
Computer S
ien
e at Kent

Travelling Salesman Heuristi
s:Exer
ises in Haskell
Eerke Boiten
Te
hni
al Report No. 10- 04June 2004

Copyright

 2004 University of Kent at CanterburyPublished by the Computing Laboratory,University of Kent, Canterbury, Kent, CT2 7NF, UK

1 Introdu
tionThis do
ument
ontains a
olle
tion of programming exer
ises in the fun
-tional programming language Haskell. The exer
ises are all
on
erned withthe infamous Travelling Salesman Problem (TSP for short), both its ex-a
t solution and heuristi
 approximations. Full solutions to the exer
iseshave not been in
luded (these are available on request). However, the do
-ument
ontains both hints for students and
omments for tea
hers (the lat-ter in small itali
s). The next se
tion gives the tea
hing
ontext in whi
hthis material was used { in parti
ular, it lists assumptions made about thestudents' knowledge. Se
tion 3 des
ribes TSP informally. The followingse
tions present some preliminary material: on re
ursion over lists (Se
tion4), on type \implementation" through type aliases (Se
tion 5), and on
om-puting the maximum of a list \under a fun
tion" (Se
tion 6). The
on
eptof a distan
e matrix is dis
ussed in Se
tion 7. After a short dis
ussion ofpermutations, the exa
t, \brute for
e", TSP algorithm is given in Se
tion8. The following se
tions
onsider a number of heuristi
 approximations toTSP. The �nal se
tion
ontains samples of the exam questions that wereasked about model solutions to these exer
ises.
2 HistoryThe module CO312 Case Studies was introdu
ed into the �rst year of theBS
 Computer S
ien
e programme at the University of Kent in 1996. Itspurpose was to reinfor
e tea
hing in other �rst year modules through the useof larger
ase studies. I was responsible for the "fun
tional programming"
omponent of the module from the start, to supplement the �rst year moduleon Fun
tional Programming and Logi
. Initially this was taught in Miranda;in re
ent years, Haskell was used. Textbooks by Simon Thompson wereused throughout { sin
e 1999, the se
ond edition of \Haskell: The Craft ofFun
tional Programming" [1℄. This edition di�ers from the previous one andthe Miranda textbook by starting with a
ombinator library for \pi
tures"before the traditional build up through topi
s su
h as re
ursion and listalgorithms. A notation from this book used here is that ~> means \evaluatesto".By the time the students started on their CO312 Haskell
ase studies,they would typi
ally have
overed:� basi
 types Bool, Int and Char with operations;� tuples; lists, list
omprehensions, list library fun
tions;

� list programs through pattern mat
hing and re
ursion.They would have seen library fun
tions on lists, but often not the higherorder ones, and without mu
h awareness of parametri
 polymorphism; theywould not have seen algebrai
 types, abstra
t types or type
lasses.The module was assessed through 50%
oursework and 50% exam. Aseries of seven le
tures would build up to the
oursework assessment, byo�ering preparatory exer
ises, to be solved individually or in a
lass. Corre
tand in
orre
t solutions to these exer
ises would be dis
ussed in the followingle
ture. Students would then have a few weeks to do the �nal assessment.The exam would
onsist of a model solution to this assessment (also handedout well in advan
e) with a number of questions related to modi�
ations orextensions of the
ode, e.g. based on
hanges to the problem or the suggestedsolution.
3 What is TSP?Given a list of towns to be visited and a method of determining the distan
esbetween towns, the travelling salesman problem is to �nd a route that visitsall required towns, and of those routes, the shortest one. The parti
ularvariant we are looking at here assumes those distan
es are represented ina matrix, and that we need to start at one of the towns and end up thereagain after visiting all the others.This is a known hard problem { it is a so-
alled \NP-
omplete" one,whi
h implies that there is no known algorithm that is guaranteed always togive the best possible solution in a reasonable1 amount of time. Furthermore,if anyone �nds su
h an eÆ
ient algorithm for TSP, it
an be modi�ed to solvea large
lass of similarly diÆ
ult problems.
4 Re
ursion over listsYou will have seen the following three ways of writing programs over lists:� list
omprehensions, for example:[dist y x | y <- ys, y/=x ℄1In te
hni
al terms, an algorithm whose running time is bounded by a polynomial inthe size n of the input { here, the number of towns. The brute for
e TSP algorithm runsin time proportional to n!, whi
h is not bounded by any polynomial.

Only fun
tions returning a list
an be
omputed by using (only) a list
omprehension.� Higher order fun
tions su
h as map, filter, foldl usually lead toshort programs, but how
lear these appear depends on experien
e.� With expli
it re
ursion, anything is possible. Depending on the stru
-ture of your data, you might use patterns or guards and
onditionalsto distinguish the various
ases (for example, when to make a re
ursive
all and when not to).The exer
ises in this do
ument assume only limited experien
e with fun
-tional programming, for this reason we look at expli
it re
ursion rather thanhigher order fun
tions, giving a qui
k rundown of the
ommon patterns touse in re
ursions over lists.The standard pattern has a
ase for [℄ and one for (x:xs) in terms ofa re
ursive
all using xs:f [℄ = 0f (x:xs) = x + f xsFor fun
tions whi
h only make sense on non-empty lists, the standard pat-tern is:g [x℄ = xg (x:xs) = max (g xs) xHowever, sometimes both the empty and the singleton list need to be singledout.h [℄ = 0h [x℄ = x + 1h (x:xs) = 1 + h xsThe next few patterns involve looking at the �rst two elements of the list.The important de
ision there is whether, in the re
ursive
all, one or twoelements are removed from the list.An example of losing the �rst two elements is as follows. Note that thisalso implies that you need spe
ial
ases for both empty and singleton list (oralternatively: for lists of length 1 and 2).odds [℄ = [℄odds [x℄ = [x℄odds (x:y:xs) = x: odds xs

The list of di�eren
es between adja
ent elements needs to preserve the se
-ond element as the next head of the list in the re
ursive
all:diffs [℄ = [℄diffs [x℄ = [℄diffs (x:y:xs) = (x-y):diffs (y:xs)In the above examples, it is
onvenient that you
an write (x:y:xs) for(x:(y:xs)).
5 Type aliasesThompson [1, se
tion 5.1℄ says: \we
an give names to types in Haskell, sothat types are easier to read". That is one aspe
t of their use { we mightalso look at it as giving an \implementation" of a more abstra
t type thatwe need in our program. For example, if we needed to dis
uss time, wemight saytype Time = (Int,Int,Int)intending to interpret the �rst number as hours, the se
ond as minutes,and the third as se
onds. Another example might be representing sets ofnumbers by lists, i.e.,type SetInt = [Int ℄This sort of thing
an be done in a more general way with type parame-ters; Haskell also o�ers more advan
ed ways of \implementing abstra
t datatypes". This me
hanism will suÆ
e for now, though.If we implement more \abstra
t" values this way, we need to rememberthe relation between those values and the Haskell values, e.g., for sets,[℄ represents ;[1℄ represents f1g[3,1℄ represents f1; 3gThis relation may be partially do
umented in de�nitions. The names of thefun
tions and
onstants de�ned form part of the interfa
e to the type, e.g.,empty :: SetIntempty = [℄union :: SetInt -> SetInt -> SetIntunion xs ys = xs ++ ys

