
Translating Erlang to �CRL

Thomas Arts� Clara Benac Earley Juan Jośe Śanchez Penasz
Abstract

The language Erlang has been developed by Ericsson
to implement large switching systems. Erlang is nowadays
used by several companies for complex embedded systems.

The language�CRL is a process algebra with data. Sev-
eral verification tools are available for�CRL and other
process algebras, including a tool to create labelled transi-
tion systems from�CRL specifications. By having a trans-
lation from Erlang to�CRL we can apply the verification
tools for process algebras and labelled transition systems
to industrial code. The translation is aware of the major
design component in the switching software. This knowl-
edge is used to ensure that the size of the labelled transition
system generated by the tools is smaller than with a naive
translation.

1. Introduction

Driven by the need to verify a small, but critical, part
of Ericsson’s AXD 301 [4], we started to develop a ver-
ification tool. The industrial case-study [2] we considered
had no up-to-date detailed specification, only a few hundred
lines of code as a starting point. The code is written in the
language Erlang. Erlang [1] is a functional programming
language developed at Ericsson for the development of con-
current/distributed safety critical software. One of the larger
examples of the use of Erlang is for the control software of
the AXD 301 high capacity ATM switch used to implement,
for example, the backbone network in the UK.

The fact that we are confronted with source code and
an out-of-date specification is a rather general phenomena:
verification of software is performed at a rather late stage,
when engineers feel that what they have produced is more
complex than they understand. They then want backup by
some sophisticated tools that go beyond testing. Tools like�IT University of Gothenburg, Box 8718, 402 75 Gothenburg, Sweden,
arts@ituniv.seyUniversity of Kent, Canterbury, Kent CT2 7NF, United Kingdom,
cb47@kent.ac.ukzLFCIA, Computer Science Department, University of Corunha, C.
Elvinha S/N. 15071, Corunha, Spain,juanjo@lfcia.org

model checkers exist, but are not directly applicable to the
software they write. Our goal has been to bridge the gap and
translate the source code to an input language for verifica-
tion, so that a lot of tools are usable for the software. The
translation should be effective and rather general, so thatthe
back-end technology can easily be changed.

The code of our typical examples is written in Erlang,
otherwise we could probably have used one of the compa-
rable initiatives to translate real code into a specification
framework, e.g. [5, 11]. However, the available tools to
translate imperative and object-oriented code are too spe-
cific to be able to re-write for a functional language, like
Erlang. Moreover, due to the functional nature of Erlang
with light-weight concurrency, the target specification lan-
guage typically differs from a target language for imperative
or object oriented languages.

Erlang is sufficiently different from a process algebra to
make it a challenge to come up with a translation. How-
ever, it is one of the best fitting specification formalisms
around to use as a target. We choose to pick one specific
process algebra with data, viz.�CRL [9], since data is cru-
cial in our case. Besides, we had good experiences with the
open-source tools [18] that support this language. In our ex-
perience, building the state space for a�CRL specification
is more efficient that building the state space for a similar
specification in LOTOS [14].

In this paper we describe the tool that we developed to
verify two industrial case-studies: a resource manager ap-
plication in the AXD 301 switch [2] and the scheduler of
a video-on-demand server [3, 16]. By our focus on these
case-studies we ensured that the translation is useful for a
rather general class of verification problems. We are able to
translate Erlang programs that respect the generic server de-
sign pattern; hence covering synchronous and asynchronous
communication as well as most of the computational as-
pects of the language. Dynamic process creation is also
supported in the translation, if performed by the supervison
design pattern.

The verification approach is focussed on finding errors
in the Erlang software and not on proving correctness of
the software. Therefore, the approach is pragmatic. The
traces to failure that we in the end obtain by model-checking
tools should correspond to traces in the real software. The

translation ensures this criteria by its construction.
The paper is organised as follows: In Sect. 2 – 9 we de-

scribe how the difference between Erlang and process alge-
bra is bridged. By means of code examples from Erlang we
show the difficulties we encountered in the translation.

The examples in the paper are reduced to the most basic
concepts. We refer to our website1 for detailed examples
with both Erlang source code and their translation to�CRL.

In Sect. 10 we describe the software architecture of the
actual implementation and in Sect. 11 we present some re-
sults of using the tool and discuss its use in practice.

2. Processes and communication

Erlang is a language with light-weight processes and
asynchronous message passing. The language supports both
concurrency and distribution. The concurrent processes run
in the same virtual machine (anodein Erlang terminology)
and several virtual machines can be connected to obtain a
distributed system. Syntactically there is no difference in
communication between processes on the same node or on
different nodes. Of course, distribution gives rise to true
non-determinism and a slightly different fault behaviour.
For our purpose, it suffices to model both distributed and
concurrent Erlang processes as truly concurrent processes,
like one has in a process algebra. The full non-determinism
is covered in that way.

Every Erlang process has a unique identifier that is used
to address the process. Every process also has a message
queue in which the incoming messages are stored. The vir-
tual machines guarantee that every message is delivered to
the queue of the process that the message is sent to. If the re-
ceiving process does not (longer) exist, then the message is
simply lost without warning. The receiving process actively
reads the message buffer by a ‘receive’ statement. This re-
ceive statement is blocking as long as the expected message
has not arrived.

