Trandating Erlang to uCRL

Thomas Arts Clara Benac Earfe Juan Jos Sanchez Penéas

Abstract model checkers exist, but are not directly applicable to the
software they write. Our goal has been to bridge the gap and
The language Erlang has been developed by Ericssontranslate the source code to an input language for verifica-
to implement large switching systems. Erlang is nowadaystion, so that a lot of tools are usable for the software. The
used by several companies for complex embedded systemdranslation should be effective and rather general, sdttleat
The language:CRL is a process algebra with data. Sev- back-end technology can easily be changed.
eral verification tools are available forCRL and other The code of our typical examples is written in Erlang,
process algebras, including a tool to create labelled tians otherwise we could probably have used one of the compa-
tion systems fromCRL specifications. By having a trans- rable initiatives to translate real code into a specificatio
lation from Erlang touCRL we can apply the verification framework, e.g. [5, 11]. However, the available tools to
tools for process algebras and labelled transition systemstranslate imperative and object-oriented code are too spe-
to industrial code. The translation is aware of the major cific to be able to re-write for a functional language, like
design component in the switching software. This knowl- Erlang. Moreover, due to the functional nature of Erlang
edge is used to ensure that the size of the labelled transitio with light-weight concurrency, the target specification-la
system generated by the tools is smaller than with a naiveguage typically differs from a target language for impeati
translation. or object oriented languages.
Erlang is sufficiently different from a process algebra to
make it a challenge to come up with a translation. How-
1. Introduction ever, it is one of the best fitting specification formalisms
around to use as a target. We choose to pick one specific
process algebra with data, vizCRL [9], since data is cru-
cial in our case. Besides, we had good experiences with the
open-source tools [18] that support this language. In our ex

Driven by the need to verify a small, but critical, part
of Ericsson’s AXD 301 [4], we started to develop a ver-

ification tool. The indu.strial cas_gstt_;dy [2] we considered perience, building the state space fqu@RL specification
had no up-to-date detal'led sp§C|f|catlon, only afe_'W hulndredis more efficient that building the state space for a similar
lines of code as a starting point. The code is written in the specification in LOTOS [14].

language Erlang. Erlang [1] is a functional programming In this paper we describe the tool that we developed to
language developed at Ericsson for the development of con-

L g verify two industrial case-studies: a resource manager ap-
current/distributed safety cr|t|ca_1l software. One of thgyer plication in the AXD 301 switch [2] and the scheduler of
examples of the use of Erlang is for the control software of

. :) . a video-on-demand server [3, 16]. By our focus on these

';he AXD 3|01 Pr:ghbcaizmty AT'XlNSWILt.Ch tl:]selcjl}t(o implement, case-studies we ensured that the translation is useful for a

or exampie, Ine backbone nEWork in e L. rather general class of verification problems. We are able to
The fact that we are confronted with source code and

f-d ification i h L oh translate Erlang programs that respect the generic segver d
an .o.ut-o' -date speci |cgt|on Is a rather general p enomenasign pattern; hence covering synchronous and asynchronous
verification of software is performed at a rather late stage

h : teol th hat thev h duced i 'communication as well as most of the computational as-
when engineers feel that what they have produced Is morepects of the language. Dynamic process creation is also

complex th?n. they understand. They then wgnt baCkUp.bysupported in the translation, if performed by the superviso
some sophisticated tools that go beyond testing. Tools I|keClesign pattern

*|T University of Gothenburg, Box 8718, 402 75 Gothenburge8en, The verification approach is focussed on finding errors
arts@tuniv. se _ , in the Erlang software and not on proving correctness of
tUniversity of Kent, Canterbury, Kent CT2 7NF, United Kingdp the software. Therefore. the approach is pragmatic The
cb47@ent . ac. uk o ! - L
tLFCIA, Computer Science Department, University of CorynBa traces to failure that we in the end obtain by model-checking

Elvinha S/N. 15071, Corunha, Spajrjanj o@fci a. org tools should correspond to traces in the real software. The

translation ensures this criteria by its construction. itive sel f () returns the process identifier and by writ-
The paper is organised as follows: In Sect. 2 — 9 we de-ing Pi d! {Msg, sel f () } one sends a message containing

scribe how the difference between Erlang and process algeboth the termVsg and the process identifier of the send-

bra is bridged. By means of code examples from Erlang weing process to the process with identifieird. With the

show the difficulties we encountered in the translation. receive statement one reads a message from the queue. Pat-
The examples in the paper are reduced to the most basid¢ern matching is used to selectively read a certain message

concepts. We refer to our websitéor detailed examples ~ from the queue.

with both Erlang source code and their translatiop@RL. For the moment assume that we have embedded Erlang
In Sect. 10 we describe the software architecture of thecommunication primitives in the functiorzal | andr e-

actual implementation and in Sect. 11 we present some refl y2. Thecal | is used to send a message, attached with
sults of using the tool and discuss its use in practice. the process identifier of the sender, and to wait for an an-

swer. The functiorr epl y is used to return an answer to

the caller. This way of embedding low level communica-

tion primitives in functions is common practise for indus-

trial Erlang code and in the next section we will describe
Erlang is a language with light-weight processes and this in more detail.