noon :: Timenoon = (12,0,0)hours, mins, se
s :: Time -> Inthours (h,m,s) = hmins (h,m,s) = mse
s (h,m,s) = sAlso, we might de�ne a straight type alias su
h astype Town = IntWith this de�nition, Haskell will not �nd errors when you use a Town wherean Int is expe
ted or vi
e versa. It serves mainly as do
umentation (addingup Towns probably is not meaningful), and may make it easier to
hangeyour implementation of the newly de�ned type.There are two main issues with this sort of implementation: junk and
onfusion. (These are both te
hni
al terms!) Neither of these needs to beavoided, but they need to be taken into a

ount in programs.5.1 ConfusionConfusion is when multiple Haskell values represent the same abstra
t value.For example, [1,1,3℄ and [1,3℄ also represent f1; 3g. There is no
onfusionfor Time unless one took (0,0,0) and (24,0,0) both to represent midnight.For SetInt, we
ould redu
e
onfusion by only
onsidering lists withoutdupli
ates (some fun
tions are de�ned in List.hs for this), or even sortedlists, but that
ompli
ates the
ode for the set operations. In general, forrepresenting sets that way, we would need to be able to de�ne equality andordering on the elements.The above remarks refer to type
lass
onstraints Ord and Eq, of
ourse.The
onsequen
e of having
onfusion in your data type is that == doesnot tell you mu
h about equality of abstra
t values { it may return Falsefor
on
eptually equal values.For SetInt, equality might be de�ned byequal :: SetInt -> SetInt -> Boolequal xs ys = and [elem x ys | x <- xs℄ &&and [elem y xs | y <- ys℄

(ea
h of the and expressions represents an in
lusion of sets).With type
lasses this will show up as an instan
e of Eq.5.2 JunkJunk is when some Haskell values do not represent any abstra
t value. Ifwe do not insist on ordering and removal of dupli
ates, there is no junk forSetInt. For Time, there is plenty:nnn :: Timennn = (0,9,99)is dubious already: 9 minutes and 99 se
onds? I own a mi
rowave ovenwhi
h treats this as
onfusion rather than as junk, and will happily heat for10 minutes and 39 se
onds if I enter '999'. However, it is even harder tointerpretzmtmohts :: Timezmtmohts = (0,-12,-127)(14 minutes and 7 se
onds before midnight!?), but Haskell will not produ
ea type error for this.The
onsequen
e of having junk in your data type is that you might needto
he
k for validity of inputs. If you're writing a fun
tion on su
h a type,you need to make sure that you don't test it with values whi
h are \junk".One way of preventing that involves validation fun
tions, e.g.:validTime :: Time -> BoolvalidTime (h,m,s)= h>=0 && m>=0 && s>=0 && h<24 && m<60 && s<605.3 Two-dimensional arraysA type whi
h we will be using later is that of \matri
es", or two-dimensionalarrays,
ontaining numbers. You
an also think of them as re
tangular areasin a spreadsheet. We will borrow mathemati
al notation for them, writing 1 2 63 4 8 !for a 2-by-3 matrix
ontaining, in the �rst row, numbers 1, 2 and 6; in these
ond row, numbers 3, 4 and 8. (Alternatively, in the �rst
olumn it has

numbers 1 and 3, et
.) Also, 0B� 1317
1CA

is a matrix with three rows,
ontaining a single element ea
h (i.e., it has one
olumn). Thus, it is di�erent from� 1 3 17 �whi
h has a single row and three
olumns.These are a bit like Java int [℄ [℄, and indeed we will implement themas [[Int℄℄, but we will insist on them being \re
tangular", i.e., every rowshould have the same number of elements.type Matrix = [[Int ℄ ℄We take Matrix as list of rows, i.e.[[1,2℄ , [3,4℄℄ represents 1 23 4 ![[1,4,2℄℄ represents � 1 4 2 �[[1℄,[4℄,[2℄℄ represents 0B� 142
1CAThere is junk for this representation of matri
es: some
on
rete valuesdo not represent abstra
t values, e.g.[[1℄ , [3,4℄℄ 13 4 ! ???There is also (less obviously)
onfusion: for the matrix
ontaining novalues at all: how many rows and
olumns might it have?[[℄℄ = [℄ = [[℄,[℄℄1� 0 = 0� 0 = 2� 05.4 IndexingFor getting a value out of a matrix, indexing is the natural approa
h. Indi
eson a list xs run from 0 to (length xs)-1.[[1, 2, 6 ℄, [3, 4, 8 ℄ ℄ !! 1 !! 2 == 8Note: Indexing is often the wrong method of dealing with lists.

Do not get tempted to use indexing for iterative/re
ursive/loop programsover lists (unlike for Java arrays). Re
ursion over lists is usually mu
h better,less error prone. Compare the following two programs for merging sortedlists:merger :: [Int℄ -> [Int℄ -> [Int℄merger xs [℄ = xsmerger [℄ ys = ysmerger (x:xs) (y:ys)| x<y = x: merger xs (y:ys)| otherwise = y: merger (x:xs) ysmerge2 xs ys= mergeit 0 0wheremergeit ix iy| ix == length xs && iy == length ys = [℄| ix == length xs = ys!!iy : mergeit ix (iy+1)| iy == length ys = xs!!ix : mergeit (ix+1) iy| (xs!!ix)<(ys!!iy) = xs!!ix : mergeit (ix+1) iy| otherwise = ys!!iy : mergeit ix (iy+1)5.5 Exer
ises1. De�ne a fun
tionnumRows :: Matrix -> Intgiving the number of rows of a matrix. (Remember a matrix is a listof rows.)2. De�ne a fun
tionisEmpty :: Matrix -> BoolThe following de�nition is not good enough:isEmpty m = m == [℄Why? There is
onfusion.

3. De�ne a fun
tionnumCols :: Matrix -> Intgiving the number of
olumns of a matrix (still a list of rows, unfor-tunately). Ensure thatnumCols [℄does not give an error message.Di�erent answers to this will lead to di�erent results for \junk" inputs,
ouldexplain that this is OK.4. De�ne a fun
tionre
tangular :: Matrix -> Boolthat
he
ks whether all rows in the matrix have the same length.You
ould do this by de�ning an auxiliary fun
tion allequal that
he
ks whether all numbers in a list are equal.5. (Advan
ed) What is wrong with the following program for matrixtransposal (swapping rows and
olumns, e.g., [[1,2℄,[3,4℄℄ to[[1,3℄,[2,4℄℄)?tp :: Matrix -> Matrixtp xss| isEmpty xss = [℄| otherwise = [a:as | (a,as) <- zip (head xss)(tp (tail xss))℄xs
xss

: ! xs xss
:

There is a fun
tion transpose in List.hs.