A straightforward attempt to map Erlang processes and
communication to a process algebra is to create two process
algebra processes: one buffer process and one process to
implement the logic. The asynchronous communication is
modelled by the synchronising actions of process algebra.
One action pair to synchronise the sender with the buffer
of the receiver and one action pair to synchronise the active
receive in the logic part with the buffer. We have chosen
to represent the unique identifier as data to a general com-
municating action instead of having unique communicating
actions per pair of communicating Erlang processes.

In Erlang programs it is good practice to add your own
process identifier to the messages that are sent. In that way,
the receiving process is able to respond. The Erlang prim-

1See http://etomcrl.sourceforge.net

itive self() returns the process identifier and by writ-
ingPid!fMsg,self()g one sends a message containing
both the termMsg and the process identifier of the send-
ing process to the process with identifierPid. With the
receive statement one reads a message from the queue. Pat-
tern matching is used to selectively read a certain message
from the queue.

For the moment assume that we have embedded Erlang
communication primitives in the functionscall andre-
ply2. Thecall is used to send a message, attached with
the process identifier of the sender, and to wait for an an-
swer. The functionreply is used to return an answer to
the caller. This way of embedding low level communica-
tion primitives in functions is common practise for indus-
trial Erlang code and in the next section we will describe
this in more detail.

The following, snapshot running in an Erlang process,
describes a simple server that waits for a client request and
replies with an acknowledgement. Variables start with an
uppercase character in Erlang, constants and functions start
with lowercase.

loop() ->
receive
{request,Client} ->

reply(Client,acknowledge)
end, loop().

The client to this server evaluates the function
call(Server,request), whereServer is the pro-
cess identifier of the server.

We translate the Erlang server process in a�CRL speci-
fication with two processes and actions to synchronise pro-
cesses with this buffer and to synchronise the logic part with
the buffer. The�CRL statementsum(X :T ; p) is shorthand
for a non-deterministic choice of all possible values ofX of
typeT .

proc server(Self: Pid) =
sum(Client: Pid,

receive(Self,request,Client).
reply(Client,acknowledge,Self).
server(Self))

proc buffer(Self: Pid, Messages: TermList) =
b_receive(Self,data(Messages),

pid(Messages)).
buffer(Self,rmhead(Messages)) +

sum(Msg: Term,
sum(From: Pid,

b_call(Self,Msg,From).
buffer(Self,add(Msg,From,Messages))))

The process identifier is automatically added as a parameter
to processes and communicating actions. The buffer and the

2For readers familiar with Erlang: the function embedding ispart of the
design patterns explained later.

process implementing the logic have the same process iden-
tifier. Communication is untyped in Erlang and we have to
be ready to accept any term in a message queue. Commu-
nication in�CRL is specified by pairs of communicating
actions; three pairs in our case.

receive | b_receive = ex_buffer
call | b_call = in_buffer
reply | replied = sync_reply

To simplify reading, we assumed a typePid in the above
example, but, in untyped Erlang, process identifiers are just
terms. In the real translation we follow that concept and use
typeTerm instead ofPid.

The reader familiar with Erlang will have noticed that
the fifo buffer above differs a lot from the semantics of an
Erlang message queue. In an Erlang receive statement one
can pattern match on the format of a message. In that way,
one can leave certain messages in the queue and selectively
take a message from the queue. This is rather difficult to
model in�CRL (one easily ends up in creating a model that
causes an infinite state space to be created).

A fifo queue is insufficient for the client process that
communicates with the server above, since processes can
freely send a message to the buffer of this client. If another
message than the server reply arrives earlier in the message
queue of the client, then the client will be blocked forever.
The solution to overcome the problem of selective reading
of the queue lays in carefully studying what happens in the
real Erlang code. To our advantage, selectively reading a
message from the message queue is only done in very re-
stricted circumstances. Basically the mechanism to read a
message other than the first message in the queue is only
used for exactly this synchronisation. The client adds a spe-
cial (unique) tag to the message and the server replies with
the same tag added. The client is just waiting for any mes-
sage with the right tag. All other messages that arrive to the
queue in-between, are left untouched.

We can model this by having thereply action commu-
nicate directly to thereplied action in the client, there-
with circumventing the message queue of the client.

This solution only makes sense in a situation where we
know which messages are of this special kind and if we
know that other messages are dealt with in a fifo manner.
But, that is exactly what we recognised when looking at a
million lines project like the AXD 301 switching software.
The code is written according to certain design patterns.
About eighty percent of the communicating processes im-
plements a server that uses thegeneric serverpattern. This
server restricts communication in a way that eases the trans-
formation for us3. In the next section the server pattern and
its translation to�CRL are explained in more detail. The

3The restriction in the communication imposed by the design pattern
allows a better understanding of complex systems. The same restriction
that makes the system easier to understand for the engineersis making

supervision tree pattern is another frequently used pattern
and is described in Sect. 6.

3. Design pattern: generic server

Thegeneric serverpattern is used to implement servers
in Erlang. A server is a process that keeps state, waits for an
incoming message, computes a response message depend-
ing on the incoming message and state, and replies to the
message and updates the state. The genserver module im-
plements the generic parts of the server while the call-back
module implements the specific functionality (the logic) of
a particular instance of the server, i.e. the computation of
the response message and the new state.

