Computer Science at Kent

Travelling Salesman Heuristics:
Exercises in Haskell

Eerke Boiten

Technical Report No. 10- 04
June 2004

Copyright (©) 2004 University of Kent at Canterbury
Published by the Computing Laboratory,
University of Kent, Canterbury, Kent, CT2 7NF, UK

1 Introduction

This document contains a collection of programming exercises in the func-
tional programming language Haskell. The exercises are all concerned with
the infamous Travelling Salesman Problem (TSP for short), both its ex-
act solution and heuristic approximations. Full solutions to the exercises
have not been included (these are available on request). However, the doc-
ument contains both hints for students and comments for teachers (the lat-
ter in small italics). The next section gives the teaching context in which
this material was used — in particular, it lists assumptions made about the
students’ knowledge. Section 3 describes TSP informally. The following
sections present some preliminary material: on recursion over lists (Section
4), on type “implementation” through type aliases (Section 5), and on com-
puting the maximum of a list “under a function” (Section 6). The concept
of a distance matrix is discussed in Section 7. After a short discussion of
permutations, the exact, “brute force”, TSP algorithm is given in Section
8. The following sections consider a number of heuristic approximations to
TSP. The final section contains samples of the exam questions that were
asked about model solutions to these exercises.

2 History

The module CO312 Case Studies was introduced into the first year of the
BSc Computer Science programme at the University of Kent in 1996. Its
purpose was to reinforce teaching in other first year modules through the use
of larger case studies. I was responsible for the ”functional programming”
component of the module from the start, to supplement the first year module
on Functional Programming and Logic. Initially this was taught in Miranda,;
in recent years, Haskell was used. Textbooks by Simon Thompson were
used throughout — since 1999, the second edition of “Haskell: The Craft of
Functional Programming” [1]. This edition differs from the previous one and
the Miranda textbook by starting with a combinator library for “pictures”
before the traditional build up through topics such as recursion and list
algorithms. A notation from this book used here is that ~> means “evaluates
to”.

By the time the students started on their CO312 Haskell case studies,
they would typically have covered:

e basic types Bool, Int and Char with operations;

e tuples; lists, list comprehensions, list library functions;

e list programs through pattern matching and recursion.

They would have seen library functions on lists, but often not the higher
order ones, and without much awareness of parametric polymorphism; they
would not have seen algebraic types, abstract types or type classes.

The module was assessed through 50% coursework and 50% exam. A
series of seven lectures would build up to the coursework assessment, by
offering preparatory exercises, to be solved individually or in a class. Correct
and incorrect solutions to these exercises would be discussed in the following
lecture. Students would then have a few weeks to do the final assessment.
The exam would consist of a model solution to this assessment (also handed
out well in advance) with a number of questions related to modifications or
extensions of the code, e.g. based on changes to the problem or the suggested
solution.

3 What is TSP?

Given a list of towns to be visited and a method of determining the distances
between towns, the travelling salesman problem is to find a route that visits
all required towns, and of those routes, the shortest one. The particular
variant we are looking at here assumes those distances are represented in
a matrix, and that we need to start at one of the towns and end up there
again after visiting all the others.

This is a known hard problem — it is a so-called “NP-complete” one,
which implies that there is no known algorithm that is guaranteed always to
give the best possible solution in a reasonable! amount of time. Furthermore,
if anyone finds such an efficient algorithm for TSP, it can be modified to solve
a large class of similarly difficult problems.

4 Recursion over lists

You will have seen the following three ways of writing programs over lists:

e list comprehensions, for example:

[dist y x | y <= ys, y/=x 1

'In technical terms, an algorithm whose running time is bounded by a polynomial in
the size n of the input — here, the number of towns. The brute force TSP algorithm runs
in time proportional to n!, which is not bounded by any polynomial.

Only functions returning a list can be computed by using (only) a list
comprehension.

e Higher order functions such as map, filter, foldl usually lead to
short programs, but how clear these appear depends on experience.

e With explicit recursion, anything is possible. Depending on the struc-
ture of your data, you might use patterns or guards and conditionals
to distinguish the various cases (for example, when to make a recursive
call and when not to).

The exercises in this document assume only limited experience with func-
tional programming, for this reason we look at explicit recursion rather than
higher order functions, giving a quick rundown of the common patterns to
use in recursions over lists.

The standard pattern has a case for [] and one for (x:xs) in terms of
a recursive call using xs:

£ [
f (x:xs)

0
x + f xs

For functions which only make sense on non-empty lists, the standard pat-
tern is:

g [x] X

g (x:xs)

max (g xs) x

However, sometimes both the empty and the singleton list need to be singled
out.

h [] =0
h [x] =x +1
h (x:x8) =1 + h xs

The next few patterns involve looking at the first two elements of the list.
The important decision there is whether, in the recursive call, one or two
elements are removed from the list.

An example of losing the first two elements is as follows. Note that this
also implies that you need special cases for both empty and singleton list (or
alternatively: for lists of length 1 and 2).

odds [] =[]
odds [x] [x]
odds (x:y:xs) = x: odds xs

The list of differences between adjacent elements needs to preserve the sec-
ond element as the next head of the list in the recursive call:

(]
(]
(x-y) :diffs (y:xs)

diffs []
diffs [x]
diffs (x:y:xs)

In the above examples, it is convenient that you can write (x:y:xs) for
(x:(y:xs)).

5 Type aliases

Thompson [1, section 5.1] says: “we can give names to types in Haskell, so
that types are easier to read”. That is one aspect of their use — we might
also look at it as giving an “implementation” of a more abstract type that
we need in our program. For example, if we needed to discuss time, we
might say

type Time = (Int,Int,Int)

intending to interpret the first number as hours, the second as minutes,
and the third as seconds. Another example might be representing sets of
numbers by lists, i.e.,

type SetInt = [Int]

This sort of thing can be done in a more general way with type parame-
ters; Haskell also offers more advanced ways of “implementing abstract data
types”. This mechanism will suffice for now, though.