6 Maximum under a fun
tionThese exer
ises have also been used as
oursework rather than voluntary exer
ises.There are many instan
es of this problem in later exer
ises, so it is good for thestudents to be aware of ways of solving it both
orre
tly and eÆ
iently.The fun
tion max
omputes the maximum of two numbers, and maximumgives the maximum of a list. They might have been de�ned as follows:max :: Int -> Int -> Intmax a b| a <= b = b| otherwise = amaximum :: [Int℄ -> Intmaximum [x℄ = xmaximum (x:xs) = max x (maximum xs)Note that the latter does not work for empty input, and is
hara
terised bythe fa
t that ifmaximum [x1,x2,...,xn℄ ~> xithenelem xi [x1,x2,...,xn℄ ~> Truexi >= x1xi >= x2...xi >= xnIf we have a fun
tion f, and a list xs, we
ould �nd the member of xsfor whi
h f is maximal by taking the maximum of all x in xs { but if we dothis in the obvious way, we will have lost the information \whi
h" x thismaximum belonged to. Here, we work out a strategy to avoid this problemby keeping pairs of x and f x { a \tupling" strategy. It is all presented hereas an exer
ise
on
erning a meaningless fun
tion f, but the strategy
an bereused often in the various TSP programs.Given is a fun
tion f de�ned byf :: Int -> Intf x = 8*(x^2)-2*(x^3)+4*x-17

A more advan
ed version has the fun
tion f as a parameter, passed to all relevantfun
tions.The �nal aim is to write a relatively eÆ
ient2 fun
tionmaxf :: [Int℄ -> Intsu
h that if maxf [x1,...,xn℄ = xi thenelem xi [x1,...,xn℄ == Truef xi >= f x1f xi >= f x2...f xi >= f xnThis is a generalisation of the de�nition of maximum, where we do not
om-pare the elements of the list but their images under a given fun
tion f. Itwill be
onstru
ted bottom-up in the next few exer
ises.6. De�ne a fun
tiontupleWithf :: [Int℄ -> [(Int,Int)℄su
h thattupleWithf [x1,x2,...,xn℄= [(f x1, x1), (f x2, x2), ..., (f xn, xn) ℄The parti
ular order (f x,x) is
hosen to give students the option of exploit-ing the instan
e of Ord for tuples. A pitfall here is mixtures of patterns andre
ursion/
omprehension whi
h ignore the �rst element of the input.7. De�ne a fun
tionmaxFirst :: (Int,Int) -> (Int,Int) -> (Int,Int)whi
h returns, of its two input tuples, the one whose �rst
omponentis the highest. For example,maxFirst (1,2) (3,4) returns (3,4)maxFirst (5,3) (4,6) returns (5,3)For maxFirst (0,1) (0,2) it does not matter whether your programreturns (0,1) or (0,2).2In the sense that it does not evaluate f x twi
e unless x o

urs more than on
e in theinput list.

8. De�ne a fun
tionmaximumFirst :: [(Int,Int)℄ -> (Int,Int)whi
h returns, from its list of input tuples, the tuple whose �rst
om-ponent is highest. You may assume that the input list is non-empty.Pitfall: de�ning it for empty lists anyway, and then pi
king the wrong unitof max on (Int,Int).9. Using the fun
tions de�ned or otherwise, de�ne the fun
tion maxf(des
ribed earlier) whi
h returns the element of its non-empty inputlist for whi
h f is maximal.Most solutions whi
h do not use tupling will end up
omputing f on averagetwi
e for all elements.
Questions 10 and 11 are two variations of this.

10. Using the fun
tions de�ned above or otherwise, de�ne the fun
tionminf whi
h returns the element from its non-empty input list for whi
hf is minimal.Two kinds of reuse possible: by analogy, or using re
e
tion in the x-axis.11. Using the fun
tions de�ned above or otherwise, de�ne the fun
tionmaxIndexf :: [Int℄ -> Intsu
h that ifmaxIndexf xs ~> ifor non-empty xs, then0 <= i < length xsf (xs!!i) >= f (xs!!0)f (xs!!i) >= f (xs!!1)...f (xs!!i) >= f (last xs)

i.e., it returns the index of the element of its input list for whi
h f ismaximal.A modi�ed tupling strategy is more eÆ
ient but possibly less
lear than lookingup the index of maxf xs in xs (List.hs provides a number of ways, someinvolving Maybe).
7 Distan
e Matri
esFor TSP, we need to represent distan
e information somehow. A naturalway of doing this is in a distan
e matrix . A sample distan
e matrix is thefollowing: 0 1 2 3Faversham = 0 0 7 12 10Whitstable = 1 7 0 5 7Herne Bay = 2 12 5 0 10Canterbury = 3 10 7 10 0This
ould be represented in Haskell by[[0,7,12,10℄, [7,0,5,7℄, [12,5,0,10℄, [10,7,10,0℄ ℄where we might store the information about whi
h town names
orrespondto whi
h indi
es separately.Haskell arrays would be an alternative if they had been taught to the students al-ready. Maybe even with
onstant retrieval
ost?Distan
e matri
es have various properties. First, they are square: theyhave as many rows as
olumns, as we re
ord all distan
es between a �xedset of towns. Se
ond, they are likely to be symmetri
: the distan
e from Ato B is the same as the distan
e from B to A. As a
onsequen
e, most roadatlases only present half of the distan
e matrix information in a triangulartable3. Third, the distan
e between a town and itself is always 0. Thesedistan
es
an be found on what is
alled the main diagonal , whi
h
onsistsof all positions m!!i!!i. Finally, the distan
e of getting from A to B via C,i.e. the distan
e from A to C plus that from C to B, is never less than the3The AA road atlas for the UK has su
h a triangular table { as a
onsequen
e, it doesnot represent the fa
t that
rossing the Severn near Bristol is a di�erent distan
e goinginto Wales or going into England.

re
orded distan
e from A to B \dire
tly", i.e., \a detour is never shorter".This is represented by the \triangular property":8i; j; k : d!!i!!k � d!!i!!j + d!!j!!k
r r

r

i j
k

����
��
-
6

d!!i!!j
d!!i!!k d!!j!!k

12. De�ne a fun
tionsquare :: Matrix -> Boolwhi
h
he
ks that a matrix is re
tangular, and has equal numbers ofrows and
olumns.As in Exer
ise 3, there is a risk of a run-time error for empty list input.13. De�ne a fun
tionsymmetri
 :: Matrix -> Boolwhi
h tests if the matrix is symmetri
 (you may use transpose fromList.hs).14. De�ne a fun
tionall0 :: [Int℄ -> Boolwhi
h
he
ks whether all numbers in a list are 0.Some students would disagree with logi
ians on the answer for the empty list,as do many solutions using nub or re
ursion. This exer
ise is also likely toprovide illustrations for gratuitous use of guards or
onditionals (rather thanBoolean operators) and phrases su
h as == True.15. De�ne a fun
tionmaindiag :: Matrix -> [Int℄

whi
h returns the main diagonal of a square matrix. For example, themain diagonal of 0B� 1 2 34 5 67 8 9
1CA is [1,5,9℄.