asynchronous message passing. The language supports both The following, snapshot running in an Erlang process,

concurrency and distribution. The concurrent processes ru describes a simple server that waits for a client request and

in the same virtual machine ¢adein Erlang terminology) replies with an acknowledgement. Variables start with an

and several virtual machines can be connected to obtain aippercase character in Erlang, constants and functiorts sta

distributed system. Syntactically there is no differente i with lowercase.

communication between processes on the same node or on

different nodes. Of course, distribution gives rise to true | ©0P() ->

non-determinism and a slightly different fault behaviour. " €C€! V€ _

For our purpose, it suffices to model both distributed and {request,dient} ->

reply(dient, acknow edge)
concurrent Erlang processes as truly concurrent processes end, 1oop()
like one has in a process algebra. The full non-determinism ' '

is covered in that way. The client to this server evaluates the function
Every Erlang process has a unique identifier that is usedcal | (Ser ver, request), whereSer ver is the pro-

to address the process. Every process also has a messagess identifier of the server.

queue in which the incoming messages are stored. The vir- We translate the Erlang server process jGRL speci-

tual machines guarantee that every message is delivered téication with two processes and actions to synchronise pro-

the queue of the process that the message is sent to. If the recesses with this buffer and to synchronise the logic patt wit

ceiving process does not (longer) exist, then the message i§he buffer. The.CRL statementum (X : T, p) is shorthand

simply lost without warning. The receiving process aciivel for a non-deterministic choice of all possible valuesxobf

reads the message buffer by a ‘receive’ statement. This reYPe7-

ceive statement is blocking as long as the expected messaggr oc server(Sel f: Pid) =

2. Processes and communication

has not arrived. sum(Client: Pid,

A straightforward attempt to map Erlang processes and recei ve(Sel f,request,dient).
communication to a process algebra is to create two process reply(dient, acknow edge, Sel f).
algebra processes: one buffer process and one process to server(Self))

implement the logic. The asynchronous communication is

modelled by the synchronising actions of process algebra.)

One action pair to synchronise the sender with the buffer b_r ecei ve(Siele ;vg:tsz((l\;g;sages) '

of the receiver and one action pair to synchronise the active buf f er (Fs)el £ rn‘negd(I\/E-ssages)) +

receive in the logic part with the buffer. We have chosen sun(Msg: Term

to represent the unique identifier as data to a general com- syp(From Pid,

municating action instead of having unique communicating b_cal | (Sel f, Msg, Fron).

actions per pair of communicating Erlang processes. buf f er (Sel f, add(Msg, From Messages))))

In Erlang programs it i ractice t r own . S .
ang programs [t 1 good practice to add your o The process identifier is automatically added as a parameter
process identifier to the messages that are sent. In that way,

L . . _’to processes and communicating actions. The buffer and the
the receiving process is able to respond. The Erlang prim-

proc buffer(Self: Pid, Messages: TernList) =

2For readers familiar with Erlang: the function embeddingdst of the
1see http://etomerl.sourceforge.net design patterns explained later.

process implementing the logic have the same process idensupervision tree pattern is another frequently used patter
tifier. Communication is untyped in Erlang and we have to and is described in Sect. 6.
be ready to accept any term in a message queue. Commu-

nication in uCRL is specified by pairs of communicating 3. Des ttern: .
actions; three pairs in our case. - Design pattern: generic server

receive | b_receive = ex_buffer The generic servepattern is used to implement servers
cal : | b—ca: ' B '_”—b“f fer I in Erlang. A server is a process that keeps state, waits for an
reply | replied = sync_reply incoming message, computes a response message depend-

To simplify reading, we assumed a typ&d in the above ing on the incoming message and state, and replies to the
example, but, in untyped Erlang, process identifiers atte jus Message and updates the state. Thesgemer module im-
terms. In the real translation we follow that concept and use Plements the generic parts of the server while the call-back
type Term instead ofPid. module implements the specific functionality (the logic) of
The reader familiar with Erlang will have noticed that @ particular instance of the server, i.e. the computation of
the fifo buffer above differs a lot from the semantics of an the response message and the new state.
Erlang message queue. In an Erlang receive statement one The above description is, on purpose, an over simplifi-
can pattern match on the format of a message. In that Way,cation of the generic server behaviour. The behaviour also
one can leave certain messages in the queue and selectivefkes care of a uniform way of error handling, of a uni-
take a message from the queue. This is rather difficult to form debugging facility, of monitoring nodes and observ-
model inuCRL (one easily ends up in creating a model that ing whether clients are still alive, etc. In that way, the-pro
causes an infinite state space to be created). grammer really only needs to concentrate on the logic of
A fifo queue is insufficient for the client process that the server. That, on its turn, allows us to easily abstract
communicates with the server above, since processes caffom a lot of details that the code would have if not im-
freely send a message to the buffer of this client. If another Plemented in the generic way. Our translation tool can, by
message than the server reply arrives earlier in the messaggeans of this generic behaviour, concentrate on the logic
queue of the client, then the client will be blocked forever. and abstract from the implementation details of error han-
The solution to overcome the problem of selective reading dling, debugging, etc.
of the queue lays in carefully studying what happens inthe ~ The simplified version of the generic server is just a
real Erlang code. To our advantage, selectively reading asmall extension of the server given in Sect. 2. We add state
message from the message queue is only done in very re@S & parameter of the loop and whenever a messages arrives,
stricted circumstances. Basically the mechanism to read aV€ need to call a function to evaluate a reply and to up-
message other than the first message in the queue is Onwlate the state. The generic server distinguishes three kind
used for exactly this synchronisation. The client adds a spe of messagescall, castandinfo messages. A call is a syn-
cial (unique) tag to the message and the server replies withchronise event, where the client waits for areply. The casti
the same tag added. The client is just waiting for any mes-the asynchronous version of the call, and the info messages

sage with the right tag. All other messages that arrive to theServe the special purpose to deal with error events and such.