If we implement more “abstract” values this way, we need to remember
the relation between those values and the Haskell values, e.g., for sets,

[1 represents 0
[11 represents {1}
[3,1] represents {1,3}

This relation may be partially documented in definitions. The names of the
functions and constants defined form part of the interface to the type, e.g.,

empty :: Setlnt
empty = []

union :: SetInt -> SetInt -> SetInt
union xs ys = xs ++ ys

noon :: Time
noon = (12,0,0)

hours, mins, secs :: Time -> Int
hours (h,m,s) = h
mins (h,m,s) = m
secs (h,m,s) = s

Also, we might define a straight type alias such as
type Town = Int

With this definition, Haskell will not find errors when you use a Town where
an Int is expected or vice versa. It serves mainly as documentation (adding
up Towns probably is not meaningful), and may make it easier to change
your implementation of the newly defined type.

There are two main issues with this sort of implementation: junk and
confusion. (These are both technical terms!) Neither of these needs to be
avoided, but they need to be taken into account in programs.

5.1 Confusion

Confusion is when multiple Haskell values represent the same abstract value.
For example, [1,1,3] and [1,3] also represent {1,3}. There is no confusion
for Time unless one took (0,0,0) and (24,0,0) both to represent midnight.

For SetInt, we could reduce confusion by only considering lists without
duplicates (some functions are defined in List.hs for this), or even sorted
lists, but that complicates the code for the set operations. In general, for
representing sets that way, we would need to be able to define equality and
ordering on the elements.

The above remarks refer to type class constraints 0rd and Eq, of course.

The consequence of having confusion in your data type is that == does
not tell you much about equality of abstract values — it may return False
for conceptually equal values.

For SetInt, equality might be defined by

equal :: SetInt -> SetInt -> Bool
equal xs ys = and [elem x ys | x <- xs] &&
and [elem y xs | y <- ys]

(each of the and expressions represents an inclusion of sets).

With type classes this will show up as an instance of Eq.

5.2 Junk

Junk is when some Haskell values do not represent any abstract value. If
we do not insist on ordering and removal of duplicates, there is no junk for
SetInt. For Time, there is plenty:

nnn :: Time
nnn = (0,9,99)

is dubious already: 9 minutes and 99 seconds? I own a microwave oven
which treats this as confusion rather than as junk, and will happily heat for
10 minutes and 39 seconds if I enter '999’. However, it is even harder to
interpret

zmtmohts :: Time
zmtmohts = (0,-12,-127)

(14 minutes and 7 seconds before midnight!?), but Haskell will not produce
a type error for this.

The consequence of having junk in your data type is that you might need
to check for validity of inputs. If you’re writing a function on such a type,
you need to make sure that you don’t test it with values which are “junk”.
One way of preventing that involves validation functions, e.g.:

validTime :: Time -> Bool
validTime (h,m,s)
= h>=0 && m>=0 && s>=0 && h<24 && m<60 && s<60

5.3 Two-dimensional arrays

A type which we will be using later is that of “matrices”, or two-dimensional
arrays, containing numbers. You can also think of them as rectangular areas
in a spreadsheet. We will borrow mathematical notation for them, writing

1 26
3 4 8

for a 2-by-3 matrix containing, in the first row, numbers 1, 2 and 6; in the
second row, numbers 3, 4 and 8. (Alternatively, in the first column it has

numbers 1 and 3, etc.) Also,
1
3
17

is a matrix with three rows, containing a single element each (i.e., it has one
column). Thus, it is different from

(13 17)

which has a single row and three columns.

These are a bit like Java int [1 [], and indeed we will implement them
as [[Int]], but we will insist on them being “rectangular”, i.e., every row
should have the same number of elements.

type Matrix = [[Int]]

We take Matrix as list of rows, i.e.

[[1,2] , [3,4]] represents

(
[[1,4,2]1]1 represents (
[[11,[4]1,[2]1] represents (
There is junk for this representation of matrices: some concrete values
do not represent abstract values, e.g.
1
(f11 , [3,41] (3 4> 77

There is also (less obviously) confusion: for the matrix containing no
values at all: how many rows and columns might it have?

(ol = 00 = [0,0]
1x0 = 0x0 = 2x0
5.4 Indexing

For getting a value out of a matrix, indezing is the natural approach. Indices
on a list xs run from 0 to (length xs)-1.

[[1,2,61, [3, 4,811 ! 1112==

Note: Indexing is often the wrong method of dealing with lists.

Do not get tempted to use indexing for iterative/recursive/loop programs
over lists (unlike for Java arrays). Recursion over lists is usually much better,
less error prone. Compare the following two programs for merging sorted
lists:

merger :: [Int] -> [Int] -> [Int]
merger xs [] = xs
merger [] ys = ys
merger (x:xs) (y:ys)
| x<y = x: merger xs (y:ys)

| otherwise = y: merger (x:xs) ys

merge2 xs ysS
= mergeit 0 O
where
mergeit ix iy
| ix == length xs && iy == length ys = []

| ix == length xs = ys!liy : mergeit ix (iy+1)
| iy == length ys = xs!lix : mergeit (ix+1) iy
| (xs!!ix)<(ys!!iy) = xs!!ix : mergeit (ix+1) iy
| otherwise = yslliy : mergeit ix (iy+1)

5.5 Exercises

1. Define a function
numRows :: Matrix -> Int

giving the number of rows of a matrix. (Remember a matrix is a list
of rows.)

2. Define a function
isEmpty :: Matrix -> Bool
The following definition is not good enough:
isEmpty m = m == []

Why? There is confusion.

3. Define a function
numCols :: Matrix -> Int

giving the number of columns of a matrix (still a list of rows, unfor-
tunately). Ensure that

numCols []
does not give an error message.

Different answers to this will lead to different results for “junk” inputs, could
explain that this is OK.

4. Define a function
rectangular :: Matrix -> Bool

that checks whether all rows in the matrix have the same length.
You could do this by defining an auxiliary function allequal that

checks whether all numbers in a list are equal.

5. (Advanced) What is wrong with the following program for matrix
transposal (swapping rows and columns, e.g., [[1,2],[3,41] to

[[1,3],[2,4]])?

tp :: Matrix -> Matrix

tp xss
| isEmpty xss = []
| otherwise = [a:as | (a,as) <- zip (head xss)

(tp (tail xss))]

XS
N) g
o »

XSS

There is a function transpose in List.hs.