Here, and the next exer
ise, is when indexing is useful; should probably givebonus marks for
orre
t re
ursive solutions. Non-square matri
es are \junk"here so the run-time errors they may
ause are not an issue.16. De�ne a fun
tiontriangle :: Matrix -> Boolwhi
h
he
ks a matrix for the triangular property.
8 Brute For
e Travelling SalesmanThe exa
t solution to the TSP
an be obtained by generating all possiblepermutations of the list of towns to be visited, and then sele
ting the onewhi
h has the lowest
ost. The
ost is relative to a given distan
e matrix.We
all this a \brute for
e" solution be
ause Hugs
rashes, if we do thisnaively, with a
ontrol sta
k over
ow, at a list of about 8 towns (40,320possible tours). A slightly less naive version (see Se
tion 8.4) still takes toolong to
ompute any output for about 12 towns.8.1 PermutationsThe permutations of a list are all lists with all the same elements o

urringequally often (and no others). In other words, a permutation is any list you
an get by 0 or more times swapping elements in the list (you
ould imaginethat this does not make for an eÆ
ient algorithm though!).The permutations of [1,3℄ are f[1,3℄; [3,1℄g. Those of [1,2,3℄ are:f[1,2,3℄; [2,1,3℄; [2,3,1℄; [1,3,2℄; [3,1,2℄; [3,2,1℄g. More interest-ingly, the permutations of [1,1,3℄ are f[1,1,3℄; [1,3,1℄; [3,1,1℄g. How-ever, as this is a set we may a
tually in
lude some of these elements morethan on
e in the result, by not taking into
onsideration that 1 o

urs twi
e.(Note: fg is not really Haskell, in real
ode we would have to use [℄ in-stead.)The approa
h we will take to de�ning a fun
tion to generate permuta-tions

perms :: [Int℄ -> [[Int℄℄is a \psy
hi
 bottom-up" solution: we'll �rst de�ne an auxiliary fun
tionfor no reason at all, and then it will turn out to be an essential pie
e of therequired fun
tion. (Though, as it happens, it will
ome in handy elsewhere,too.)The auxiliary fun
tion isins :: Int -> [Int℄ -> [[Int℄℄su
h that ins y xs is the set (list) of all possible ways of inserting y intoxs, e.g.ins 3 [2,4,5℄~>[[3,2,4,5℄, [2,3,4,5℄, [2,4,3,5℄, [2,4,5,3℄ ℄(or these same lists in some di�erent order { dupli
ates, if any, need not beremoved, so ins a [b,
℄ will end up having three elements even when a, band
 are all the same.)We solve this by answering a list of questions. For di�erent Haskellproblems, you might ask yourself similar questions in order to get startedon solutions.� What is the type of ins 2 [℄?The type of any result of ins is [[Int℄℄ so that must be the type hereas well.This may have looked too obvious, but asking yourself this stops youfrom forgetting some square bra
kets later, hopefully.� How many elements has ins 2 [℄? Why?In how many ways
an you insert an element into an empty list? Onlyone: [2℄� So what is ins x [℄?So this is
hanging 2 to x. Probably the result is [x℄, but that's notof type [[Int℄℄. So, the result must be [[x℄℄ { the list of di�erentways of inserting x into an empty list is a singleton list
ontaining theonly way of doing it:ins x [℄ = [[x℄℄

� Does ins 3 [4,5℄ relate to ins 3 [2,4,5℄? How?Taking some \sensible" ordering of the various ways of inserting, wemight haveins 3 [4,5℄ ~> [[3,4,5℄, [4,3,5℄, [4,5,3℄℄ins 3 [2,4,5℄ ~>[[3,2,4,5℄,[2,3,4,5℄,[2,4,3,5℄,[2,4,5,3℄℄(Ni
ely lined up!) So, going from ins 3 [4,5℄ to ins 3 [2,4,5℄, weput the new value 2 in front of ea
h result, and add one more list: theone we get by inserting 3 before 2.� So is there a general re
ursive relation?To insert x into y:ys, we either put x right before y:ys, or we insertx into ys, and put y in front of the result:ins x (y:ys) = (x:y:ys): [y:xs | xs <- ins x ys ℄or, using ++ rather than : and map instead of the list
omprehensionins x (y:ys) = [[x,y℄++ys ℄ ++ map (y:) (ins x ys)or, using an auxiliary fun
tion to do the \put y in front of ea
h . . . "bitins x (y:ys) = (x:y:ys) :
onsall y (ins x ys)
onsall y [℄ = [℄
onsall y (xs:xss) = (y:xs) :
onsall y xssHaving de�ned ins, we
an now de�neperms : [Int℄ -> [[Int℄℄that gives all permutations of a list. We will not worry about removingdupli
ates or the ordering of results, as before.� What is the type of perms [℄?Again, it must be [[Int℄℄ like any other perms result.� How many elements does perms [℄ have? Why?There's only 1 way of (possibly) reordering an empty list . . .� So what is perms [℄?Not [℄ as that has the right type (as an empty list of lists), but toofew elements (it has none).

perms [℄ = [[℄℄� What is perms [2,3℄ ?That will be a list
ontaining the elements [2,3℄ and [3,2℄, in someorder (and possibly multiple times).� Whi
h elements of perms [1,2,3℄ relate to whi
h elements ofperms [2,3℄?perms [1,2,3℄ has six di�erent elements: [1,2,3℄, [1,3,2℄, [2,1,3℄,[2,3,1℄, [3,1,2℄, [3,2,1℄, whi
h may o

ur in any order. Three ofthese have 3 before 2, and three have 2 before 3. The latter are[[1,2,3℄, [2,1,3℄, [2,3,1℄℄.� What is ins 1 [2,3℄?It is that same list [[1,2,3℄, [2,1,3℄, [2,3,1℄℄.� In general,
an you �nd a way to relate perms (x:xs) to perms xs,using ins? You need to get the types right { ins returns a list of lists.perms (x:xs) =
on
at [ins x ys | ys <- perms xs℄Without the
on
at, the right hand side is a [[[Int℄℄℄ rather than a[[Int℄℄ as required. (Note that [
on
at(ins x ys)| ys <- permsxs℄ also
orre
ts this type error, but gives a di�erent result.)In words: on
e we know how to permute xs, we
an permute a listwith an additional element x by putting it in any possible pla
e (usingins) in every possible permutation of the shorter list xs.8.2 Cheap toursA town is an integer (an index into a distan
e matrix), a tour is a list oftowns, interpreted in a
ir
ular way: [1,2,3℄ represents going from 1 to 2to 3 to 1. As a
onsequen
e, there is no fundamental di�eren
e between thetours [1,2,3,4℄ and [3,4,1,2℄ (\
onfusion").type Town = Inttype Tour = [Town℄If the type [Town℄ is used below, it denotes a list of towns that should notbe interpreted as a
ir
ular tour { but possibly even as a set of towns.17. De�ne a fun
tion