We can model this by having theepl y action commu- tual translation handles the full generic server with aiéth

nicate directly to the epl i ed action in the client, there- kind of messages.
with circumventing the message queue of the client.

. ->
This solution only makes sense in a situation where weI oop(M Stat e)

receive

know which messages are of this special kind and if we {call,Msg, Cient} ->

know that other messages are dealt with in a fifo manner. {reply, Reply, NewSt at e} =

But, that is exactly what we recognised when looking at a M handl e_cal | (Msg, d i ent, State),
million lines project like the AXD 301 switching software. reply(dient, Reply),

The code is written according to certain design patterns. end, | oop(M NewState).

About eighty percent of the communicating processes im-

p|ements a server that uses gm']eric servepattern. This The variableMcontains the name of the module in which

server restricts communication in a way that eases the-transthe functionhandl e_cal | is implemented. This is the so

formation for ug. In the next section the server pattern and calledcall-back module

its translation touCRL are explained in more detail. The ~ Remark that the programmer uses the standard generic
server component and only provides the call-back module

3The restriction in the communication imposed by the desiattepn
allows a better understanding of complex systems. The sastgction it easier for us to translate the system to the clean framewbprocess
that makes the system easier to understand for the engiisertaking algebra.

when implementing a server. The generic part is static andTheCRL functions forpos, add andr enrove are almost
stable over the years. Therefore, we can take the semanticequal to the Erlang counterparts. In Sect. 8 the translation
of the generic part for granted and use it in our translation. of such purely computational functions is explained in more
A typical example of a call-back module is given below. detail.
Itimplements a server that may receive eitherquesimes- The lastsum in the client is generated automatically, be-
sage or aeleasemessage. The state of the server is a list cause theal | function is always returning a result. In Er-
of clients that have requested. Whenever a client requestslang one may choose to ignore the result, but@RL we
it gets its position in the queue as reply and is added to thehave to explicitly bind it to a variableF¢ ee in this case).
state. Whenever a client releases, it is replied an acknowl-This already indicates a subtle difference between a return
edgement and is removed from the state. value of a function in Erlang and a communication action
in uCRL. This issue is explained in more detail in the next
{reply. pos(From State), add(From State)}: section as it is not specific for the generic server, but a more
handl e_cal | (rel ease, From State) -> general'pheno'mena. . L
{reply, ack, remove(From State)}. In th_ls sectlon_we have s_hown the basic principle of
translating generic servers infeCRL. We left out the
The Erlang functionspos, add and r enove should buffer, since that was presented in the previous section. Ou
also be implemented in this call-back module, but are sotool handles real servers, which are more complicated than
straight-forward that we omit them here. The behaviour the example shown here, but the basic ideas are captured in
also provides functional embeddings of the communication this section. Our example call-back module is rather sim-
primitives, similar to what was used in Sect. 2. A client plistic and in reality there are some issues that complicate
would evaluate thecal | function. The implementation matters. In the next few sections we focus on those compli-
takes care of adding a unique tag and the process identifiecations.
of the client to the message. It also takes care of waiting for
the_ arrival qf a reply from the server with exactly the same 4. Functions with side-effect
unigue tag in order to proceed.
Thus, a typical client that would request and release is
implemented in Erlang by: A significant difference between Erlang and a process al-
gebra is that the latter forces to separate computation from
communication. In Erlang, in contrast, a function that per-
forms some calculations can also communicate. Thus, such
a function has communication as side-effect of the compu-
The translation of both server and client is similar to the tation. Of course, the function can call other functiond tha
translation giVen in SeCt 2. InStead of the r:e'ce.ive a.C.tion, have Side_effects and as SUCh we can get deep'y nested inte_
we use a handleall action and a non-deterministic choice gration of computation and communication. Here, our first

e e e 1jask s (o deniy Erang funions wih sideefect rom
the receive action thandl e cal | . We provide the code the pure computatlons. These two classes of functions are
translated differently.

for the client and server processiCRL. i o .))
Functions are classified as functions with side-effect
proc client(Self:Term Server:Term = when they make use of a communication function (like
cal | (Server, request, Self). cal | orreply). By analysing the call graph of all in-
sun(Nr: Term volved modules, we can syntactically split the Erlang func-
replied(Self, N, Server)). tions in the two demanded categories.

call (Server, release, Self). Inth ind fthi . f h ith
sum{Free: Term n the remainder of this section we focus on the part wit

handl e_cal | (request, From State) ->

client(Server) ->
Nr = gen_server:call (Server, request),
gen_server:call (Server, rel ease).

replied(Sel f, Free, Server)) side-effects, and how the computation and communication
are separated in these functions. Issues related to thiy pure
proc server(Self:Term State: Term) = computational part are discussed in Sect. 8.