6 Maximum under a function

These exercises have also been used as coursework rather than voluntary exercises.
There are many instances of this problem in later exercises, so it is good for the
students to be aware of ways of solving it both correctly and efficiently.

The function max computes the maximum of two numbers, and maximum
gives the maximum of a list. They might have been defined as follows:

max :: Int -> Int -> Int
max a b

| a<=b=>D

| otherwise = a
maximum :: [Int] -> Int

maximum [x] = x
maximum (x:xs) = max x (maximum xs)

Note that the latter does not work for empty input, and is characterised by
the fact that if

maximum [x1,x2,...,xn] > xi
then

elem xi [x1,x2,...,xn] ~> True
xi >= x1

xi >= x2

xi >= xn

If we have a function f, and a list xs, we could find the member of xs
for which f is maximal by taking the maximum of all x in xs — but if we do
this in the obvious way, we will have lost the information “which” x this
maximum belonged to. Here, we work out a strategy to avoid this problem
by keeping pairs of x and £ x — a “tupling” strategy. It is all presented here
as an exercise concerning a meaningless function f, but the strategy can be
reused often in the various TSP programs.

Given is a function f defined by

f :: Int -> Int
f x = 8%(x72)-2%(x"3) +4*x-17

A more advanced version has the function £ as a parameter, passed to all relevant

functions.

The final aim is to write a relatively efficient? function

maxf [Int] —> Int
such that if maxf [x1,...,xn] = xi then
elem xi [x1,...,xn] == True

f xi >=f x1
f xi >=f x2

f xi > f xn

This is a generalisation of the definition of maximum, where we do not com-
pare the elements of the list but their images under a given function f. It
will be constructed bottom-up in the next few exercises.

6.

Define a function
tupleWithf :: [Int] -> [(Int,Int)]
such that

tupleWithf [x1,x2,...,xn]
= [(f x1, x1), (f x2, x2), ..., (f xn, xn)]

The particular order (£ x,x) is chosen to give students the option of exploit-
ing the instance of 0rd for tuples. A pitfall here is mixtures of patterns and
recursion/comprehension which ignore the first element of the input.

Define a function
maxFirst :: (Int,Int) -> (Int,Int) -> (Int,Int)

which returns, of its two input tuples, the one whose first component
is the highest. For example,

maxFirst (1,2) (3,4) returns (3,4)

maxFirst (5,3) (4,6) returns (5,3)
For maxFirst (0,1) (0,2) it does not matter whether your program
returns (0,1) or (0,2).

2In the sense that it does not evaluate £ x twice unless x occurs more than once in the
input list.

8. Define a function

10.

11.

maximumFirst :: [(Int,Int)] -> (Int,Int)

which returns, from its list of input tuples, the tuple whose first com-
ponent is highest. You may assume that the input list is non-empty.

Pitfall: defining it for empty lists anyway, and then picking the wrong unit
of max on (Int,Int).

Using the functions defined or otherwise, define the function maxf
(described earlier) which returns the element of its non-empty input
list for which f is maximal.

Most solutions which do not use tupling will end up computing £ on average
twice for all elements.

Questions 10 and 11 are two variations of this.

Using the functions defined above or otherwise, define the function
minf which returns the element from its non-empty input list for which
f is minimal.

Two kinds of reuse possible: by analogy, or using reflection in the x-axis.
Using the functions defined above or otherwise, define the function
maxIndexf :: [Int] -> Int

such that if

maxIndexf xs "> i

for non-empty xs, then

0 <= i < length xs

f (xs!li) >= f (xs!!10)

f (xs!!i) >=f (xs!!1)

f (xs!'!'i) >= f (last xs)

i.e., it returns the index of the element of its input list for which f is
maximal.

A modified tupling strategy is more efficient but possibly less clear than looking
up the inder of maxf xs in xs (List.hs provides a number of ways, some
involving Maybe).

7 Distance Matrices

For TSP, we need to represent distance information somehow. A natural
way of doing this is in a distance matriz. A sample distance matrix is the
following:

0|11] 2|3
Faversham =0 | 0 | 7| 12 | 10
Whitstable=1| 7 |0 | b | 7
Herne Bay =2 | 12 | 5| 0 | 10
Canterbury =3 | 10 | 7] 10| 0

This could be represented in Haskell by
t fo,7,12,101, [7,0,5,71, [12,5,0,10], [10,7,10,0]]

where we might store the information about which town names correspond
to which indices separately.

Haskell arrays would be an alternative if they had been taught to the students al-
ready. Maybe even with constant retrieval cost?

Distance matrices have various properties. First, they are square: they
have as many rows as columns, as we record all distances between a fixed
set of towns. Second, they are likely to be symmetric: the distance from A
to B is the same as the distance from B to A. As a consequence, most road
atlases only present half of the distance matrix information in a triangular
table3. Third, the distance between a town and itself is always 0. These
distances can be found on what is called the main diagonal, which consists
of all positions m!!i!!i. Finally, the distance of getting from A to B via C,
i.e. the distance from A to C plus that from C to B, is never less than the

3The AA road atlas for the UK has such a triangular table — as a consequence, it does
not represent the fact that crossing the Severn near Bristol is a different distance going
into Wales or going into England.

recorded distance from A to B “directly”, i.e., “a detour is never shorter”.
This is represented by the “triangular property”:

12.

13.

14.

15.

Vi, g,k : dllillke < dlillj + d!ljlk

k
dillk dlj\k
Define a function
square :: Matrix -> Bool

which checks that a matrix is rectangular, and has equal numbers of
rows and columns.

As in Ezercise 3, there is a risk of a run-time error for empty list input.
Define a function

symmetric :: Matrix -> Bool

which tests if the matrix is symmetric (you may use transpose from
List.hs).

Define a function
all0 :: [Int] -> Bool

which checks whether all numbers in a list are 0.

Some students would disagree with logicians on the answer for the empty list,
as do many solutions using nub or recursion. This exercise is also likely to
provide illustrations for gratuitous use of guards or conditionals (rather than
Boolean operators) and phrases such as == True.

Define a function

maindiag :: Matrix -> [Int]

which returns the main diagonal of a square matrix. For example, the
1 2 3
main diagonal of | 4 5 6 | is [1,5,9].
7 8 9
Here, and the next exercise, is when indexing is useful; should probably give
bonus marks for correct recursive solutions. Non-square matrices are “junk”
here so the run-time errors they may cause are not an issue.