ost :: Matrix -> Tour -> Intsu
h that
ost dist [a,b,
,d℄~> dist!!a!!b + dist!!b!!
 + dist!!
!!d + dist!!d!!aIf you want to do this re
ursively, you might want to de�ne an auxiliaryfun
tion to do most, but not all, of the work. This is be
ause
ostdist [a,b,
,d℄ does not rely on
ost dist [b,
,d℄: the latter usesdist!!d!!b whi
h is not in
luded in the former!There is no need to de�ne
ost for the empty tour.18. Given a fun
tion
ost as above, de�ne a fun
tion
heapest :: Matrix -> [Tour℄ -> Tourwhi
h, given a list of tours (so a list of lists of numbers), sele
t the (a)
heapest of them using the fun
tion
ost and the given matrix.(Use the ideas from Se
tion 6!)Using sortBy is not a great idea as it does not implement tupling and as a
onsequen
e leads to re
omputed
ost. Students may not realise the positive
onsequen
es that lazy evaluation has on the eÆ
ien
y of using sorting inpla
e of minimum, anyway.8.3 Using the brute for
e programWith these ingredients, this is the \brute for
e" TSP program:tsp :: Matrix -> [Int℄ -> Tourtsp m xs =
heapest m (perms xs))This is not the most eÆ
ient way of
omputing the exa
t solution, but itis a simple one. The more
ompli
ated \bran
h-and-bound" algorithm willdo mu
h better on average, though not ne
essarily in the worst
ase.A Haskell module
ontaining a de�nition of a sample 50x50 distan
e ma-trix
alled dm is at www.
s.kent.a
.uk/people/staff/eab2/tsp/DM.hs.The next few exer
ises assume you have downloaded this, and
reated amodule Brute.hs
ontaining the following lines:

module Brutewhereimport DMplus the de�nition of tsp as given above and all ne
essary auxiliary fun
tions,given above or developed in previous exer
ises.19. What is tsp dm [2,4,6,8,10℄?20. Looking at names:: [String℄ in Dm.hs, what does the result to theprevious question represent in terms of travel in the UK?21. What is the highest value of n su
h thattsp dm [1..n℄is
omputed by Hugs without error messages?8.4 Small ImprovementsThis se
tion lists two small improvements on the brute for
e TSP. It is notessential to use them or understand them, but they may allow the exa
tTSP solution to be
omputed for a slightly larger number of towns.For the purpose of the TSP on a symmetri
 distan
e matrix, all per-mutations of 3 (or fewer) towns are equivalent: there is only one triangle
onne
ting the three towns, and it does not matter in whi
h order it istraversed. So instead of the fun
tion perms, we
ould useperms' (x:xs)| (length xs) < 3 = [(x:xs)℄| otherwise =
on
at [ins x p | p <- perms' xs℄perms' [℄ = [[℄℄This redu
es the number of possibilities to be
onsidered by a fa
tor of 6.Also, tsp su�ers from
ontrol sta
k over
ows in Hugs: too many
om-parisons between
osts are postponed by the lazy evaluation strategy. Thefollowing variant of
heapest alleviates this problem. It is not ne
essary tounderstand this
ode { just that
heapest'
an be used in pla
e of
heapest(and foldl1' in pla
e of foldl1) in this
ontext.
heapest' m xs = snd (foldl1' (<) [(
ost m x, x) | x <- xs℄)foldl1' f (x:xs) = foldl' f x xsfoldl' f a [℄ = afoldl' f a (h:t) = (foldl' f $! f a h) t

22. Repeat Exer
ise 21 with
heapest' for
heapest and perms' forperms.
9 Nearest Neighbour Heuristi
A heuristi
 algorithm for an optimisation problem is a method that gives agood (but not ne
essarily the best) solution (relatively) qui
kly. One obviousheuristi
 for TSP is to start somewhere, and then always to pi
k the nearestunvisited town.23. De�ne a fun
tionnearest :: Matrix -> Town -> [Town℄ -> Townsu
h that nearest dm x ys gives the town from ys whi
h is nearestto the town x a

ording to distan
e matrix dm.24. Look up the fun
tion delete in List.hs. What does it do?25. Use these to de�ne a fun
tionnn :: Matrix -> [Town℄ -> Toursu
h that nn dm xs returns a tour
ontaining all towns from xs, start-ing from the �rst town in xs and then pi
king the town nearest to thelast town visited at every step.It is probably useful to de�ne an auxiliary fun
tion whi
h has thesame fun
tionality but takes in the tour
onstru
ted so far as an extraargument, i.e.nnLoop :: Matrix -> [Town℄ -> Tour -> TourThe a

umulating argument (or at the very least: its last town) is ne
essaryto determine the next town to visit. A dire
t re
ursive version is likely to
onstru
t the tour \inside-out" using the wrong sele
tion
riterion.A somewhat analogous problem is the following. Assume we want to sum allnumbers in a list, adding from left to right. The following fun
tion does notdo that:sumall1 [x℄ = xsumall1 (x:xs) = x + sumall1 xs

be
ause it doesn't a
tually sum from left to right, but from right to left {the �rst addition performed in sumall1 [3,8,9℄ is 8+9. A version using a"result so far"
an sum easily from left to right:sumall2 xs = sumaux 0 xssumaux sumsofar [℄ = sumsofarsumaux sumsofar (x:xs) = sumaux (sumsofar+x) xs
10 Combining tour segmentsA se
ond heuristi
 works by
onsidering \segments" { partial tours ea
h
ontaining some of the towns. The whole tour is obtained by starting withea
h town in a single segment, and then gradually
ombining the segmentsuntil a single segment is formed
ontaining all the towns. The obviousde
ision for
ombining segments is to pi
k those whi
h are \
lose" to ea
hother. For example:

r0
r1 r2

r3
r4

[[0℄, [1℄, [2℄, [4℄, [3℄ ℄ r0
r1 r2��

r3
r4

[[0℄,[1,2℄,[4℄,[3℄℄

((((r0
r1 r2��

r3
r4

[[0,3℄, [1,2℄, [4℄ ℄

((((r0
r1 r2������

r3
r4

[[0,3℄, [1,2,4℄ ℄ ((((r0
r1 r2������

r3����
���r4

[[0,3,4,2,1℄ ℄
A Segment is a list of Towns, representing a partial tour (in order) {not interpreted as a \
ir
ular" sequen
e. We will only
onsider non-emptySegments.type Segment = [Town℄A Segmentation is a list of Segments su
h that it
ontains all relevant Towns,ea
h in exa
tly one of the segments. (In intermediate results some townsmay be missing.)type Segmentation = [Segment℄The segmentation[[1,2℄, [0℄, [3,4℄ ℄
ould be said to represent a
olle
tion of possible tours of the towns [0..4℄,namely those where where 1 is visited immediately before or after 2, andsimilarly for 3 and 4.Some of the next few exer
ises are intended in the �rst pla
e to get used to theSegmentation type, and have very simple answers.26. De�ne a fun
tionsize :: Segmentation -> Intwhi
h reports the number of towns that o

ur in a segmentation. (E.g.the segmentations in the example all have size 5.)27. De�ne a fun
tionendpoints :: Segmentation -> [Town℄whi
h returns the list of all endpoints (i.e., �rst or last elements) ofthe given segmentation, without dupli
ates. For example,

endpoints [[1,2,4,5℄, [3,6,7℄, [0℄, [8,9℄℄~> [1, 5, 3, 7, 0, 8, 9 ℄(Note that 0 o