sumFrom Term The problem with nested side-effects is best illustrated
handl e_cal | (Sel f, request, From. by an example. Assume an Erlang process that calls a func-
reply(dient, pos(From State), Sel f). tion p in order to communicate its result. The functipn
server(Sel f, add(From State))) + itself contains a side-effect:

sunm(From Term
handl e_cal | (Sel f, rel ease, Fron). loop(X) ->Y = p(X), s(Y), loop(X).

repl y(From ack, Sel f).
server (Sel f,renove(From State))) p(XxX) ->Y =1(X), s(g(Y)), h(Y).

wheref , g andh are pure computations asds one of the proc loop(X:Term R Term =

side-effects, e.g., theepl y function. A naive translation p(X).
to uCRL of this process would define actiopsands and sum R Term
in order to handle the matching, it could bilvdand inline pop(R) .1 oop(X, cons(R Rs)))
the code:
p(X: Term =
proc loop(X: Term) = s(p(X)).!loop(X) push(ack)
However, nest actions are not allowedi€RL. Instead we <| eq(Xnil) |>
therefore translate it to: (s(head(X)).p(tail(X)))
proc |oop(X Term) = By using the stack and pushing pure computation in-
s(g(f(X))). s(h(f(X))). loop(X) side side-effect functions, we can deal with nested side-

We obtain thi lation b) q effects. The stack solution also provides a solution for the
e obtain this translation by a recursive source code trans-., e \here in the above matchp(X) the variableY is re-
formation of the Erlang functions. In this transformation

we lift all side-effect functions to the highest level andspu placed by a complicated pattern with several variables. The

pure computations down by duplicating them. Thus, we only thing we have to_add to_our t_ranslatlon iSw@n con-
translate on the source code level all functions with side- Struct for every occuring variable in the pattern. Note that

effect to functions that look like: the introduction of thesum construct is only used for the
matches of patterns with functions that contain side-&ffec
P(X) ->s1(---), ..., SN(---),---. A match with a pure function is translated differently, as

where- - - stands for pure computations. explained in the next section.

Whenever we encounter a stateméftp(X) in the Although the stack process solves our problem of trans-
code, we could bind the variab¥to the last pure computa- lating nested side-effects, we also have to pay the price
tion of the functionp and substitute this in theCRL code. of more communication in the model and therefore an in-
Thus, we could inline the side-effect functions as actions creased state space of the system. Moreover, the duplicatio
in place of the call tqp. However, the attentive reader has of the pure functions gives rise to longer computation times
probably already noticed that this cannot work for reci&siv in the model than in the real implementation.
functions with side-effects; without knowing the number of
recursive iterations, one is unable to unfold the definition L .
and hence unable to inline the exact number of side-effects 2- Pattern matching in communication part
Neither does this work for functions that perform a side-
effect and cannot be de-composed. As an example, consider Both 4CRL and Erlang allow pattern matching on data.
the simple program that performs a side-effect on every el-|n the previous section we have shown how one particu-
ement of a list and returrsck as a result. Al rgsults,are lar kind of pattern matching is elegantly translated by gsin
stored as a parameter of the function, i.e., the lidck’s communication via a stack process. In this section we focus

IS Increasing. on two of the possibilities, viz. pattern matching in fuocti
loop(X,Rs) -> R = p(X), loop(X [R Rs]). clauses and in communication primitives.
p([1) -> ack; 5.1. Function clauses

p([Head| Tail]) -> s(Head), p(Tail).

The standard solution to deal with recursive functions ~ FProcess definitions ipCRL can only have variables as
when writing a compiler is to implement a stack data struc- parameters, cf the definition of client and server in Sect.
ture to store the return values of the recursive calls. We 3 and there is only one clause per process. Erlang func-
adopt this idea, where the stack is implemented aA€RL tions that are translated joCRL processes may have sev-
process and push and pop operations are communicatin&ral clauses in which pattern matching decides which clause
actions. With a source-to-source transformation we make'S €valuated. _ _ _
sure that all functions with side-effects are in the pregipu ~ >€veral Erlang function clauses can easily be combined
mentioned format with either a pure computation as last ex- N Onecase-statement, but that does not solve the problem.
pression or a call to another function with side-effect. We 1h€ pattern matching in thease is equivalent to pattern

replace all pure computations by a push on a stack and pOF{natching on function clause level. We treat those therefore
this value in the code where we call the function. similarly. S

code below (where the stack itself is omitted). The some- certain clause (c.f. [17]) and we use a nested if-then-else
what obscure notation for the if-then-else statement in Sstructure to determine which part of the function to evaduat
uCRL isthen <if > else. This if-then-else can later be directly mapped:©RL.