The above description is, on purpose, an over simplifi-
cation of the generic server behaviour. The behaviour also
takes care of a uniform way of error handling, of a uni-
form debugging facility, of monitoring nodes and observ-
ing whether clients are still alive, etc. In that way, the pro-
grammer really only needs to concentrate on the logic of
the server. That, on its turn, allows us to easily abstract
from a lot of details that the code would have if not im-
plemented in the generic way. Our translation tool can, by
means of this generic behaviour, concentrate on the logic
and abstract from the implementation details of error han-
dling, debugging, etc.

The simplified version of the generic server is just a
small extension of the server given in Sect. 2. We add state
as a parameter of the loop and whenever a messages arrives,
we need to call a function to evaluate a reply and to up-
date the state. The generic server distinguishes three kind
of messages:call, castandinfo messages. A call is a syn-
chronise event, where the client waits for a reply. The cast is
the asynchronous version of the call, and the info messages
serve the special purpose to deal with error events and such.
In this paper we only consider thecall messages, but the ac-
tual translation handles the full generic server with all three
kind of messages.

loop(M,State) ->
receive

{call,Msg,Client} ->
{reply,Reply,NewState} =

M:handle_call(Msg,Client,State),
reply(Client,Reply),

end, loop(M,NewState).

The variableM contains the name of the module in which
the functionhandle call is implemented. This is the so
calledcall-back module.

Remark that the programmer uses the standard generic
server component and only provides the call-back module

it easier for us to translate the system to the clean framework of process
algebra.

when implementing a server. The generic part is static and
stable over the years. Therefore, we can take the semantics
of the generic part for granted and use it in our translation.

A typical example of a call-back module is given below.
It implements a server that may receive either arequestmes-
sage or areleasemessage. The state of the server is a list
of clients that have requested. Whenever a client requests,
it gets its position in the queue as reply and is added to the
state. Whenever a client releases, it is replied an acknowl-
edgement and is removed from the state.

handle_call(request,From,State) ->
{reply,pos(From,State),add(From,State)};

handle_call(release,From,State) ->
{reply,ack,remove(From,State)}.

The Erlang functionspos, add and remove should
also be implemented in this call-back module, but are so
straight-forward that we omit them here. The behaviour
also provides functional embeddings of the communication
primitives, similar to what was used in Sect. 2. A client
would evaluate thecall function. The implementation
takes care of adding a unique tag and the process identifier
of the client to the message. It also takes care of waiting for
the arrival of a reply from the server with exactly the same
unique tag in order to proceed.

Thus, a typical client that would request and release is
implemented in Erlang by:

client(Server) ->
Nr = gen_server:call(Server,request),
gen_server:call(Server,release).

The translation of both server and client is similar to the
translation given in Sect. 2. Instead of the receive action,
we use a handlecall action and a non-deterministic choice
to be able to either receive the request or the release. The
buffer is basically the same, apart from the changed name of
the receive action tohandle call. We provide the code
for the client and server process in�CRL.

proc client(Self:Term, Server:Term) =
call(Server, request, Self).
sum(Nr: Term,

replied(Self, Nr ,Server)).
call(Server, release, Self).
sum(Free: Term,

replied(Self, Free, Server))

proc server(Self:Term,State:Term) =
sum(From: Term,

handle_call(Self,request,From).
reply(Client,pos(From,State),Self).
server(Self,add(From,State))) +

sum(From: Term,
handle_call(Self,release,From).
reply(From,ack,Self).
server(Self,remove(From,State)))

The�CRL functions forpos, add andremove are almost
equal to the Erlang counterparts. In Sect. 8 the translation
of such purely computational functions is explained in more
detail.

The lastsum in the client is generated automatically, be-
cause thecall function is always returning a result. In Er-
lang one may choose to ignore the result, but in�CRL we
have to explicitly bind it to a variable (Free in this case).
This already indicates a subtle difference between a return
value of a function in Erlang and a communication action
in �CRL. This issue is explained in more detail in the next
section as it is not specific for the generic server, but a more
general phenomena.

In this section we have shown the basic principle of
translating generic servers into�CRL. We left out the
buffer, since that was presented in the previous section. Our
tool handles real servers, which are more complicated than
the example shown here, but the basic ideas are captured in
this section. Our example call-back module is rather sim-
plistic and in reality there are some issues that complicate
matters. In the next few sections we focus on those compli-
cations.

4. Functions with side-effect

A significant difference between Erlang and a process al-
gebra is that the latter forces to separate computation from
communication. In Erlang, in contrast, a function that per-
forms some calculations can also communicate. Thus, such
a function has communication as side-effect of the compu-
tation. Of course, the function can call other functions that
have side-effects and as such we can get deeply nested inte-
gration of computation and communication. Here, our first
task is to identify Erlang functions with side-effect from
the pure computations. These two classes of functions are
translated differently.

Functions are classified as functions with side-effect
when they make use of a communication function (like
call or reply). By analysing the call graph of all in-
volved modules, we can syntactically split the Erlang func-
tions in the two demanded categories.

In the remainder of this section we focus on the part with
side-effects, and how the computation and communication
are separated in these functions. Issues related to the purely
computational part are discussed in Sect. 8.