16. Define a function
triangle :: Matrix -> Bool

which checks a matrix for the triangular property.

8 Brute Force Travelling Salesman

The exact solution to the TSP can be obtained by generating all possible
permutations of the list of towns to be visited, and then selecting the one
which has the lowest cost. The cost is relative to a given distance matrix.

We call this a “brute force” solution because Hugs crashes, if we do this
naively, with a control stack overflow, at a list of about 8 towns (40,320
possible tours). A slightly less naive version (see Section 8.4) still takes too
long to compute any output for about 12 towns.

8.1 Permutations

The permutations of a list are all lists with all the same elements occurring
equally often (and no others). In other words, a permutation is any list you
can get by 0 or more times swapping elements in the list (you could imagine
that this does not make for an efficient algorithm though!).

The permutations of [1,3] are {[1,3], [3,1]}. Those of [1,2,3] are:
{[1,2,3], [2,1,3],[2,3,1],[1,3,2],[3,1,2],[3,2,1]}. More interest-
ingly, the permutations of [1,1,3] are {[1,1,3],[1,3,11,[3,1,1]1}. How-
ever, as this is a set we may actually include some of these elements more
than once in the result, by not taking into consideration that 1 occurs twice.
(Note: {} is not really Haskell, in real code we would have to use [] in-
stead.)

The approach we will take to defining a function to generate permuta-
tions

perms :: [Int] -> [[Int]]

is a “psychic bottom-up” solution: we’ll first define an auxiliary function
for no reason at all, and then it will turn out to be an essential piece of the
required function. (Though, as it happens, it will come in handy elsewhere,
t00.)

The auxiliary function is

ins :: Int -> [Int] -> [[Int]l]

such that ins y xs is the set (list) of all possible ways of inserting y into
Xs, e.g.

ins 3 [2,4,5]
>
[[3,2,4,5], [2’3’4’5]’ [2,4,3,5], [2’4’5’3]]

(or these same lists in some different order — duplicates, if any, need not be
removed, so ins a [b,c] will end up having three elements even when a, b
and c are all the same.)

We solve this by answering a list of questions. For different Haskell
problems, you might ask yourself similar questions in order to get started
on solutions.

e What is the type of ins 2 [17?
The type of any result of ins is [[Int]] so that must be the type here
as well.
This may have looked too obvious, but asking yourself this stops you
from forgetting some square brackets later, hopefully.

e How many elements has ins 2 [1? Why?
In how many ways can you insert an element into an empty list? Only
one: [2]

e So what is ins x [17
So this is changing 2 to x. Probably the result is [x], but that’s not
of type [[Int]]. So, the result must be [[x]] — the list of different
ways of inserting x into an empty list is a singleton list containing the
only way of doing it:

ins x [1 = [[x]]

e Does ins 3 [4,5] relate to ins 3 [2,4,5]1 % How?
Taking some “sensible” ordering of the various ways of inserting, we
might have

ins 3 [4,5] ~> [[3,4,5], 1[4,3,5], I[4,5,3]]
ins 3 [2’4’5] ~>[[3’2’4’5]’[2’3,4)5]’[2,4)3’5],[2’4’5,3]]

(Nicely lined up!) So, going from ins 3 [4,5] to ins 3 [2,4,5], we
put the new value 2 in front of each result, and add one more list: the
one we get by inserting 3 before 2.

e So is there a general recursive relation?
To insert x into y:ys, we either put x right before y:ys, or we insert
X into ys, and put y in front of the result:

ins x (y:ys) = (x:y:ys): [y:xs | xs <- ins x ys]
or, using ++ rather than : and map instead of the list comprehension
ins x (y:ys) = [[x,yl++ys] ++ map (y:) (ins x ys)

or, using an auxiliary function to do the “put y in front of each ...”
bit

ins x (y:ys) = (x:y:ys) : comsall y (ins x ys)
consall y [] (1
consall y (xs:xss) = (y:xs) : consall y xss

Having defined ins, we can now define
perms : [Int] -> [[Int]]

that gives all permutations of a list. We will not worry about removing
duplicates or the ordering of results, as before.

e What is the type of perms [17¢
Again, it must be [[Int]] like any other perms result.

e How many elements does perms [1 have? Why?
There’s only 1 way of (possibly) reordering an empty list ...

e So what is perms []17?
Not [] as that has the right type (as an empty list of lists), but too
few elements (it has none).

perms [1 = [[1]

e What is perms [2,3] ?
That will be a list containing the elements [2,3] and [3,2], in some
order (and possibly multiple times).

e Which elements of perms [1,2,3] relate to which elements of
perms [2,3]°7
perms [1,2,3] has six different elements: [1,2,3], [1,3,2], [2,1,3],
[2,3,11, [3,1,2], [3,2,1], which may occur in any order. Three of
these have 3 before 2, and three have 2 before 3. The latter are
[[1,2,3], [2,1,3], [2,3,1]].

e What is ins 1 [2,3]7
It is that same list [[1,2,3]1, [2,1,3], [2,3,1]1].

e In general, can you find a way to relate perms (x:xs) to perms xs,
using ins ? You need to get the types right — ins returns a list of lists.

perms (x:xs) = concat [ins x ys | ys <- perms xs]

Without the concat, the right hand side is a [[[Int]]] rather than a
[[Int]] as required. (Note that [concat(ins x ys)| ys <- perms
xs] also corrects this type error, but gives a different result.)

In words: once we know how to permute xs, we can permute a list
with an additional element x by putting it in any possible place (using
ins) in every possible permutation of the shorter list xs.

8.2 Cheap tours

A town is an integer (an index into a distance matrix), a tour is a list of
towns, interpreted in a circular way: [1,2,3] represents going from 1 to 2
to 3 to 1. As a consequence, there is no fundamental difference between the
tours [1,2,3,4] and [3,4,1,2] (“confusion”).

Int
[Town]

type Town
type Tour

If the type [Town] is used below, it denotes a list of towns that should not
be interpreted as a circular tour — but possibly even as a set of towns.

