inp e pre DOp)

(Informally: if DOp is enabled in any state for particular input from Inp, it
is enabled in that state for all inputs from Inp.)

Proof

The relevant input transformer is Inp AIId (? EOp), which is total. The only
non-trivial condition is applicability, which reduces to

pre(Inp >> Inp >> DOp) = pre DOp

which is equivalent to the stated condition. O

We might also state this condition as: the preconditions of the operations
are independent of the values of the variables in Inp. A corresponding
theorem can be proved for upward IO simulation, with the same condition.

Example 5 Consider the Taz operation, whose precondition includes the
condition in? > 0. Thus, it does not satisfy the condition of Theorem 2,
and indeed the following is not a converse refinement of Taz:

__3in?:Z e Tax
A Treasury
m!: N
inc! : B
din?:Zein? >0
m' =m+in?
m! = m'
inc! = (m' > m)

We earlier observed that Taz allowed a refinement dropping the condition
in > 0, and consequently also the postcondition that m’ > m. The above
operation does not allow such a refinement. O

For completeness’ sake, we also state the following.

Theorem 3 E and D are downward IO simulation equivalent if

V State; State’; 7DOp; 'DOp e
(pre DOp A Inp >> Inp >> DOp) < DOp

The informal interpretation of this condition is that the input is irrelevant in
DOp (note that Inp >> Inp represents the full relation on Inp). Obviously
this implies that the input is also irrelevant in the precondition of DOp.
The downward IO simulation between E and D requires the =--part of this
condition to guarantee correctness; the reverse implication always holds.

6 Soundness of Output Abstraction

In this section we investigate when abstraction over output variables consti-
tutes a converse 10 refinement. We consider data types

D = (State, Init,{DOp})
F = (State, Init, {FOp})

with some signature Qutp C !DOp where the operation in F is obtained by
abstraction over Qutp in D, i.e.,

FOp =3 Outp e DOp

Thus, !FOp characterises the outputs of DOp that remain present in FOp.
An alternative characterisation is

FOp = DOp >> Outp
Observe that the preconditions of linked operations coincide in this case:

pre FOp

= d State’; |FOp o FOp

= 3 State’; !FOp e 3 Outp ¢ DOp
= J State’; !DOp o DOp

= pre DOp

Whenever QOutp has more than one possible value, the output transformer
OId (!FOp) A Outp is not injective, and thus F can never be an I0 downward
(or upward) simulation of D using that output transformer. For that reason,
we only need to consider whether D is an IO refinement of F'. Observe that
Theorem 1 does not apply, as that requires DOp >> Outp >> Outp = DOp,
which is only the case if, whenever one output is possible in any particular
state, all other outputs are possible there, too.
However, there is still an unconditional positive result in this case:

Theorem 4 D is a downward IO simulation of F'.

Proof
The required output transformer is OId (! FOp)A Outp, taking the “abstract”
outputs for F and adding Outp to those as “concrete” outputs for D. This
is clearly injective.

Initialisation is unaffected. Due to equality of preconditions, applicabil-

ity is guaranteed. Finally, correctness requires that DOp = EOp >> Qutp
which does indeed hold. |

Example 6 In Example 4 we showed that dinc! : N @ Tax = Tax >> Dellnc
was an IO refinement of Tazx; in combination with the above result we can
now conclude that they are even equivalent with respect to IO refinement.

O

7 Completeness of Output Abstraction

The previous sections have investigated situations where abstractions of in-
put and output variables were valid tests of a specification with respect to
IO refinement. One might view these as soundness conditions: passing such
a test is a necessary condition for any implementation to be correct with
respect to the specification.

In this section, we consider situations in which passing such a test is also
a sufficient condition. As the input abstractions were only conditionally
sound, we concentrate here on completeness of output abstractions.

Clearly, in general, we cannot expect to be able to test a system by
never checking a particular output. Example 6 gave an exception: where
one output is fully determined by another, we might as well not check the
first output.

Viewing these abstractions as “projections” of a specification invites a
geometric analogy: we might wonder what the requirements would be for
the sets of variables projected onto to be a basis, i.e., when the projections
together determine the specification as a whole.