The problem with nested side-effects is best illustrated
by an example. Assume an Erlang process that calls a func-
tion p in order to communicate its result. The functionp
itself contains a side-effect:

loop(X) -> Y = p(X), s(Y), loop(X).

p(X) -> Y = f(X), s(g(Y)), h(Y).

wheref, g andh are pure computations ands is one of the
side-effects, e.g., thereply function. A naive translation
to �CRL of this process would define actionsp ands and
in order to handle the matching, it could bindY and inline
the code:

proc loop(X:Term) = s(p(X)).loop(X)

However, nest actions are not allowed in�CRL. Instead we
therefore translate it to:

proc loop(X:Term) =
s(g(f(X))). s(h(f(X))). loop(X)

We obtain this translation by a recursive source code trans-
formation of the Erlang functions. In this transformation
we lift all side-effect functions to the highest level and push
pure computations down by duplicating them. Thus, we
translate on the source code level all functions with side-
effect to functions that look like:

p(X) -> s1(---),...,sN(---),---.

where--- stands for pure computations.
Whenever we encounter a statementY=p(X) in the

code, we could bind the variableY to the last pure computa-
tion of the functionp and substitute this in the�CRL code.
Thus, we could inline the side-effect functions as actions
in place of the call top. However, the attentive reader has
probably already noticed that this cannot work for recursive
functions with side-effects; without knowing the number of
recursive iterations, one is unable to unfold the definition
and hence unable to inline the exact number of side-effects.
Neither does this work for functions that perform a side-
effect and cannot be de-composed. As an example, consider
the simple program that performs a side-effect on every el-
ement of a list and returnsack as a result. All results are
stored as a parameter of the function, i.e., the list ofack’s
is increasing.

loop(X,Rs) -> R = p(X), loop(X,[R|Rs]).

p([]) -> ack;
p([Head|Tail]) -> s(Head), p(Tail).

The standard solution to deal with recursive functions
when writing a compiler is to implement a stack data struc-
ture to store the return values of the recursive calls. We
adopt this idea, where the stack is implemented as a�CRL
process and push and pop operations are communicating
actions. With a source-to-source transformation we make
sure that all functions with side-effects are in the previously
mentioned format with either a pure computation as last ex-
pression or a call to another function with side-effect. We
replace all pure computations by a push on a stack and pop
this value in the code where we call the function.

The above Erlang example is translated to the�CRL
code below (where the stack itself is omitted). The some-
what obscure notation for the if-then-else statement in�CRL is then / if . else.

proc loop(X:Term, R:Term) =
p(X).
sum(R:Term,

pop(R).loop(X,cons(R,Rs)))

p(X: Term) =
push(ack)
<| eq(X,nil) |>
(s(head(X)).p(tail(X)))

By using the stack and pushing pure computation in-
side side-effect functions, we can deal with nested side-
effects. The stack solution also provides a solution for the
case where in the above matchY=p(X) the variableY is re-
placed by a complicated pattern with several variables. The
only thing we have to add to our translation is asum con-
struct for every occuring variable in the pattern. Note that
the introduction of thesum construct is only used for the
matches of patterns with functions that contain side-effects.
A match with a pure function is translated differently, as
explained in the next section.

Although the stack process solves our problem of trans-
lating nested side-effects, we also have to pay the price
of more communication in the model and therefore an in-
creased state space of the system. Moreover, the duplication
of the pure functions gives rise to longer computation times
in the model than in the real implementation.

5. Pattern matching in communication part

Both�CRL and Erlang allow pattern matching on data.
In the previous section we have shown how one particu-
lar kind of pattern matching is elegantly translated by using
communication via a stack process. In this section we focus
on two of the possibilities, viz. pattern matching in function
clauses and in communication primitives.

5.1. Function clauses

Process definitions in�CRL can only have variables as
parameters, c.f. the definition of client and server in Sect.
3; and there is only one clause per process. Erlang func-
tions that are translated to�CRL processes may have sev-
eral clauses in which pattern matching decides which clause
is evaluated.

Several Erlang function clauses can easily be combined
in onecase-statement, but that does not solve the problem.
The pattern matching in thecase is equivalent to pattern
matching on function clause level. We treat those therefore
similarly.

First, we compute the discriminating pattern to select a
certain clause (c.f. [17]) and we use a nested if-then-else
structure to determine which part of the function to evaluate.
This if-then-else can later be directly mapped to�CRL.

Second, we replace the patterns in the arguments of the
function to variables and replace bindings caused by these
patterns to destructor functions. As an example, consider
the following Erlang function:

loop(X,[]) -> s(done), loop(X,X);
loop(X,[Head|Tail]) -> s(Head),loop(X,Tail).

This code requires two destructors, viz.hd andtl to ex-
tract the head and tail of a list. With those two destructors
the code is transformed to the Erlang code:

loop(X,Arg1) ->
if
nil == Arg1 ->
s(done), loop(X,X);

is_list(Arg1) ->
s(hd(Arg1)), loop(X,tl(Arg1))

end.

In general the conditions to check are more complicated
than only checking whether an argument is a list or the
empty list. We need to bind variables to terms in order to
use them in the expressions and sometimes we even need
destructor functions in the conditions, for example if we
want to check whether the head of a list is equal to the in-
teger one4. However, there are only finitely many possible
patterns in Erlang. The simplified version of the computa-
tion of the conditions for given patternP and expressionE,
where only lists, integers, and variables are considered is
given below. The function returns a condition and a set of
variable bindings5.
ond(P;E) =8>>><>>>:

htrue; fP 7! Egi var(P)his list(E) ^ � ^ ; � [�i P = [HjT ℄h�; �i =
ond(H; hd(E))h ; �i =
ond(T; tl(E))hequal(P;E); ;i otherwise
The more complicated version of the above function is

successfully used in our source-to-source transformationto
map different patterns in function clauses to variables in the
arguments of the clauses and nested conditions in the body
of the clause.