17. Define a function

cost :: Matrix -> Tour -> Int
such that

cost dist [a,b,c,d]
“> dist!tal!!b + dist!!b!!c + dist!!c!!d + dist!!d!!a

If you want to do this recursively, you might want to define an auxiliary
function to do most, but not all, of the work. This is because cost
dist [a,b,c,d] does not rely on cost dist [b,c,d]: the latter uses
dist!!d!!b which is not included in the former!

There is no need to define cost for the empty tour.

18. Given a function cost as above, define a function
cheapest :: Matrix -> [Tour] -> Tour

which, given a list of tours (so a list of lists of numbers), select the (a)
cheapest of them using the function cost and the given matrix.

(Use the ideas from Section 6!)

Using sortBy is not a great idea as it does not implement tupling and as a
consequence leads to recomputed cost. Students may not realise the positive
consequences that lazy evaluation has on the efficiency of using sorting in
place of minimum, anyway.

8.3 Using the brute force program

With these ingredients, this is the “brute force” TSP program:

tsp :: Matrix -> [Int] -> Tour
tsp m xs = cheapest m (perms xs))

This is not the most efficient way of computing the exact solution, but it
is a simple one. The more complicated “branch-and-bound” algorithm will
do much better on average, though not necessarily in the worst case.

A Haskell module containing a definition of a sample 50x50 distance ma-
trix called dm is at www.cs.kent.ac.uk/people/staff/eab2/tsp/DM.hs.
The next few exercises assume you have downloaded this, and created a
module Brute.hs containing the following lines:

module Brute
where
import DM

plus the definition of tsp as given above and all necessary auxiliary functions,
given above or developed in previous exercises.

19. What is tsp dm [2,4,6,8,10]17

20. Looking at names:: [String] in Dm.hs, what does the result to the
previous question represent in terms of travel in the UK?

21. What is the highest value of n such that
tsp dm [1..n]

is computed by Hugs without error messages?

8.4 Small Improvements

This section lists two small improvements on the brute force TSP. It is not
essential to use them or understand them, but they may allow the exact
TSP solution to be computed for a slightly larger number of towns.

For the purpose of the TSP on a symmetric distance matrix, all per-
mutations of 3 (or fewer) towns are equivalent: there is only one triangle
connecting the three towns, and it does not matter in which order it is
traversed. So instead of the function perms, we could use

perms’ (x:xs)
| (length xs) < 3
| otherwise

perms’ [1 = [[1]

This reduces the number of possibilities to be considered by a factor of 6.

Also, tsp suffers from control stack overflows in Hugs: too many com-
parisons between costs are postponed by the lazy evaluation strategy. The
following variant of cheapest alleviates this problem. It is not necessary to
understand this code — just that cheapest’ can be used in place of cheapest
(and foldl1’ in place of foldl1) in this context.

[(x:xs)]

concat [ins x p | p <- perms’ xs]

cheapest’ m xs = snd (foldl1l’ (<) [(cost m x, x) | x <- xs])
foldll’ f (x:xs) = foldl’ f x xs

foldl’ f a [1 = a

foldl’ f a (h:t) = (foldl’ f $! f a h) t

22.

Repeat Exercise 21 with cheapest’ for cheapest and perms’ for
perms.

9 Nearest Neighbour Heuristic

A heuristic algorithm for an optimisation problem is a method that gives a
good (but not necessarily the best) solution (relatively) quickly. One obvious
heuristic for TSP is to start somewhere, and then always to pick the nearest
unvisited town.

23.

24.

25.

Define a function
nearest :: Matrix -> Town -> [Town] -> Town

such that nearest dm x ys gives the town from ys which is nearest
to the town x according to distance matrix dm.

Look up the function delete in List.hs. What does it do?

Use these to define a function
nn :: Matrix -> [Town] -> Tour

such that nn dm xs returns a tour containing all towns from xs, start-
ing from the first town in xs and then picking the town nearest to the
last town visited at every step.

It is probably useful to define an auxiliary function which has the
same functionality but takes in the tour constructed so far as an extra
argument, i.e.

nnloop :: Matrix -> [Town] -> Tour -> Tour

The accumulating argument (or at the very least: its last town) is necessary
to determine the next town to visit. A direct recursive version is likely to
construct the tour “inside-out” using the wrong selection criterion.

A somewhat analogous problem is the following. Assume we want to sum all
numbers in a list, adding from left to right. The following function does not
do that:

sumalll [x] =x
sumalll (x:xs) x + sumalll xs

because it doesn’t actually sum from left to right, but from right to left —
the first addition performed in sumalll [3,8,9] is 8+9. A version using a
"result so far” can sum easily from left to right:

sumall2 xs =

sumaux sumsofar []

sumaux sumsof

sumaux O xs

sumsofar
sumaux (sumsofar+x) xs

ar (x:xs)

10 Combining tour segments

A second heuristic

works by considering “segments” — partial tours each

containing some of the towns. The whole tour is obtained by starting with
each town in a single segment, and then gradually combining the segments
until a single segment is formed containing all the towns. The obvious
decision for combining segments is to pick those which are “close” to each

other. For example:

1 4 1 4
.2 \.2
.0 .3 .0 .3
[[01, [11, [21, (41, [3] 1] (lol,[1,2]1,[4],[3]]
1 4

([o0,3], [1,2],

(4] 1

g 0
[[0,3], [1,2,4]] [[0,3,4,2,1]]

A Segment is a list of Towns, representing a partial tour (in order) —
not interpreted as a “circular” sequence. We will only consider non-empty
Segments.

type Segment = [Town]

A Segmentationis a list of Segments such that it contains all relevant Towns,
each in exactly one of the segments. (In intermediate results some towns
may be missing.)

type Segmentation = [Segment]
The segmentation
[[1,2]1, [0], [3,4]]

could be said to represent a collection of possible tours of the towns [0..4],
namely those where where 1 is visited immediately before or after 2, and
similarly for 3 and 4.

Some of the next few exercises are intended in the first place to get used to the

Segmentation type, and have very simple answers.

26. Define a function
size :: Segmentation -> Int

which reports the number of towns that occur in a segmentation. (E.g.
the segmentations in the example all have size 5.)

27. Define a function
endpoints :: Segmentation -> [Town]

which returns the list of all endpoints (i.e., first or last elements) of
the given segmentation, without duplicates. For example,

endpoints [[1,2,4,5], [3,6,7]1, [0]1, [8,9]]
“~>[1,5,3,7, 0,38, 91

(Note that 0 occurs only once.)