We cannot characterise this directly by refinement: the specification is a
refinement of each of its projections, but the reverse only holds if the spec-
ification and each projection are all equivalent. However, we can identify
a specification with the set of all its refinements; if all joint refinements of
all projections are also refinements of the original specification, then the
projections and the original specification are “equivalent”. (Compare the
construction of least common data refinements in [6].) This is characterised
in the following definition.

Definition 7 (Basis) Consider an ADT D = (State, Init,{DOp}). Let
{NFj}jes be a collection of subsignatures of !DOp, and let F; = I NF; o
DOp be the corresponding collection of output abstractions.

Then, {NF;};jc is a basis of D iff for all ADTs H = (State, Init, {HOp})
with input and output signatures identical to D, whenever H is a downward
IO simulation of each of F; with respect to output transformer NF;, HOp
is an operation refinement of DOp. a

Because NF; is an output signature, the operation F; >> NF}; has the same
behaviour as DOp, except for producing arbitrary values for outputs in NFj};.
Thus, F; and F; >> NF; are equivalent when interpreted as predicates in a
context where X Dop is defined.

Note that a basis is represented by sets of variables that are hidden rather
than their complements, the variables projected onto. In particular, includ-
ing the empty subsignature (i.e., projecting onto the full set of variables)
will always lead to a basis.

Using the particular relation between DOp and F}j, we can eliminate the
quantification over all H in Definition 7:

Theorem 5 (Basis condition) For nonempty J, { NF}};c; is a basis for
D if

V State; State’; 7DOp; !DOp @ (Vj : J « INF; ¢ DOp) = DOp

Proof We need to prove that HOp is an operation refinement of DOp,
using the fact that H is a downward IO simulation of each of F;. Recall
that the conditions of operation refinement are

Y State; ?7DOp e pre DOp = pre HOp
VY State; State’; 7DOp; 'DOp e HOp A pre DOp = DOp

The first (“applicability”) condition requires that J is non-empty. From
IO-refinement from F; to H (with the identity input transformer), we get

pre F; = pre HOp
and we also have that
pre F; = pre DOp

by the construction of F;. Together these prove the first condition.

For the correctness condition, we have from 1O-refinement that
Vj:JepreF; N HOp = F; >> NF;
which, using pre F; = pre DOp is equivalent to
Vj:Jepre DOp A HOp = F; >> NF;
and thus to
pre DOp A HOp = Vj : J o F; >> NF;

Assuming the condition of the theorem, this proves the correctness condition.
O

The interpretation of the basis condition is: outputs can be verified inde-
pendently, provided that all constraints on their values can be defined in
terms of the values of state variables and inputs only.

Example 7 As we already showed that Taz and Tax >> Dellnc are equiv-
alent, it follows that projections on inc! and m! separately or jointly, or on
m! only, are bases for Taz.

Note that the values of these two outputs are not independent of each
other; however, in any given state, the value of each can be determined
independently from the other from the state only. O

Example 8 For an operation which has no output projections which form
a basis apart from itself, consider the operation where the king’s treasury is
non-deterministically split between his sons.

— Succession
A Treasury
william!, harry! : N

william! + harry! = m
m' =0

The projection on one of the outputs (the other is symmetric) is:

_ Jwilliam! : N e Succession
A Treasury
harry! : N

harry! < m
m' =0

and the conjunction of the two projections is weaker than Succession: it

contains harry! < m A william! < m rather than harry! + william! = m.
Thus, the collection of projections on individual outputs fails the basis
condition. O

8 Concluding Comments

The results in this paper were developed in Z, using a non-standard refine-
ment relation. The outcomes were reasonably intuitive: hiding an output is
always sound, hiding an input may not be; outputs can sometimes be veri-
fied independently. In the underlying semantic framework [9, 11, 17], inputs
and outputs are included in sequences, which are both part of the “hidden”
local state and the “visible” global state. As such, they play a similar role to
“normal” [7] or visible variables in guarded command language based refine-
ment, and our results should carry over to such a context. In the context of
(deterministic) programming languages, projections over such sets of visible
variables are a special case of slicing [14], using a statement that exhibits
their values. Slicing is an accepted basis for program verification and testing
in that context [2, 12].