5.2. Communication primitives

The above described function clauses are translated to�CRL process definitions. For function clauses that are
communication primitives and that are translated to�CRL
communicating actions, a similar pattern matching trans-
formation is necessary. In this case, however, one cannot
introduce the if-then-else construct in the same way.

4The if-statements in Erlang do not allow destructors in the conditions,
therefore, we use nested case-statements instead of the if-statement, but
explaining it by means of an if-statement is clearer.

5The set of variable bindings is a list in the real implementation, where
variables that have been bound before need to be matched against a value
if they occur more than once in the pattern.

As an example, consider the previoushandle call
function clauses for a server, where the client can now re-
quest and release either resourcea or resourceb. The server
administers whether the resource is free by keeping a tuple
as state variable, containing a boolean value per resource.

handle_call({request,a},Client,{A,B}) ->
{reply,A,{false,B}};

handle_call({request,b},Client,{A,B}) ->
{reply,B,{A,false}};

handle_call({release,R},Client,State) ->
{reply,ack,update(R,State)}.

Here we have two matches that need to be translated differ-
ently. Thehandle call function is translated in a non-
deterministic choice between the alternatives and embed-
ded in a server loop. That loop hasState as a parameter
and the tuplefA,Bg should be decomposed as described in
the previous section. The message (and similarly the client)
should be treated differently. For those parameters, the vari-
ables are isolated and put in asum construct. The matching
is done by the pattern matching mechanism of�CRL.

server(Self:Term,State:Term) =
sum(Client: Term,
handle_call(Self,tuple(request,a),Client).
reply(Client,element(1,State),Self).
server(Self,tuple(false,element(2,State))))

+
sum(Client: Term,
handle_call(Self,tuple(request,b),Client).
reply(Client,element(2,State),Self).
server(Self,tuple(element(1,State),false)))

+
sum(R: Term,
sum(Client: Term,
handle_call(Self,tuple(release,R),Client).
reply(Client,ack,Self).
server(Self,update(R,State))))

Of course, we use the knowledge we have on our commu-
nication primitives to decide which parameters need to be
transformed to match on the process level and which are to
be transformed in asum construct. Typically the matching
on the process level is translated source-to-source, whereas
the introduction of non-determinism andsum construct is
left to a later stage.

Lacking in the above translation is the introduction of
the conditions that we compute for the pattern match. A
programmer could easily handle the same message in two
different clauses of thehandle call function by differ-
entiating the state in which the message arrives. This way
of programming is de-recommended in the style guides, but
occurs now and then in code fragments. We therefore have
to put conditions in the loop that correspond with the possi-
ble patterns of the state and only then non-deterministically
match the possible messages.

6. Design pattern: supervision tree

One of the key features of most distributed systems, in
particular those for which Erlang is used, is fault tolerance.
Erlang supports fault-tolerance by means of the supervision
tree, a structure where the processes in the internal nodes
(supervisors) monitor the processes in the external nodes
(workers).

The creation of the processes architecture of the system
is encoded inside the supervision tree initialisation. This
fact can be used in order to extract the processes of the sys-
tem from the source code and the input (configuration) pro-
vided by the user. Process algebras allow the creation of
new processes, but the set of tools developed for�CRL does
not support this feature. We partially evaluate the supervi-
sion tree, using the fact that we know the semantics of that
design pattern, in order to obtain its structure and a list of
all created worker processes.

The use of the supervision design pattern is so com-
mon that using it to find the created processes is no severe
limitation. We cannot handle Erlang applications in which
processes are spawned outside the scope of the supervision
tree, but these are not commonly encountered in production
code. A more important limitation of our approach is that
we do not encode the fault tolerance of the supervision tree
in our model. Thus, we only look at successful executions.
The fault-tolerant behaviour is currently being the objectof
further research.

7. Higher-order functions

Erlang is a functional language that supports higher-
order functions, something which most specification lan-
guage avoid for the inherent complexity of the analysis. The
expressiveness of a higher-order function is as useful for a
good program as design patterns. Therefore, it is a pity that�CRL is a first order language.

Since higher-order functions are a real extension to a lan-
guage, there is no simple way of translating these functions
to first-order variants. Luckily, most of the Erlang code
on our case-studies only uses a few predefined higher-order
functions, likemap. We therefore designed the translation
to handle only those special cases that we encountered, like
we only handle a few design patterns. We defined a source-
to-source transformation on the selected functions to flatten
them to first-order alternatives. Any occurrence of the func-
tion map

map(fun(P) -> f(P,E1,...,En) end, Xs)

whereP is a pattern,Xs an expression returning a list and
E1,: : :,En arbitrary expressions, is replaced by a call to a
unique functionmap f(Xs,E1,...,En). The unique
function is added to the code and defined as:

map_f([],Y1,...,Yn) -> [];
map_f([X|Xs],Y1,...,Yn) ->
[f(X,Y1,...,Yn)| map_f(Xs,Y1,...,Yn)].