Allowing duplicates and then removing them is inefficient; segmentations do
not contain duplicate towns.

28. Define a function
element :: Town -> Segmentation -> Bool

which reports whether the given town occurs anywhere in the segmen-
tation.

Blind use of a library function is likely to lead to a type error.
29. Define a function

splitOnTown :: Town -> Segmentation -> (Segment,Segmentation)

which splits the segmentation into the segment which has the town as
an endpoint, and all the other segments. E.g.,

splitOnTown 2 [[1,2]1, [3], [0l 1 => ([1,2], [[3]1,[0]11)

You may assume that the town is an endpoint of one of the segments
in the given segmentation.

(This is one example where an intermediate Segmentation does not
contain all the relevant towns.)

30. Define a function
otherEnds :: Segmentation -> Town -> [Town]

such that otherEnds ss t returns all endpoints of ss, except for the
endpoints of the segment that t is an endpoint of. For example,

otherEnds [[1,2,4,5], [3,6,7], [0], [8,9]1]1 7
> [1, 5, 0, 8 9]

31. Define a function

32.

33.

34.

initial :: [Town] -> Segmentation

such that initial ts returns a Segmentation containing all of ts in
length ts separate segments.

Define a function
complete :: Segmentation -> Bool

which reports whether the segmentation is complete, in the sense that
it puts all its elements in a single segment.

Define a function

splitOnTowns: : (Town,Town) -> Segmentation
-> (Segment,Segment,Segmentation)

such that

splitOnTowns (x,y) ss

returns a triple: the segment of ss which has x as an endpoint, the
segment of ss which has y as an endpoint, and all the other segments

of ss. E.g.,

splitOnTowns (2,3) [[1,21, [3]1, [0] 1
> ([1,2], [3], [[01D)

You may assume that the towns are endpoints of two different segments
in the given segmentation.

Define a function
merge :: (Town,Segment) -> (Town,Segment) -> Segment
which merges two segments. In a call

merge (pl,s1) (p2,s2)

35.

36.

37.

you should assume that pl is an endpoint of s1, and p2 of s2. The
result of this call should be a segment obtained by, if necessary, re-
versing one of s1 and s2, and concatenating them in such a way that
pl is next to p2 in the resulting segment.

The acceptable outcomes for merge (2,[1,2]) (3, [3]) are [1,2,3],
also [3,2,1], but not [3,1,2]; for merge (4,[1,4]) (6, [8,6])
they are [1,4,6,8] or [8,6,4,1], but not [1,4,8,6].

Define a function

join :: (Town,Town) -> Segmentation -> Segmentation
such that for a call

join (x,y) ss

(x and y may be assumed to be endpoints of different segments of ss)
the result is a segmentation which is identical to ss except that the
segments containing x and y have been merged.

So a possible result of join (3,4) [[0,3], [1,2,4]]is
[[0,3,4,2,1] 1, and join (0,3) [[0] , [1,2] , [3] , [4]]
could give [[0,3], [1,2], [4] 1 (see pictorial example).

A slightly more efficient overall solution can be obtained by not using the

functions suggested, as they lead to repeated retrieval of the selected segments.

The functions defined so far could be used to implement any TSP
heuristic that builds up the tour link by link. The determining decision
is which two towns to use for the next join.

Our strategy is: “furthest town first”.

Define a function
howfar :: Town —-> Matrix -> Segmentation -> Int

which returns the sum of the distances of a given town to the endpoints
of all other segments in the segmentation.

Define a function

38.

39.

40.

41.

42.

furthest :: Segmentation -> Matrix -> Town

which returns the endpoint which has the largest howfar value of all
endpoints.

Define a function
closest:: Segmentation -> Matrix -> Town -> Town

such that closest ss dm t is an endpoint in ss, not in the same
segment as t; and of all such endpoints, it is the one with the smallest
distance (according to dm) to t.

Define a function
nextJoin :: Segmentation -> Matrix -> (Town,Town)

which returns the next two towns to be joined. These should be the
furthest town in the segmentation, and the town closest to it.

Define a function
tsps :: Matrix -> [Town] -> Tour

which returns a tour constructed using the segment heuristic, by start-
ing from an initial segmentation, repeatedly performing the join
determined by nextJoin, and extracting the tour from the segmenta-
tion once it’s complete.

Compare the quality (cost) of tours generated using tsps to the exact
solutions (tsp) and any other heuristic you have programmed for a
representative number of (reasonably sized) inputs. Try to explain
the results. (No more than 150 words.)

As the nextJoin function is the only “intelligence” of the tsps algo-
rithm, turn it into a parameter of the algorithm so we can replace it
by another. Le., define a function

tsph :: Matrix -> [Town] -> JoinFn -> Tour

type JoinFn = Segmentation -> Matrix -> (Town,Town)

such that
tsph m ts nextJoin

gives the same result as tsps m ts.

43. Define a function
myNextJoin :: JoinFn

which can be used as a parameter to tsph to implement a different
join selection strategy for the segment heuristic.

Explain the idea of the heuristic, present some relevant results, and
contrast these with the exact solution and other heuristics. (No more
than 200 words.)

11 TSP by extending tours

Adding one town to an existing tour:

Given a tour, we insert a town into it in the place where it leads to the
smallest increase in cost. Doing this for all remaining towns in sequence
gives yet another TSP heuristic. Depending on the order in which the towns
are inserted, this can be one of the better heuristics. The order in which the
towns are added is determined in three different ways:

e by the order the towns are given initially;

e using remotest towns first;

e using remotest towns first (in a different way).

44. You will be able to use the functions ins and cheapest for this part.

45.

46.

Define a function
insTown :: Matrix -> Tour -> Town -> Tour

such that insTown dm ts t returns a tour obtained by inserting t
somewhere in ts (without reordering ts itself), choosing of all the
possibilities for doing so one which has minimal total distance accord-
ing to the distance matrix dm.

For example, insTown dm [1,2,3] 5 will return one of [5,1,2,3],
[1,5,2,31, [1,2,5,3] or [1,2,3,5] — which one depends on which
of these four is cheapest according to dm.