Finally, note that most of our results were developed for data types with
a single operation. This is no fundamental restriction, as the simple kinds
of IO refinement considered lead to conditions per individual operation.
Analogous results for ADTs with multiple operations would be obscured by
the abundance of i-indexed sets of projections and 10 transformers.

Acknowledgement

John Derrick provided useful comments on an earlier version of this paper.

References

[1] B.K. Aichernig. Test-case calculation through abstraction. In J.N.
Oliveira and P. Zave, editors, FMFE 2001, volume 2021 of Lecture Notes
in Computer Science, pages 571-589. Springer-Verlag, 2001.

[2] S. Bates and S. Horwitz. Incremental program testing using program
dependence graphs. In Conference Record of the Twentieth ACM Sym-
posium on Principles of Programming Languages, pages 384-396. ACM,
1993.

3]

[10]

[11]

[12]

E. A. Boiten and J. Derrick. Liberating data refinement. In R. C.
Backhouse and J. N. Oliveira, editors, Mathematics of Program Con-
struction, volume 1837 of Lecture Notes in Computer Science, pages
144-166. Springer-Verlag, 2000.

E.A. Boiten. Loose specification and refinement in Z. In D. Bert, J.P.
Bowen, M.C. Henson, and K. Robinson, editors, ZB 2002, volume 2272
of Lecture Notes in Computer Science, pages 226—241. Springer-Verlag,
2002.

E.A. Boiten and J. Derrick. IO-refinement in Z. In A. Evans, D. Duke,
and T. Clark, editors, 3rd BCS-FACS Northern Formal Methods Work-
shop. Springer-Verlag, September 1998. http://www.ewic.org.uk/.

E.A. Boiten, J. Derrick, H. Bowman, and M. Steen. Constructive con-
sistency checking for partial specification in Z. Science of Computer
Programming, 35(1):29-75, September 1999.

W.-P. de Roever and K. Engelhardt. Data Refinement: Model-Oriented
Proof Methods and their Comparison, volume 47 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1998.

J. Derrick and E. A. Boiten. Testing refinements of state-based for-
mal specifications. Software Testing, Verification & Reliability, 9:27-50,
1999.

J. Derrick and E.A. Boiten. Refinement in Z and Object-Z: Foundations
and Advanced Applications. FACIT. Springer Verlag, May 2001.

J. Dick and A. Faivre. Automating the generation and sequencing of
test cases from model-based specifications. In J. C. P. Woodcock and
P. G. Larsen, editors, FME’93: Industrial-Strength Formal Methods,
pages 268-284. Formal Methods Furope, Springer-Verlag, April 1993.
Lecture Notes in Computer Science 670.

He Jifeng, C. A. R. Hoare, and J. W. Sanders. Data refinement refined.
In B. Robinet and R. Wilhelm, editors, Proc. ESOP’86, volume 213
of Lecture Notes in Computer Science, pages 187—196. Springer-Verlag,
1986.

R.M. Hierons, M. Harman, C. Fox, L. Quarbya, and M. Daoudi. Condi-
tioned slicing supports partition testing. Software Testing, Verification
and Reliability, 12:23-28, March 2002.

[13] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[14] T. Reps and T. Turnidge. Program specialization via program slicing.
In O. Danvy, R. Glueck, and P. Thiemann, editors, Proceedings of the
Dagstuhl Seminar on Partial Evaluation, volume 1110 of Lecture Notes
in Computer Science, pages 409—-429. Springer-Verlag, 1996.

[15] J. M. Spivey. The Z Notation: A Reference Manual. International
Series in Computer Science. Prentice Hall, 2nd edition, 1992.

[16] S. Stepney. Testing as Abstraction. In J. P. Bowen and M. G. Hinchey,
editors, Ninth Annual Z User Workshop, LNCS 967, pages 137-151,
Limerick, September 1995. Springer-Verlag.

[17] J.C.P. Woodcock and J. Davies. Using Z: Specification, Refinement,
and Proof. Prentice Hall, 1996.

Note

Section 7 can probably be simplified by first proving that every HOp in
Definition 7 is an operation refinement of Vj : J e F; >> NF;, which I
suspect is the least common IO refinement of all F;. Note that the reverse
implication of the basis condition is universally true. All in all this should
lead to 7iff” in Theorem 5.