Although for many functions a similar transformation
pattern can be used, there is no general way of translating
higher-order concepts into�CRL.

8. Data and pure functions

Although Erlang has a fixed and small set of construc-
tors, the translation of the data part is more complicated
than one would wish. Basically it is a syntactic conversion
of constructors, destructors and selectors. The latter two
implemented as�CRL functions that directly correspond to
the Erlang functions. However, an obstacle in this is that
not all Erlang data structures are inductively defined. The
integers, which most programming languages support, are
probably the best example of that. In�CRL all data struc-
tures need to be defined inductively and the advised way of
defining integers is by means of naturals, which are repre-
sented as zero and its successors. This might be a theoret-
ically rather clean approach, in practise it means unread-
able specification for larger numbers, slow computations
and tools that complain about a too deep term depth when
numbers get large.

Another obstacle is that syntactic equality is not a pre-
defined relation, but that this relation has to be specified.
In particular for rich sets of data structures (which we use),
this results in a large amount of defining rules.

Erlang is dynamically typed and has very flexible typ-
ing rules; �CRL is strongly typed with a simple and re-
stricted type system. Since we try to keep the specification
in �CRL as close to the Erlang code as possible we con-
struct in�CRL a data typeTerm in which all Erlang data
types are embedded. The tool supports most Erlang data
types: lists, integers, atoms, tuples, and records. However,
the recently added Erlang bit-syntax implementing the data
structure of bit sequences, is not considered by our tool.

8.1. Pattern matching

In Sect. 5 we have discussed the matching of function
clauses and expressions for the functions that have side-
effects. For the pure functions, the translation is much sim-
pler. The header of function clauses can directly be copied,
since for the term matching on that level, matching in Er-
lang and�CRL are the same. We have to rewrite the body
of the function clauses, where all statements have a fixed
translation to�CRL rewrite rules. For example, an Erlang
function withcase statement

functionName (P1,P2,...,Pn) ->
case E of

Q1 -> E1;

...
Qm -> Em

end.

whereP1, : : :, Pn, Q1, : : :, Qm are patterns andE, E1,: : :, Em are expressions is translated in several rewrite rules
(where recursively the expressions are translated). The no-
tation var(P1,...,Pn) stands for all variables in the
patternsP1, : : :, Pn.

functionName(P1,P2,...,Pn) ->
case1(var(P1,...,Pn), E).

case1(var(P1,...,Pn), Q1) -> E1;
...
case1(var(P1,...,Pn), Qm) -> Em.

In this translationcase1 stands for a function symbol
uniquely chosen for the translation of every case statement.
We can perform this transformation source-to-source and
only in the last phase translate the Erlang code to�CRL.

Another statement with a similar translation is the Er-
lang matchP = E. The way to deal with this statement is
again to call a function and lift the match to the rewrite level.
Functions with a match

functionName(P1,...,Pn) -> P = E, Expr.

are source-to-source translated to

functionName(P1,...,Pn) ->
match1(var(P1,...,Pn), E).

match1(var(P1,...,Pn), P) -> Expr.

Note that, although the translation of these statements
looks rather straightforward and easy, we slightly change
the semantics in the translation. As long as we stay on the
source-to-source level there is no danger, but a direct trans-
lation to�CRL would affect the behaviour of the program.

For example, Erlang uses priority rewriting, i.e. patterns
are tried from top to bottom and if an expression matches a
pattern, the other alternatives are not visited. In�CRL any
matching rule could be taken. At the moment we therefore
check that there are no overlapping patterns in the defini-
tion, but in fact, one should rewrite the patterns to a non-
overlapping set.

9. Module system

Erlang code is divided into modules, each module con-
sisting of a sequence of attributes and function declarations.
Process algebras on the contrary, do not have module sys-
tems, although some tools (e.g., the CADP tool set [8] for
LOTOS [14]) support a module system.

To prepare the conversion of the given collection of Er-
lang modules into one�CRL specification, we perform a

source-to-source transformation. Every call to a function
f is replaced by the Erlang qualified callmodulename:f,
wheremodulenameis the name of the module where the
function f is implemented.

Some modules in the standard library are translated once
and for all to�CRL and the code of those functions is sim-
ply linked in at translation time. For the other functions, we
assume all necessary modules given and change the name of
the function definition and function call to the same name,
viz. modulenamef, in the�CRL translation.

10. Overview of the tool

In the Sect. 2 – 9, we have described the highlights of
translating Erlang to�CRL. In this section we describe
the architecture of the translation tool, calledetomcrl, in
which we clarify the order in which steps described before
are taken.

We used Erlang as implementation language foretom-
crl. Remember that our tool takes several Erlang source
code modules and its initialisation parameters as input, and
generates a specification in�CRL as output. The module
etomcrl is the main module of the tool implementation.
The functionsupervisor starts the compilation process,
that takes as arguments the module, function and arguments
of the supervision tree behaviour implementing the system.