Second, we replace the patterns in the arguments of the As an example, consider the previomandl| e_cal |
function to variables and replace bindings caused by theseunction clauses for a server, where the client can now re-
patterns to destructor functions. As an example, considerquest and release either resouia® resourcé. The server
the following Erlang function: administers whether the resource is free by keeping a tuple

variabl ntainin lean val rr rce.
Loop(X.[1) -> s(done). 100p(X X): as state variable, containing a boolean value per resource

loop(X, [Head| Tail]) -> s(Head),loop(X Tail). handl e_cal | ({request,a},Cient,{A B}) ->

This code requires two destructors, vimd andt | to ex- {reply, A {fal se, B}};
tract the head and tail of a list. With those two destructors handl e_cal | ({request, b}, Qient,{A B}) ->
the code is transformed to the Erlang code: {reply, B, {A false}};
handl e_cal | ({rel ease,R},dient, State) ->
| O_O]E(X’ Argl) -> {reply, ack, update(R, State)}.
|
nil == Argl -> Here we have two matches that need to be translated differ-
s(done), loop(X, X); ently. Thehandl e cal | function is translated in a non-
is_list(Argl) -> deterministic choice between the alternatives and embed-
s(hd(Argl)), loop(X tl(Argl)) ded in a server loop. That loop h&sat e as a parameter
end. and the tupld A, B} should be decomposed as described in

In general the conditions to check are more complicated the Previous section. The message (and similarly the glient
should be treated differently. For those parameters, thie va

than only checking whether an argument is a list or the bl isolated and : Th hi
empty list. We need to bind variables to terms in order to 2P!€s are isolated and put izam construct. The matching

use them in the expressions and sometimes we even neel§ done by the pattern matching mechanisrpORL.
destructor functions in the conditions, for example if we
want to check whether the head of a list is equal to the in-
teger oné. However, there are only finitely many possible
patterns in Erlang. The simplified version of the computa-
tion of the conditions for given pattei and expressiofy,
where only lists, integers, and variables are considered is
given below. The function returns a condition and a set of
variable bindings$.

server(Self: Term State: Tern) =
sum(Client: Term
handl e_cal | (Sel f,tupl e(request,a),dient).
reply(Cient,elenent(1, State), Self).
server(Self,tuple(fal se,elenent(2,State))))

sun(Cient: Term
handl e_cal | (Sel f,tupl e(request,b),dient).

cond(P,E) = reply(Cient,elenent(2,State), Sel f).
(true,{P — E}) var(P) server (Sel f,tupl e(element(1, State), fal se)))
(isdist(EYANp AN, o UT) P =[H|T| +

(¢, 0) = cond(H, hd(E)) sum(R Term
(Y, 7) = cond(T, tI(E)) sum(Client: Term
(equal(P, E), D) otherwise handl e_cal | (Sel f,tuple(release,R),dient).

reply(dient, ack, Sel f).

The more complicated version of the above function is server (Sel f, updat e(R State))))

successfully used in our source-to-source transformation

map different patterns in function clauses to variableb@ t Of course, we use the knowledge we have on our commu-
arguments of the clauses and nested conditions in the bodjcation primitives to decide which parameters need to be

of the clause. transformed to match on the process level and which are to
o o be transformed in aum construct. Typically the matching
5.2. Communication primitives on the process level is translated source-to-source, ahere

the introduction of non-determinism ardm construct is

The above described function clauses are translated tqeft to a later stage.
nCRL process definitions. For function clauses that are | acking in the above translation is the introduction of
communication primitives and that are translate@@RL the conditions that we compute for the pattern match. A
communicating actions, a similar pattern matching trans- programmer could easily handle the same message in two
formation is necessary. In this case, however, one cannoyifferent clauses of theandl e_cal | function by differ-
introduce the if-then-else construct in the same way. entiating the state in which the message arrives. This way

4The if-statements in Erlang do not allow destructors in iweditions, of programming is de-recommended in the style guides, but
therefore, we use nested case-statements instead of steaéfnent, but occurs now and then in code fragments. We therefore have

explaining it by means of an if-statement is clearer. " . . .
5The set of variable bindings is a list in the real implemédatatwhere to put conditions in the loop that correspond with the possi

variables that have been bound before need to be matchetsagaialue ble patterns of t_he state and only then non-determinisical
if they occur more than once in the pattern. match the possible messages.

6. Design pattern: supervision tree mep_f([],YL, ..., Yn) -> [1;
map_f([X Xs],YL,...,Y¥Yn) ->

One of the key features of most distributed systems, in (PO YL Y | map (XS, YL, .. Yn)]

particular those for which Erlang is used, is fault tolesanc Although for many functions a similar transformation
Erlang supports fault-tolerance by means of the supervisio pattern can be used, there is no general way of translating
tree, a structure where the processes in the internal nodegigher-order concepts inteCRL.
(supervisors) monitor the processes in the external nodes
(workers). . 8. Data and pure functions

The creation of the processes architecture of the system
is encoded inside the supervision tree initialisation. sThi .
fact can be used in order to extract the processes of the syst-orglt?hoeu?gfsrllzggnhgf tﬁgl);z?aangrfriza:;f)?; %Lm.ség:gd
tem from the source code and the input (configuration) pro- ' P P

vided by the user. Process algebras allow the creation 0fthan one would wish. Basically it is a syntactic conversion

ne processes, bt h stof ol developed QR does 01 7SULCIN, et and seectore e e o
not support this feature. We partially evaluate the supervi P A y P

sion tree, using the fact that we know the semantics of thatthe Erlang functions. However, an obstgcle n t.hls is that
design pattern, in order to obtain its structure and a list of not all Erlang data structures are inductively defined. The
all created wori<er processes integers, which most programming languages support, are

. . . probably the best example of that. #€RL all data struc-
The use of the supervision design pattern is so com-) . . X
o . ; tures need to be defined inductively and the advised way of
mon that using it to find the created processes is no sever

€ . - .)
limitation. We cannot handle Erlang applications in which defining integers is by means of naturals, which are repre-

. .. sented as zero and its successors. This might be a theoret-
processes are spawned outside the scope of the supervision

: -~ cally rather clean approach, in practise it means unread-
tree, but these are not commonly encountered in production e .
) S . able specification for larger numbers, slow computations
code. A more important limitation of our approach is that

we do not encode the fault tolerance of the supervision treeand tools that complain about a too deep term depth when

; : numbers get large.
in our model. Thus, we only look at successful executions. 9 9

The fault-tolerant behaviour is currently being the objefct Another qbstacle Is that ;yntactllc equality is not a pre-
further research defined relation, but that this relation has to be specified.