urs only on
e.)Allowing dupli
ates and then removing them is ineÆ
ient; segmentations donot
ontain dupli
ate towns.28. De�ne a fun
tionelement :: Town -> Segmentation -> Boolwhi
h reports whether the given town o

urs anywhere in the segmen-tation.Blind use of a library fun
tion is likely to lead to a type error.29. De�ne a fun
tionsplitOnTown :: Town -> Segmentation -> (Segment,Segmentation)whi
h splits the segmentation into the segment whi
h has the town asan endpoint, and all the other segments. E.g.,splitOnTown 2 [[1,2℄, [3℄, [0℄ ℄ ~> ([1,2℄, [[3℄,[0℄℄)You may assume that the town is an endpoint of one of the segmentsin the given segmentation.(This is one example where an intermediate Segmentation does not
ontain all the relevant towns.)30. De�ne a fun
tionotherEnds :: Segmentation -> Town -> [Town℄su
h that otherEnds ss t returns all endpoints of ss, ex
ept for theendpoints of the segment that t is an endpoint of. For example,otherEnds [[1,2,4,5℄, [3,6,7℄, [0℄, [8,9℄℄ 7~> [1, 5, 0, 8, 9 ℄31. De�ne a fun
tion

initial :: [Town℄ -> Segmentationsu
h that initial ts returns a Segmentation
ontaining all of ts inlength ts separate segments.32. De�ne a fun
tion
omplete :: Segmentation -> Boolwhi
h reports whether the segmentation is
omplete, in the sense thatit puts all its elements in a single segment.33. De�ne a fun
tionsplitOnTowns::(Town,Town) -> Segmentation-> (Segment,Segment,Segmentation)su
h thatsplitOnTowns (x,y) ssreturns a triple: the segment of ss whi
h has x as an endpoint, thesegment of ss whi
h has y as an endpoint, and all the other segmentsof ss. E.g.,splitOnTowns (2,3) [[1,2℄, [3℄, [0℄ ℄~> ([1,2℄, [3℄, [[0℄℄)You may assume that the towns are endpoints of two di�erent segmentsin the given segmentation.34. De�ne a fun
tionmerge :: (Town,Segment) -> (Town,Segment) -> Segmentwhi
h merges two segments. In a
allmerge (p1,s1) (p2,s2)

you should assume that p1 is an endpoint of s1, and p2 of s2. Theresult of this
all should be a segment obtained by, if ne
essary, re-versing one of s1 and s2, and
on
atenating them in su
h a way thatp1 is next to p2 in the resulting segment.The a

eptable out
omes for merge (2,[1,2℄) (3, [3℄) are [1,2,3℄,also [3,2,1℄, but not [3,1,2℄; for merge (4,[1,4℄) (6, [8,6℄)they are [1,4,6,8℄ or [8,6,4,1℄, but not [1,4,8,6℄.35. De�ne a fun
tionjoin :: (Town,Town) -> Segmentation -> Segmentationsu
h that for a
alljoin (x,y) ss(x and y may be assumed to be endpoints of di�erent segments of ss)the result is a segmentation whi
h is identi
al to ss ex
ept that thesegments
ontaining x and y have been merged.So a possible result of join (3,4) [[0,3℄, [1,2,4℄ ℄ is[[0,3,4,2,1℄ ℄, and join (0,3) [[0℄ , [1,2℄ , [3℄ , [4℄ ℄
ould give [[0,3℄, [1,2℄, [4℄ ℄ (see pi
torial example).A slightly more eÆ
ient overall solution
an be obtained by not using thefun
tions suggested, as they lead to repeated retrieval of the sele
ted segments.
The fun
tions de�ned so far
ould be used to implement any TSPheuristi
 that builds up the tour link by link. The determining de
isionis whi
h two towns to use for the next join.Our strategy is: \furthest town �rst".36. De�ne a fun
tionhowfar :: Town -> Matrix -> Segmentation -> Intwhi
h returns the sum of the distan
es of a given town to the endpointsof all other segments in the segmentation.37. De�ne a fun
tion

furthest :: Segmentation -> Matrix -> Townwhi
h returns the endpoint whi
h has the largest howfar value of allendpoints.38. De�ne a fun
tion
losest:: Segmentation -> Matrix -> Town -> Townsu
h that
losest ss dm t is an endpoint in ss, not in the samesegment as t; and of all su
h endpoints, it is the one with the smallestdistan
e (a

ording to dm) to t.39. De�ne a fun
tionnextJoin :: Segmentation -> Matrix -> (Town,Town)whi
h returns the next two towns to be joined. These should be thefurthest town in the segmentation, and the town
losest to it.40. De�ne a fun
tiontsps :: Matrix -> [Town℄ -> Tourwhi
h returns a tour
onstru
ted using the segment heuristi
, by start-ing from an initial segmentation, repeatedly performing the joindetermined by nextJoin, and extra
ting the tour from the segmenta-tion on
e it's
omplete.41. Compare the quality (
ost) of tours generated using tsps to the exa
tsolutions (tsp) and any other heuristi
 you have programmed for arepresentative number of (reasonably sized) inputs. Try to explainthe results. (No more than 150 words.)42. As the nextJoin fun
tion is the only \intelligen
e" of the tsps algo-rithm, turn it into a parameter of the algorithm so we
an repla
e itby another. I.e., de�ne a fun
tiontsph :: Matrix -> [Town℄ -> JoinFn -> Tourtype JoinFn = Segmentation -> Matrix -> (Town,Town)

su
h thattsph m ts nextJoingives the same result as tsps m ts.43. De�ne a fun
tionmyNextJoin :: JoinFnwhi
h
an be used as a parameter to tsph to implement a di�erentjoin sele
tion strategy for the segment heuristi
.Explain the idea of the heuristi
, present some relevant results, and
ontrast these with the exa
t solution and other heuristi
s. (No morethan 200 words.)
11 TSP by extending toursAdding one town to an existing tour:

Given a tour, we insert a town into it in the pla
e where it leads to thesmallest in
rease in
ost. Doing this for all remaining towns in sequen
egives yet another TSP heuristi
. Depending on the order in whi
h the townsare inserted, this
an be one of the better heuristi
s. The order in whi
h thetowns are added is determined in three di�erent ways:� by the order the towns are given initially;