Fig. 1 shows the three main steps in theetomcrl tool.
First, a source-to-source transformation is performed on the
level of Erlang, resulting in Erlang code that exhibits the
same behaviour to an observer as the original code, but is
optimised for verification. Second, the side-effect-free part
of the code is separated from the part with side-effects, since
the translation is different for each of the two parts. Third,
the translated files are combined into a single�CRL speci-
fication.� etoe: the first phase of the transformation can be seen

as a preprocessor, that performs some Erlang to Er-
lang source code transformations. The main transfor-
mations are: the supervision tree is evaluated in order
to extract the processes of the system, as introduced in
Sect. 6. Thelower module is used to remove higher
order functions as explained in Sect. 7. Thenoio
module is removing the calls to the i/o module; we ver-
ify embedded systems and are not interested in output
to the console. Finally, the code is analysed and split in
two different parts: the side-effect-free part with only
pure computations and the side-effect part. These parts
are going to be processed in different ways in the next
stage, as explained in Sect. 4.� etopa: the second phase of the translation is from
Erlang source code to an internal representation very
close to the process algebra syntax and semantics.

etoe

lower module

code split: sef, proc, actions

noio module

State variable in every handle call

Evaluation of the supervision tree

erlang to erlang
transformation

with partial evaluation
of the source code
and code split

gs_replace in the gen_server modules

include bifs

norecords module

sefmodify

nofreevar module

addself module

gs_addself module

nofreevars module

varargs module

callreturn module

sumvars module

conftau module

norecords module

matches module

side effect free actions

side effect part / proc

remove some actions

etopa

biffredefine

locals module

patomcrl

Include ’termstack’

proc_erl_pp module includes side effect part

Write the actions

Include ’gsbuffer’Include ’nobuffer’

mcrlterms module includes side effect free

Include ’bools’, ’naturals’ and natural constants

Figure 1. Architecture of the tool

The main transformations are:gs replace changes
Erlang genserver related code as it is explained in
Sect. 3 in all the call-back modules implementing the
generic server behaviour. Thelocals module takes
care of encoding the modules into the function names,
as explained in Sect. 9.

For the side-effect-free part of the code, the follow-
ing translations are performed: Some Erlang library
functions are included for translation. Records are
translated to a data structure that can be defined induc-
tively. The modulesefmodify changes the function
clauses related with the matching problem explained in
Sect. 8.1. The modulenofreevar replaces the un-
derscores in the Erlang source code to uniquely chosen
free variables.

For the side-effect part of the code, the follow-
ing translations are performed: Theaddself and
gs addself modules change the code such that the
process identifiers can be used as arguments, as ex-
plained in Sect. 2. Thenofreevars module is also
applied to this part of the code for the same reason as
above. The modulesvarargs andmatches are per-
forming the transformations explained in Sect. 5. The
callreturn module introduces the stack explained
in Sect. 4. The modulesumvars is introducing thesum construct, as explained in Sect. 4.� patomcrl: the third phase is a backend for trans-
lating the internal, process algebra, representation to�CRL. The main steps in this phase are: the code for
the standard inductive definitions for the�CRL sorts
bools and naturals are introduced. The modulemcrl-

terms translates the side-effect-free part to�CRL
syntax. The buffer and stack have standard�CRL im-
plementations that are inserted. Actions are inserted as
communication actions in the�CRL specification, and
finally, proc erl pp translates the side-effect part
from the internal notation to�CRL syntax.

The tool could be reused for other kind of transforma-
tion, e.g. if we want to extract a LOTOS specification [14],
we only need to write a new back-end for translating from
the internal representation to the LOTOS syntax. Therefore,
even though the tool has been built for a quite concrete pur-
pose, its main ideas can be reused for similar approaches.

11. Conclusions

In this paper we described how a functional language
with support for concurrency and distribution can be trans-
lated to a process algebra. The ingenuity of the transla-
tion shows in the choices we made for mapping concepts
of one language to concepts of the other. For example, we
make strong use of the design patterns in Erlang to enable
a smooth translation. By translating Erlang to�CRL we
can use formal verification tools developed for�CRL and
labelled transition systems.

Other approaches to the formal verification of soft-
ware include the specification language Promela and model
checker SPIN [12], PathFinder [11], and Bandera [10]. In
the first case Promela is very close to C while the targeted
language for the latter two is Java. Relevant tools developed
for Erlang include a theorem prover with the Erlang seman-
tics built into it [6, 7] and the model-checker of Huch [13]
which works on code directly. The theorem prover can in
an inefficient way be used to symbolically explore part of
the state space. Its power is though in interactive proofs
of a different nature, whereas the model checking approach
is efficient and automatic. Huch’s approach differs from
ours in the way he abstracts data aspects which we consider
crucial. In particular, he abstractscasestatements by non-
deterministic choices, losing all reference to the data.

The tool that we constructed to perform the transforma-
tion has been evaluated by two major case-studies of which
the results are reported elsewhere [2, 3]. The tool allows us
and others to apply formal verification tools on real indus-
trial code. The tool has been written in such a way that it is
not�CRL specific, but can easily be ported to other process
algebras or similar approaches.

Before and during the development of the tool, we have
repeatedly asked ourselves whether it would be better to
build a verification tool directly on the level of Erlang in-
stead of translating Erlang to a process algebra. However,
for a small group like ours, it is much easier to build a trans-
lation tool and use all the research done over the years by

other groups, than to concentrate on doing the research our-
selves and get only part of all theory implemented. In this
way we benefit from years of experience with building ver-
ification tools and optimising those tools and pay the mini-
mal price of having to write a kind of compiler ourselves.