In particular for rich sets of data structures (which we use)
this results in a large amount of defining rules.

7. Higher-order functions Erlang is dynamically typed and has very flexible typ-
ing rules; uCRL is strongly typed with a simple and re-

Erlang is a functional language that supports higher- ;tricted type system. Since we try to keep the ;pecification
order functions, something which most specification lan- IN #CRL as close to the Erlang code as possible we con-
guage avoid for the inherent complexity of the analysis. The Struct inuCRL a data typelermin which all Erlang data
expressiveness of a higher-order function is as useful for alyPes are embedded. The tool supports most Erlang data
good program as design patterns. Therefore, it is a pity thattyPes: lists, integers, atoms, tuples, and records. Howeve
1CRL is a first order language. the recently added Erlang bit-syntax implementing the data

Since higher-order functions are a real extension to a lan-Structure of bit sequences, is not considered by our tool.
guage, there is no simple way of translating these functions
to first-order variants. Luckily, most of the Erlang code 8.1. Pattern matching
on our case-studies only uses a few predefined higher-order
functions, likemap. We therefore designed the translation In Sect. 5 we have discussed the matching of function
to handle only those special cases that we encountered, likelauses and expressions for the functions that have side-
we only handle a few design patterns. We defined a sourceeffects. For the pure functions, the translation is much sim
to-source transformation on the selected functions teeflatt pler. The header of function clauses can directly be copied,
them to first-order alternatives. Any occurrence of the func since for the term matching on that level, matching in Er-

tion map lang anduCRL are the same. We have to rewrite the body
of the function clauses, where all statements have a fixed
map(fun(P) -> f(P EL ..., En) end, Xs) translation touCRL rewrite rules. For example, an Erlang

. . . . function withcase statement
whereP is a patternXs an expression returning a list and

El,...,En arbitrary expressions, is replaced by a call to a functi onName (P1,P2,...,Pn) ->
unique functionmap_f (Xs, E1, ..., En). The unique case E of
function is added to the code and defined as: QL -> E1;

Qm-> Em

end.

whereP1, ..., Pn, Q1, ..., Qnare patterns ané, E1,

..., Emare expressions is translated in several rewrite rules
(where recursively the expressions are translated). The no
tationvar (P1, ..., Pn) stands for all variables in the
patternsPl, ..., Pn.

functi onName(P1, P2,...,Pn) ->
casel(var(P1,...,Pn), E).
casel(var(P1,...,Pn), Q) -> EI1;

casel(var (Pl Q) -> Em
In this translationcasel stands for a function symbol
uniquely chosen for the translation of every case statement
We can perform this transformation source-to-source and
only in the last phase translate the Erlang codeG&RL.
Another statement with a similar translation is the Er-
lang matchP = E. The way to deal with this statement is
again to call a function and lift the match to the rewrite leve
Functions with a match

functi onName(P1,...,Pn) -> P = E, Expr.

are source-to-source translated to

functi onNarme(P1, ..., Pn) ->
mat chl(var(P1,...,Pn), E).
mat chl(var (P1, ..., Pn), P) -> Expr.

source-to-source transformation. Every call to a function
f is replaced by the Erlang qualified catiodulename;f
wheremodulenames the name of the module where the
functionf is implemented.

Some modules in the standard library are translated once
and for all to,CRL and the code of those functions is sim-
ply linked in at translation time. For the other functiong w
assume all necessary modules given and change the name of
the function definition and function call to the same name,
viz. modulenaméd, in the xCRL translation.

10. Overview of the tool

In the Sect. 2 — 9, we have described the highlights of
translating Erlang tquCRL. In this section we describe
the architecture of the translation tool, calledontr |, in
which we clarify the order in which steps described before
are taken.

We used Erlang as implementation languagestoom
crl . Remember that our tool takes several Erlang source
code modules and its initialisation parameters as inpuat, an
generates a specification ifCRL as output. The module
et ontr| is the main module of the tool implementation.
The functionsuper vi sor starts the compilation process,
that takes as arguments the module, function and arguments
of the supervision tree behaviour implementing the system.

Fig. 1 shows the three main steps in #teoncr | tool.
First, a source-to-source transformation is performechen t
level of Erlang, resulting in Erlang code that exhibits the
same behaviour to an observer as the original code, but is
optimised for verification. Second, the side-effect-fraetp

Note that, although the translation of these statementsy¢ihe codeis separated from the part with side-effectsgsin

looks rather straightforward and easy, we slightly change

the translation is different for each of the two parts. Third

the semantics in the translation. As long as we stay on they,q translated files are combined into a Sing&RL speci-

source-to-source level there is no danger, but a direcstran
lation to uCRL would affect the behaviour of the program.
For example, Erlang uses priority rewriting, i.e. patterns

are tried from top to bottom and if an expression matches a

pattern, the other alternatives are not visitedu@RL any
matching rule could be taken. At the moment we therefore
check that there are no overlapping patterns in the defini-
tion, but in fact, one should rewrite the patterns to a non-
overlapping set.