� using remotest towns �rst;� using remotest towns �rst (in a di�erent way).44. You will be able to use the fun
tions ins and
heapest for this part.De�ne a fun
tioninsTown :: Matrix -> Tour -> Town -> Toursu
h that insTown dm ts t returns a tour obtained by inserting tsomewhere in ts (without reordering ts itself),
hoosing of all thepossibilities for doing so one whi
h has minimal total distan
e a

ord-ing to the distan
e matrix dm.For example, insTown dm [1,2,3℄ 5 will return one of [5,1,2,3℄,[1,5,2,3℄, [1,2,5,3℄ or [1,2,3,5℄ { whi
h one depends on whi
hof these four is
heapest a

ording to dm.A more eÆ
ient solution does not reuse as suggested, but instead makes useof the fa
t that inserting a town involves removing one link, and repla
ingit by two others; the
ost of these is the only thing that really needs to be
omputed. This is proportional to the size of the Tour rather than quadrati
.Taking that even further, one might optimise the next question by memoisingthese link
osts for the tour
onstru
ted so far.45. De�ne a fun
tionaddTowns :: Matrix -> Tour -> [Town℄ -> Toursu
h that addTowns m ts us adds all towns from us to the tour ts,at ea
h step adding the head of us using insTown until us is empty(in whi
h
ase it returns ts). As usual, you may assume that us hasno dupli
ates.For this heuristi
, the auxiliary \main loop" fun
tion with the tour so faras an a

umulated argument is asked for expli
itly although it is not stri
tlyne
essary; later variants need su
h auxiliary fun
tions but it is left impli
itthere. See also the
omment after Exer
ise 23.46. De�ne a fun
tion (it has a short name to make your testing easier):aT :: Matrix -> [Town℄ -> Tour

su
h that aT m ts returns a tour
onstru
ted by repeated use ofinsTown; this
an be a
hieved by
alling addTowns with suitable ar-guments.For eÆ
ien
y reasons, you may use the fa
t that all tours of length 3(or less) are equivalent (see Se
tion 8.4).
The next few exer
ises
onstru
t the tour by inserting the remotesttown �rst into the tour.

47. If we are not going to
ontinuously insert the head of the list, it willbe useful to have a fun
tion whi
h removes an element from a list.De�ne a fun
tionremoveTown :: Town -> [Town℄ -> [Town℄su
h that removeTown t ts gives a list of towns
ontaining all townsin ts ex
ept for t. You may assume that t o

urs exa
tly on
e in ts.Re
ursive solutions often forget to in
lude the segment just
onsidered in the�nal result.48. The following heuristi
s are based on the idea of remoteness: the re-moteness of a town t with respe
t to a list of towns ts and a distan
ematrix m is the sum of the distan
es (a

ording to m) between t andea
h town in ts.De�ne a fun
tionremoteness :: Matrix -> [Town℄ -> Town -> Intsu
h that remoteness m ts t gives the remoteness of t with respe
tto m and ts. For example,remoteness dm [3,4,5℄ 7 ~> dm!!3!!7 + dm!!4!!7 + dm!!5!!749. We will de
ide whi
h town to add depending on its remoteness { inparti
ular, for version 1 we will pi
k the remotest town in ea
h step.De�ne a fun
tionremotest :: Matrix -> [Town℄ -> [Town℄ -> Town

su
h that remotest m ts us returns the town u in us su
h thatremoteness m ts u is the highest of all.50. The solution to TSP is obtained by repeatedly adding the remotesttown relative to the matrix and the tour
onstru
ted so far.De�ne a fun
tionaRT1 :: Matrix -> [Town℄ -> Toursu
h that aRT1 m ts returns a tour
ontaining all towns of ts,
on-stru
ted as follows:� initially, the tour
ontains a single town, whi
h must be the re-motest with respe
t to m and ts;� at every next step, the town from the remainder of the inputis
hosen whi
h is remotest with respe
t to m and the tour
on-stru
ted so far (rather than the input!), and added using insTown.
Alternatively, we
ould
onsider the remoteness of towns with respe
tto the original input. Rather than by keeping the original input aroundin the program, this
an be solved by sorting the input list, and thenusing the aT program.51. De�ne a fun
tionsortByRemoteness :: Matrix -> [Town℄ -> [Town℄su
h that sortByRemoteness m ts
ontains all the towns of ts, sortedby de
reasing remoteness with respe
t to m and ts. For example, ifremoteness m [1,2,3℄ 1 ~> 17, remoteness m [1,2,3℄ 2 ~> 15,and remoteness m [1,2,3℄ 3 ~> 19, thensortByRemoteness m [1,2,3℄ ~> [3,1,2℄.52. De�ne a fun
tionaRT2 :: Matrix -> [Town℄ -> Tourwhi
h works by �rst sorting the input towns by de
reasing remoteness,and then applying aT to the result.

53. Compare the quality (in terms of
ost and running time) of toursgenerated using aT, aRT1, and aRT2 with ea
h other and the exa
t so-lutions (tsp) for a representative number of (reasonably sized) inputs.Explain and analyse the results. (No more than 200 words.)
12 TSP by
ombining toursRather than adding individual towns to existing tours, we may also
hooseto
ombine small tours into bigger ones { starting with tours whi
h startand end in the same pla
e, and ending up with one that
ontains all townsto be visited.Combining two existing tours:

12.1 Some preliminary fun
tionsThe following general purpose fun
tion may be useful.54. De�ne a fun
tionsplits :: Tour -> [(Tour,Tour) ℄su
h that splits ts returns a list
ontaining all pairs (ts1,ts2) su
hthat ts1++ts2==ts. For example, splits [1,2,3℄ should
ontainthe pairs ([℄,[1,2,3℄), ([1℄,[2,3℄), ([1,2℄,[3℄), ([1,2,3℄,[℄)in some order.
As a Tour represents a
ir
ular tour, there is some
onfusion: [1,2,3℄represents the same tour as [2,3,1℄ and [3,1,2℄.

55. De�ne a fun
tionrots :: Tour -> [Tour℄whi
h lists all the tours you get from the input by \rotating" the list,i.e., starting in a di�erent town but following the same tour.56. Also, be
ause the matrix is symmetri
, there is no di�eren
e to the
ost if we reverse the tour.De�ne a fun
tionrevs :: [Tour℄ -> [Tour℄whi
h reverses ea
h of the tours in the input list. (Fun
tion reverseis prede�ned.)57. For a list of three towns, rotating and reversing together give all per-mutations { for longer lists, the fun
tion perms would return otherpermutations as well.De�ne a fun
tionrotrevs :: Tour -> [Tour℄whi
h returns the list of all tours that
an be obtained by rotationsand/or reversals of the input list. (For a list without dupli
ates oflength n, there should be 2n di�erent ones.)12.2 Merging toursIn this heuristi
, we start with lots of small tours.58. De�ne a fun
tionsingletons :: [Town℄ -> [Tour℄su
h that singletons ts returns a [Tour℄ with ea
h town from tsin a separate tour.
We will repeatedly
ombine these until we have in
luded all of thetowns.

59. De�ne a fun
tion
omplete :: [Tour℄ -> Boolwhi
h reports whether the list of tours is
omplete, in the sense thatit puts all its towns in a single tour.
For merging tours, there are two de
isions to be taken: whi
h twotours (from a list) to merge, and how to merge them.60. For sele
ting two tours, we will take the tours in the list whi
h arenearest to ea
h other. We de�ne the distan
e between two tours asthe smallest distan
e between some town of one tour and some townof the other.De�ne a fun
tiondistan
e :: Matrix -> Tour -> Tour -> Intthat returns for distan
e dm ts1 ts2 the distan
e a

ording to dmbetween a town from ts1 and a town from ts2 that is minimal for allsu
h pairs of towns.61. De�ne a fun
tionnearest2 :: Matrix -> [Tour℄ -> (Tour,Tour)su
h that nearest2 dm tss gives a pair of tours ts1 and ts2 fromtss for whi
h their distan
e with respe
t to dm is minimal.62. For the de
ision on how to merge two tours, imagine the problem of
ombining two paper loops. You would need to
ut both in half, (sowould need to de
ide at whi
h point to
ut ea
h of them), and thensti
k them together at the
ut, potentially reversing one of them.De�ne a fun
tionmergeTours :: Matrix -> Tour -> Tour -> Tourwhi
h merges two tours in all possible ways, returning the
heapest ofthose.