A more efficient solution does not reuse as suggested, but instead makes use
of the fact that inserting a town involves removing one link, and replacing
it by two others; the cost of these is the only thing that really needs to be
computed. This is proportional to the size of the Tour rather than quadratic.
Taking that even further, one might optimise the next question by memoising
these link costs for the tour constructed so far.

Define a function
addTowns :: Matrix -> Tour -> [Town] -> Tour

such that addTowns m ts us adds all towns from us to the tour ts,
at each step adding the head of us using insTown until us is empty
(in which case it returns ts). As usual, you may assume that us has
no duplicates.

For this heuristic, the auziliary “main loop” function with the tour so far
as an accumulated argument is asked for explicitly although it is not strictly
necessary; later variants need such auziliary functions but it is left implicit
there. See also the comment after Exercise 23.

Define a function (it has a short name to make your testing easier):

aT :: Matrix -> [Town] -> Tour

47.

48.

49.

such that aT m ts returns a tour constructed by repeated use of
insTown; this can be achieved by calling addTowns with suitable ar-
guments.

For efficiency reasons, you may use the fact that all tours of length 3
(or less) are equivalent (see Section 8.4).

The next few exercises construct the tour by inserting the remotest
town first into the tour.

If we are not going to continuously insert the head of the list, it will
be useful to have a function which removes an element from a list.

Define a function
removeTown :: Town -> [Town] -> [Town]

such that removeTown t ts gives a list of towns containing all towns
in ts except for t. You may assume that t occurs exactly once in ts.

Recursive solutions often forget to include the segment just considered in the
final result.

The following heuristics are based on the idea of remoteness: the re-
moteness of a town t with respect to a list of towns ts and a distance
matrix m is the sum of the distances (according to m) between t and
each town in ts.

Define a function
remoteness :: Matrix -> [Town] -> Town -> Int

such that remoteness m ts t gives the remoteness of t with respect
tom and ts. For example,

remoteness dm [3,4,5] 7 > dm!!3!!7 + dm!!'4!!'7 + dm!!5!!7

We will decide which town to add depending on its remoteness — in
particular, for version 1 we will pick the remotest town in each step.

Define a function

remotest :: Matrix -> [Town] -> [Town] -> Town

50.

ol.

52.

such that remotest m ts us returns the town u in us such that
remoteness m ts u is the highest of all.

The solution to TSP is obtained by repeatedly adding the remotest
town relative to the matrix and the tour constructed so far.

Define a function
aRT1 :: Matrix -> [Town] -> Tour

such that aRT1 m ts returns a tour containing all towns of ts, con-
structed as follows:

e initially, the tour contains a single town, which must be the re-
motest with respect to m and ts;

e at every next step, the town from the remainder of the input
is chosen which is remotest with respect to m and the tour con-
structed so far (rather than the input!), and added using insTown.

Alternatively, we could consider the remoteness of towns with respect
to the original input. Rather than by keeping the original input around
in the program, this can be solved by sorting the input list, and then
using the aT program.

Define a function
sortByRemoteness :: Matrix -> [Town] -> [Town]

such that sortByRemoteness m ts contains all the towns of ts, sorted
by decreasing remoteness with respect to m and ts. For example, if
remoteness m [1,2,3] 1 "> 17, remoteness m [1,2,3] 2 ~> 15,
and remoteness m [1,2,3] 3 > 19, then
sortByRemoteness m [1,2,3] "> [3,1,2].

Define a function
aRT2 :: Matrix -> [Town] -> Tour

which works by first sorting the input towns by decreasing remoteness,
and then applying aT to the result.

53. Compare the quality (in terms of cost and running time) of tours
generated using aT, aRT1, and aRT2 with each other and the exact so-
lutions (tsp) for a representative number of (reasonably sized) inputs.
Explain and analyse the results. (No more than 200 words.)

12 TSP by combining tours

Rather than adding individual towns to existing tours, we may also choose
to combine small tours into bigger ones — starting with tours which start
and end in the same place, and ending up with one that contains all towns
to be visited.

Combining two existing tours:

12.1 Some preliminary functions

The following general purpose function may be useful.
54. Define a function
splits :: Tour -> [(Tour,Tour)]

such that splits ts returns a list containing all pairs (ts1,ts2) such
that tsl++ts2==ts. For example, splits [1,2,3] should contain
the pairs ([1,[1,2,31), ([1]1,[2,3]), ([1,2],[31), ([1,2,3],[])

in some order.

As a Tour represents a circular tour, there is some confusion: [1,2,3]
represents the same tour as [2,3,1] and [3,1,2].

55. Define a function
rots :: Tour -> [Tour]

which lists all the tours you get from the input by “rotating” the list,
i.e., starting in a different town but following the same tour.

56. Also, because the matrix is symmetric, there is no difference to the
cost if we reverse the tour.

Define a function
revs :: [Tour] -> [Tour]

which reverses each of the tours in the input list. (Function reverse
is predefined.)

57. For a list of three towns, rotating and reversing together give all per-
mutations — for longer lists, the function perms would return other
permutations as well.

Define a function
rotrevs :: Tour -> [Tour]
which returns the list of all tours that can be obtained by rotations

and/or reversals of the input list. (For a list without duplicates of
length n, there should be 2n different ones.)

12.2 Merging tours

In this heuristic, we start with lots of small tours.

58. Define a function
singletons :: [Town] -> [Tour]

such that singletons ts returns a [Tour] with each town from ts
in a separate tour.

We will repeatedly combine these until we have included all of the
towns.

99.

60.

61.

62.

Define a function
complete :: [Tour] -> Bool

which reports whether the list of tours is complete, in the sense that
it puts all its towns in a single tour.

For merging tours, there are two decisions to be taken: which two
tours (from a list) to merge, and how to merge them.

For selecting two tours, we will take the tours in the list which are
nearest to each other. We define the distance between two tours as
the smallest distance between some town of one tour and some town
of the other.

Define a function
distance :: Matrix -> Tour -> Tour -> Int

that returns for distance dm tsl ts2 the distance according to dm
between a town from ts1 and a town from ts2 that is minimal for all
such pairs of towns.

Define a function
nearest2 :: Matrix —> [Tour] -> (Tour,Tour)

such that nearest2 dm tss gives a pair of tours ts1 and ts2 from
tss for which their distance with respect to dm is minimal.