9. Module system

Erlang code is divided into modules, each module con-
sisting of a sequence of attributes and function declaratio

Process algebras on the contrary, do not have module sys-

tems, although some tools (e.g., the CADP tool set [8] for
LOTOS [14]) support a module system.

To prepare the conversion of the given collection of Er-
lang modules into on@CRL specification, we perform a

fication.

e et oe: the first phase of the transformation can be seen
as a preprocessor, that performs some Erlang to Er-
lang source code transformations. The main transfor-
mations are: the supervision tree is evaluated in order
to extract the processes of the system, as introduced in
Sect. 6. Thd ower module is used to remove higher
order functions as explained in Sect. 7. Thei o
module is removing the calls to the i/o module; we ver-
ify embedded systems and are not interested in output
to the console. Finally, the code is analysed and splitin
two different parts: the side-effect-free part with only
pure computations and the side-effect part. These parts
are going to be processed in different ways in the next
stage, as explained in Sect. 4.

et opa: the second phase of the translation is from
Erlang source code to an internal representation very
close to the process algebra syntax and semantics.

t er ms translates the side-effect-free part A€RL
syntax. The buffer and stack have standa@RL im-
plementations that are inserted. Actions are inserted as
communication actions in theCRL specification, and
finally, pr oc_er| _pp translates the side-effect part
from the internal notation tpCRL syntax.

The tool could be reused for other kind of transforma-
tion, e.g. if we want to extract a LOTOS specification [14],
we only need to write a new back-end for translating from
the internal representation to the LOTOS syntax. Therefore
even though the tool has been built for a quite concrete pur-
pose, its main ideas can be reused for similar approaches.

patomerl

11. Conclusions

In this paper we described how a functional language
with support for concurrency and distribution can be trans-
Figure 1. Architecture of the tool lated to a process algebra. The ingenuity of the transla-
tion shows in the choices we made for mapping concepts
of one language to concepts of the other. For example, we
The main transformations args_r epl ace changes make strong use of the design patterns in Erlang to enable
Erlang genserver related code as it is explained in a smooth translation. By translating ErlanggtGRL we
Sect. 3 in all the call-back modules implementing the can use formal verification tools developed f6€RL and
generic server behaviour. Thecal s module takes |apelled transition systems.
care of encoding the modules into the function names, QOther approaches to the formal verification of soft-
as explained in Sect. 9. ware include the specification language Promela and model
For the side-effect-free part of the code, the follow- checker SPIN [12], PathFinder [11], and Bandera [10]. In
ing translations are performed: Some Erlang library the first case Promela is very close to C while the targeted
functions are included for translation. Records are language for the latter two is Java. Relevant tools develope
translated to a data structure that can be defined inducfor Erlang include a theorem prover with the Erlang seman-
tively. The modulesef nodi f y changes the function tics built into it [6, 7] and the model-checker of Huch [13]
clauses related with the matching problem explained in which works on code directly. The theorem prover can in
Sect. 8.1. The moduleof r eevar replaces the un- an inefficient way be used to symbolically explore part of
derscores in the Erlang source code to uniquely choserthe state space. Its power is though in interactive proofs
free variables. of a different nature, whereas the model checking approach
is efficient and automatic. Huch’s approach differs from
ing translations are performed: Thaidsel f and ours'in the way he abstracts data aspects which we consider
gs-addsel f modules change the code such that the crumal._ I_n partlcglar, he a_lbstraatasestatements by non-
process identifiers can be used as arguments, as exdeterministic choices, losing all reference to the data.
plained in Sect. 2. Thaof r eevar s module is also . The tool that we constructed to perform the transformg-
tion has been evaluated by two major case-studies of which

applied to this part of the code for the same reason asth it ted elsewh 5 31 The tool all
above. The modulesar ar gs andnat ches are per- e results are reported elsewhere [2,3]. The tool allows us

forming the transformations explained in Sect. 5. The and others to apply formal verificatiqn tools on real i”d%*s,'
cal | r et ur n module introduces the stack explained trial code. The_tpol has been V_/r|tten in such a way that it is

not uCRL specific, but can easily be ported to other process
algebras or similar approaches.

Before and during the development of the tool, we have
pat ontr | : the third phase is a backend for trans- repeatedly asked ourselves whether it would be better to
lating the internal, process algebra, representation tobuild a verification tool directly on the level of Erlang in-
1CRL. The main steps in this phase are: the code for stead of translating Erlang to a process algebra. However,
the standard inductive definitions for tih€RL sorts for a small group like ours, it is much easier to build a trans-
bools and naturals are introduced. The modiade| - lation tool and use all the research done over the years by

For the side-effect part of the code, the follow-

in Sect. 4. The modulsunvar s is introducing the
sum construct, as explained in Sect. 4.

other groups, than to concentrate on doing the research ourreading the paper. The work described in this paper wasatigrti
selves and get only part of all theory implemented. In this supported by MCyT, Spain, Project TIC 2002-02859.
way we benefit from years of experience with building ver-
ification tools and optimising those tools and pay the mini- References
mal price of having to write a kind of compiler ourselves.