A suggestion for mergeTours dm ts1 ts2 is to list all possibilities bysplitting ts1 in an arbitrary point, then inserting into ts1 at thatpoint all rotations and reverses of ts2. Sele
ting the
heapest of thoseshould be a familiar problem.For example, for merge dm [1,2℄ [3,4℄, the variations on [3,4℄ arejust [3,4℄ and [4,3℄, ea
h of whi
h needs to be inserted at everypossible point in [1,2℄, leading to [[3,4,1,2℄, [4,3,1,2℄,[1,3,4,2℄, [1,4,3,2℄, [1,2,3,4℄, [1,2,4,3℄ ℄, of whi
h a
heap-est must be sele
ted.63. De�ne a fun
tionmergetsp:: Matrix -> [Town℄ -> Tourwhi
h returns a tour
onstru
ted starting from an singletons list oftours, repeatedly merging the nearest two tours, until it is
omplete.64. Compare the quality (
ost) of tours generated using mergetsp to theexa
t solutions (tsp) and other implemented heuristi
s for a represen-tative number of (reasonably sized) inputs. Try to explain the results.(No more than 150 words.)65. Dis
uss and de�ne a reasonable alternative distan
e fun
tion, anduse it in a variation on mergetsp.66. Extend the
omparison and analysis of Exer
ise 64 to also in
lude yourmodi�
ation on mergetsp.
13 Exam QuestionsExam papers for CO312
onsisted of a \
ase study" (a model solution tothe year's major assessment) whi
h had been handed out well in advan
e,with questions su
h as the following.1. Sele
t a part of the
ode that, in your view, has been done in a
lumsyor ineÆ
ient way, and present an alternative solution for it. Explainin whi
h respe
t your solution improves the solution given above.2. The required properties of a distan
e matrix
ould be
hara
terised asfollows:

isDM :: Matrix -> BoolisDM m = square m && symmetri
 m &&all0 (maindiag m) && triangle mFor ea
h of these four properties, explain:� what does it mean for a matrix to fail this property, and� how using a \distan
e matrix" whi
h failed this property wouldimpa
t on the various TSP algorithms. (Would the results stillbe
orre
t or optimal? If not,
ould they be �xed easily? Wouldit still be OK to use perms' instead of perms? et
.)3. Distan
es between towns are represented by values of type Int. List allthe
hanges that would need to be made to the
ode if we representeddistan
es by values of the type Float instead.4. Give a solution for the fun
tion nearest (Exer
ise 23) whi
h is sig-ni�
antly di�erent from the one presented in the
ase study. Dis
ussthe relative merits of the two versions, addressing issues of
larity andeÆ
ien
y.5. The nearest neighbour heuristi
 (Exer
ise 25)
ould also be des
ribedas a program on segmentations. Rather than always pi
king the
heap-est link
onne
ting any of the segments, it always
onne
ts the end ofthe �rst segment to the start of a segment whi
h is nearest to it in thedistan
e matrix.Give an alternative de�nition of nextJoin (Exer
ise 39) whi
h doesthis. If
onvenient, you may assume that all of the segments in theSegmentation argument to nextJoin are singletons, ex
ept for the�rst one. Point out some of the reasons why this variant of \nearestneighbour" is less eÆ
ient in terms of running time than nn.6. Consider a variant on the TSP where we only need to visit the townsgiven, but we no longer need to return to our original starting point.The answer to our problem would still be represented by a permutationof the input, but now interpreted as a true sequen
e rather than a
y
le.How would this problem solved by a modi�
ation of the
ode given� for the \brute for
e" TSP;� for the heuristi
(s)?

Would you expe
t your heuristi
(s) now to result in solutions whi
hare
loser to the optimal solution than they were for the original TSP?Why?7. De�ne a fun
tioninternal :: Segmentation -> Town -> Boolwhi
h returns True if the town o

urs in the segmentation, but is notan endpoint of the segments in the segmentation, and whi
h returnsFalse in all other
ases.8. A simpler heuristi
 than \furthest �rst" implemented in the tspsheuristi
 (Exer
ise 40) is \nearest �rst" whi
h simply
hooses for everynext step the two endpoints of di�erent segments whi
h are nearest toea
h other. This
an be done by only
hanging the nextJoin fun
tion(Exer
ise 39).De�ne an alternative nextJoin fun
tion (same type as above) whi
hen
odes this strategy: it should return the pair of towns whi
h, of all
ombinations of two endpoints of di�erent segments, have the smallestdistan
e between them a

ording to the distan
e matrix.9. Give a variant of the fun
tion distan
e (Exer
ise 60) whi
h deter-mines the distan
e between two tours not as the minimum, but as theaverage distan
e between pairs of towns from ea
h of the tours. Youmay round down the average to an integer, i.e., use div rather than /for division.10. If, in the fun
tion nearest2 (Exer
ise 61), you had a

identally swappedthe two arguments in its de�nition, i.e., you had writtennearest2 :: Matrix -> [Tour℄ -> (Tour,Tour)nearest2 tss dmand left the rest un
hanged, Hugs would not have reported a type error.Why not? How would you have dis
overed about the two argumentsbeing swapped anyway?11. Modify the mergetsp fun
tion (Exer
ise 63) su
h that, rather thansele
ting the nearest tours at every step, it simply sele
ts the �rst twoelements of the list of tours to merge.

Keeping in mind that the newly merged tour is inserted at the frontof the list of tours, explain how the resulting algorithm relates to theaT algorithm (Exer
ise 46).Online materialsThis do
ument is available through the departmental publi
ations web pageat http://www.
s.kent.a
.uk/pubs/. A sample distan
e matrix is avail-able at http://www.
s.kent.a
.uk/people/staff/eab2/tsp/DM.hs. Aprogram to visualise tours
omputed using this distan
e matrix is athttp://www.
s.kent.a
.uk/people/staff/eab2/tsp/mapper/.A
knowledgementsI would like to thank the CO312 students from 2000/01 to 2003/04 for theirfeedba
k and ideas. In parti
ular, Adam Sampson wrote the \TSP mapper"(see URL above) and also inspired the \segments" heuristi
. Neil Renaudimplemented in 2001 the \remotest town �rst" strategy in Se
tion 11 as hisalternative heuristi
 { based on real �eld resear
h, talking to a friend whohad to solve TSP for his delivery job on a daily basis.My
olleague Claus Reinke suggested foldl1' as the solution to the
ontrol sta
k over
ow problem in brute for
e TSP; Olaf Chitil made someuseful
omments on this te
hni
al report.
Referen
es[1℄ Simon Thompson, \Haskell: The Craft of Fun
tional Programming",2nd edition, Addison-Wesley, 1999.