We identified three main restrictions in verification for-
malisms that we considered. First, specification languages
lack the support in the development tools that modern pro-
gramming languages have. A simple thing like a debug-
ger or a way to write code in modules instead of one big
specification are often missing. Second, programming lan-
guages have powerful constructs both in statements and in
data structures, e.g. higher-order functions, list comprehen-
sions, records, inheritance. These constructs are seldomly
supported by specification languages, which most of the
time remind of languages from the early eigthies. Third,
specification languages have poor and inefficient support for
arithmetics. Hence, a tool to create a rather small state space
can still spend an amazing amount of time in just perform-
ing simple arithmetic.

As a small comment, we can underwrite the conclu-
sion of Lamport and Paulson [15]: specification languages
should not be typed. At least, if one translates a program-
ming language to a specification language, a type system is
often in the way. The programming language has certainly
a type system and hence the types need not be checked on a
specification language level. Moreover, the type system of
a modern language is easily incompatible with the type sys-
tem of the specification languages around. Hence, the types
get in the way when translating.

Despite some limitations in the process algebra lan-
guages, the tools developed for them (e.g. [8, 18]) make a
translation very rewarding. The time it takes to create a state
space of a reasonably complicated system or the time nec-
essary for model checking some properties has never been a
restriction in our case-studies. We have been able to verify
several properties of real code with a reasonable complex-
ity. Without counting the about 2000 lines of code that are
given as design patterns and library code, our case studies
consisted of a few hundred lines of code. From the experi-
ment we can conclude that this verification approach scales
to larger size examples. We hope to be able to improve the
integration of several tools in order to make source code
verification even simpler in the future.

Acknowledgements

We thank the developers of the�CRL and CADP tools for their
suggestions and help during our verification attempts; Ulf Wiger
for his generous help in providing us with part of the source code
of the AXD 301 switch; Victor Gulias and the rest of VoDKA
developers for their help with the source code of the video-on-
demand server; and John Derrick for his support and for proof-

reading the paper. The work described in this paper was partially
supported by MCyT, Spain, Project TIC 2002-02859.

References

[1] J. Armstrong, M. Williams, C. Wikstrom, and R. Virding.
Concurrent Programming in Erlang. Prentice-Hall, Engle-
wood Cliffs, New Jersey, USA, second edition, 1996.

[2] T. Arts, C. Benac Earle, and J. Derrick. Development of
a verified Erlang program for resource locking.Int. J. on
Software Tools for Technology Transfer, 2004. to appear.

[3] T. Arts and J. J. Śanchez-Penas. Global scheduler proper-
ties derived from local restrictions. InProc. ACM SIGPLAN
Erlang workshop, Pittsburg, USA, October 2002.

[4] S. Blau and J. Rooth. Axd 301 – a new generation atm
switching system.Ericsson Review, 1, 1998.

[5] J. C. Corbett, M. B. Dwyer, J. Hatcliff, and Roby. Bandera:
a source-level interface for model checking Java programs.
In Int. Conf. on Software Engineering, p. 762–765, 2000.

[6] L.-Å. Fredlund, D. Gurov, T. Noll, M. Dam, T. Arts, and
G. Chugunov. A verification tool for Erlang.Int. J. on Soft-
ware Tools for Technology Transfer, 4:405–420, 2003.

[7] L.-Å. Fredlund. A framework for reasoning about Erlang
code. PhD thesis, Dept. of Microelectronics and Informa-
tion Technology, Royal Institute of Technology, Stockholm,
2001.

[8] H. Garavel, F. Lang, and R. Mateescu. An overview of
CADP 2001. European Association for Software Science
and Technology (EASST) Newsletter, 4:13–14, 2002.

[9] J. F. Groote and M. A. Reniers. Algebraic process verifica-
tion. In Handbook of Process Algebra, p. 1151–1208. Else-
vier, 2001.

[10] J. Hatcliff and M. Dwyer. Using the Bandera tool set to
model-check properties of concurrent Java software.Lecture
Notes in Computer Science, 2154, 2001.

[11] K. Havelund and T. Pressburger. Model checking Java pro-
grams using Java pathfinder.Int. J. on Software Tools for
Technology Transfer, 2, April 2000.

[12] G. J. Holzmann.Design and validation of computer proto-
cols. Prentice-Hall, Inc., 1991.

[13] F. Huch. Verification of Erlang programs using abstractin-
terpretation and model checking.ACM SIGPLAN Notices,
34(9):261–272, Sept. 1999.

[14] ISO/IEC. Lotos, a formal description technique based on
the temporal ordering of observational behaviour.IS 8807,
February 1989.

[15] Lamport and Paulson. Should your specification language
be typed? ACM Transactions on Programming Languages
and Systems, 21, 1999.

[16] J. J. Śanchez Penas and C. Abalde Ramiro. Extending the
VoDKa architecture to improve resource modeling. In2nd
ACM SIGPLAN Erlang Workshop (PLI’03), Uppsala, Swe-
den, August 2003.

[17] P. Wadler. Efficient compilation of pattern matching. In
S. Peyton-Jones, editor,The implementation of Functional
Programming Languages, p. 78–103. Prentice Hall, 1987.

[18] A. G. Wouters. SEN-R0130, manual for the�CRL tool set
(version 2.8.2). Technical report, CWI, Amsterdam, 2001.