We identified three main restrictions in verification for- 1] 3. Armstrong, M. Williams, C. Wikstrom, and R. Virding.
malisms that we considered. First, specification languages Concurrent Programming in ErlangPrentice-Hall, Engle-

lack the support in the development tools that modern pro- wood Cliffs, New Jersey, USA, second edition, 1996.
gramming languages have. A simple thing like a debug- [2] T. Arts, C. Benac Earle, and J. Derrick. Development of
ger or a way to write code in modules instead of one big a verified Erlang program for resource lockingnt. J. on
specification are often missing. Second, programming lan- ___ Software Tools for Technology Transf@004. to appear.

: . [3] T. Arts and J. J. 8nchez-Penas. Global scheduler proper-
guages have powerful constructs both in statements and in ties derived from local restrictions. Froc. ACM SIGPLAN

data structures, e.g. higher-order functions, list cofngne Erlang workshopPittsburg, USA, October 2002
sions, records, inheritance. These constructs are seJdoml 4] s Blau and J. Rooth. Axd 301 — a new generation atm

supported by specification languages, which most of the switching systemEricsson Reviewd, 1998.

time remind of languages from the early eigthies. Third, [5] J. C. Corbett, M. B. Dwyer, J. Hatcliff, and Roby. Bandera
specification languages have poor and inefficient support fo a source-level interface for model checking Java programs.
arithmetics. Hence, a tool to create a rather small stateespa In Int. Conf. on Software Engineering. 762—765, 2000.

can still spend an amazing amount of time in just perform- [6] L.-A. Fredlund, D. Gurov, T. Noll, M. Dam, T. Arts, and
G. Chugunov. A verification tool for Erlandnt. J. on Soft-

ing simple arithmetic.
gA P I d . h | ware Tools for Technology Transfer.405-420, 2003.
s a small comment, we can underwrite the conclu- 71 | _A Fredlund. A framework for reasoning about Erlang

sion of Lamport and Paulson [15]: specification languages 7 code. PhD thesis, Dept. of Microelectronics and Informa-
should not be typed. At least, if one translates a program- tion Technology, Royal Institute of Technology, Stockhplm
ming language to a specification language, a type system is 2001.

often in the way. The programming language has certainly [8] H. Garavel, F. Lang, and R. Mateescu. An overview of
a type system and hence the types need not be checked ona CADP 2001. European Association for Software Science
specification language level. Moreover, the type system of __ and Technology (EASST) Newsleteed3-14, 2002.
amodern language is easily incompatible with the type sys- [9] J F. Groote and M. A. Reniers. Algebraic process verfica
tem of the specification languages around. Hence, the types tion. In Handbook of Process Algehrp. 1151-1208. Else-

. . vier, 2001.
getin th.e way Wherﬁ tran.slatln.g. [10] J. Hatcliff and M. Dwyer. Using the Bandera tool set to
Despite some limitations in the process algebra lan- model-check properties of concurrent Java softwiageture

guages, the tools developed for them (e.g. [8, 18]) make a Notes in Computer Scienc2154, 2001.

translation very rewarding. The time it takes to createtesta [11] K. Havelund and T. Pressburger. Model checking Java pro
space of a reasonably complicated system or the time nec- ~ grams using Java pathfindemt. J. on Software Tools for
essary for model checking some properties has never been ?12] Technology Transfeg, April 2000.

Lo . . G. J. Holzmann Design and validation of computer proto-
restriction in our case-studies. We have been able to verify . 9 puterp
cols Prentice-Hall, Inc., 1991.

;evergl propertle§ of real code with a.reasonable complex-[13] F. Huch. Verification of Erlang programs using abstiaet
ity. Without counting the about 2000 lines of code that are terpretation and model checkindCM SIGPLAN Notices
given as design patterns and library code, our case studies 34(9):261-272, Sept. 1999.

consisted of a few hundred lines of code. From the experi- [14] ISO/IEC. Lotos, a formal description technique based o
ment we can conclude that this verification approach scales the temporal ordering of observational behaviol®.8807

to larger size examples. We hope to be able to improve the February 1989.

integration of several tools in order to make source code [1°] Lamport and Paulson. Should your specification languag
e : . be typed? ACM Transactions on Programming Languages
verification even simpler in the future. and System®1, 1999,
[16] J. J. &inchez Penas and C. Abalde Ramiro. Extending the
VoDKa architecture to improve resource modeling.2hd
ACM SIGPLAN Erlang Workshop (PLI'03Uppsala, Swe-

We thank the developers of theCRL and CADP tools for their ger\}(lA(;JlgustEZf?_O_S. . iation of patt «chinan |
suggestions and help during our verification attempts; Utjat [17] P. Wadler. iclent compriation of pattern matchingn

. . - . S. Peyton-Jones, editorhe implementation of Functional
for his generous help in providing us with part of the sourcgec Programming Languages. 78-103. Prentice Hall, 1987.

of the AXD 301 switch; Victor Gulias and the rest of VODKA [18] A. G. Wouters. SEN-R0130, manual for th€RL tool set
developers for their help with the source code of the video-o (version 2.8.2). Technical report, CWI, Amsterdam, 2001.
demand server; and John Derrick for his support and for proof

Acknowledgements