For the decision on how to merge two tours, imagine the problem of
combining two paper loops. You would need to cut both in half, (so
would need to decide at which point to cut each of them), and then
stick them together at the cut, potentially reversing one of them.

Define a function
mergeTours :: Matrix -> Tour -> Tour -> Tour

which merges two tours in all possible ways, returning the cheapest of
those.

A suggestion for mergeTours dm tsl ts2 is to list all possibilities by
splitting ts1 in an arbitrary point, then inserting into ts1 at that
point all rotations and reverses of ts2. Selecting the cheapest of those
should be a familiar problem.

For example, for merge dm [1,2] [3,4], the variations on [3,4] are
just [3,4] and [4,3], each of which needs to be inserted at every
possible point in [1,2], leading to [[3,4,1,2], [4,3,1,2],
[1,3,4,21, [1,4,3,21, [1,2,3,4]1, [1,2,4,3] 1, of which a cheap-
est must be selected.

63. Define a function
mergetsp:: Matrix -> [Town] -> Tour

which returns a tour constructed starting from an singletons list of
tours, repeatedly merging the nearest two tours, until it is complete.

64. Compare the quality (cost) of tours generated using mergetsp to the
exact solutions (tsp) and other implemented heuristics for a represen-
tative number of (reasonably sized) inputs. Try to explain the results.
(No more than 150 words.)

65. Discuss and define a reasonable alternative distance function, and
use it in a variation on mergetsp.

66. Extend the comparison and analysis of Exercise 64 to also include your
modification on mergetsp.

13 Exam Questions

Exam papers for CO312 consisted of a “case study” (a model solution to
the year’s major assessment) which had been handed out well in advance,
with questions such as the following.

1. Select a part of the code that, in your view, has been done in a clumsy
or inefficient way, and present an alternative solution for it. Explain
in which respect your solution improves the solution given above.

2. The required properties of a distance matrix could be characterised as
follows:

isDM :: Matrix -> Bool
isDM m = square m && symmetric m &&
all0 (maindiag m) && triangle m

For each of these four properties, explain:

e what does it mean for a matrix to fail this property, and

e how using a “distance matrix” which failed this property would
impact on the various TSP algorithms. (Would the results still
be correct or optimal? If not, could they be fixed easily? Would
it still be OK to use perms’ instead of perms? etc.)

. Distances between towns are represented by values of type Int. List all
the changes that would need to be made to the code if we represented
distances by values of the type Float instead.

. Give a solution for the function nearest (Exercise 23) which is sig-
nificantly different from the one presented in the case study. Discuss
the relative merits of the two versions, addressing issues of clarity and
efficiency.

. The nearest neighbour heuristic (Exercise 25) could also be described
as a program on segmentations. Rather than always picking the cheap-
est link connecting any of the segments, it always connects the end of
the first segment to the start of a segment which is nearest to it in the
distance matrix.

Give an alternative definition of nextJoin (Exercise 39) which does
this. If convenient, you may assume that all of the segments in the
Segmentation argument to nextJoin are singletons, except for the
first one. Point out some of the reasons why this variant of “nearest
neighbour” is less efficient in terms of running time than nn.

. Counsider a variant on the TSP where we only need to visit the towns
given, but we no longer need to return to our original starting point.
The answer to our problem would still be represented by a permutation
of the input, but now interpreted as a true sequence rather than a cycle.

How would this problem solved by a modification of the code given

e for the “brute force” TSP;

e for the heuristic(s)?

10.

11.

Would you expect your heuristic(s) now to result in solutions which
are closer to the optimal solution than they were for the original TSP?
Why?

Define a function
internal :: Segmentation -> Town -> Bool

which returns True if the town occurs in the segmentation, but is not
an endpoint of the segments in the segmentation, and which returns
False in all other cases.

A simpler heuristic than “furthest first” implemented in the tsps
heuristic (Exercise 40) is “nearest first” which simply chooses for every
next step the two endpoints of different segments which are nearest to
each other. This can be done by only changing the nextJoin function
(Exercise 39).

Define an alternative nextJoin function (same type as above) which
encodes this strategy: it should return the pair of towns which, of all
combinations of two endpoints of different segments, have the smallest
distance between them according to the distance matrix.

Give a variant of the function distance (Exercise 60) which deter-
mines the distance between two tours not as the minimum, but as the
average distance between pairs of towns from each of the tours. You
may round down the average to an integer, i.e., use div rather than /
for division.

If, in the function nearest2 (Exercise 61), you had accidentally swapped
the two arguments in its definition, i.e., you had written

nearest2 :: Matrix —> [Tour] -> (Tour,Tour)
nearest2 tss dm

and left the rest unchanged, Hugs would not have reported a type error.
Why not? How would you have discovered about the two arguments
being swapped anyway?

Modify the mergetsp function (Exercise 63) such that, rather than
selecting the nearest tours at every step, it simply selects the first two
elements of the list of tours to merge.

Keeping in mind that the newly merged tour is inserted at the front
of the list of tours, explain how the resulting algorithm relates to the
aT algorithm (Exercise 46).

Online materials

This document is available through the departmental publications web page
at http://www.cs.kent.ac.uk/pubs/. A sample distance matrix is avail-
able at http://www.cs.kent.ac.uk/people/staff/eab2/tsp/DM.hs. A
program to visualise tours computed using this distance matrix is at
http://www.cs.kent.ac.uk/people/staff/eab2/tsp/mapper/.

Acknowledgements

I would like to thank the CO312 students from 2000/01 to 2003/04 for their
feedback and ideas. In particular, Adam Sampson wrote the “TSP mapper”
(see URL above) and also inspired the “segments” heuristic. Neil Renaud
implemented in 2001 the “remotest town first” strategy in Section 11 as his
alternative heuristic — based on real field research, talking to a friend who
had to solve T'SP for his delivery job on a daily basis.

My colleague Claus Reinke suggested foldl1’ as the solution to the
control stack overflow problem in brute force TSP; Olaf Chitil made some
useful comments on this technical report.

References

[1] Simon Thompson, “Haskell: The Craft of Functional Programming”,
2nd edition, Addison-Wesley, 1999.

