
UK Workshop on Grid Security Experiences, Oxford 8th and 9th July 2004

RBAC what? Development of a role-based access control
policy writing tool for e-Scientists.

Sacha Brostoff, M. Angela Sasse
a
and

David Chadwick, James Cunningham, Uche Mbanaso, O. Otenko
b

a Department of Computer Science, UCL (University College London)

b Information Systems Institute, University of Salford

Abstract

An access control policy writing tool for the PERMIS role-based privileges
management infrastructure was iteratively developed employing usability principles and
techniques. Expert and intermediate users’ efficiency in policy creation was improved.
Three novice users took part in a usability trial with the first prototype, attempting to
recreate a simple policy in 15 minutes that had been specified in plain English. The
participants had not properly understood the labelling of buttons or fields in the
interface, and so experienced difficulty in breaking down the policy into components
and identifying parts of the application to put them in. The non-specialists found it
challenging to express access policy effectively because their concept of it did not
match what was presented to them on screen. Bubble help and alert boxes were
expanded and made more prescriptive to guide their actions without impacting expert
users’ efficiency. Conceptual design techniques were used to revise the labels based on
potential users’ descriptions of RBAC. A questionnaire study showed improved label
intuitiveness (t=6.28, df=7, p=.000 two tailed): e-Scientists and developers were better
able to describe access policy components from labels, and match labels with
components. This project has successfully developed an access control tool to improve
security specialists’ productivity and improve the wider e-Science community’s access
to a flexible security infrastructure.

1 Introduction

This paper tracks predicted user experiences and performance of an e-Science security software
package over the course of its multistage development. Usability depends on the context in
which it is measured and has several indices, including efficiency (time to write policy, use of
help facilities, etc.), effectiveness (e.g. task completion, quality of resulting policy, etc.), and
user satisfaction (BSI, 1998). This paper concentrates on learnability - reducing the initial
learning barrier that users must surmount to become productive - an aspect of usability that
crosses the three measures above.

Stages of our authorisation policy writing software‘s development focusing on usability
issues are outlined, along with each stage‘s methods, their results and subsequent diagnoses for
improvements. We close with the distillation of our positive and negative experiences of
introducing usability into the design process.

1.1 What is PERMIS

PERMIS (Chadwick, Otenko, & Ball, 2003) is an infrastructure that allows role-based access
control to be implemented in e-Science systems, such as but not limited to computational grids.
PERMIS consists of an application gateway surrounding the grid node which looks up users‘
x.509 attribute-certificates (ACs) in an LDAP directory in response to their requests for access.
The attribute certificates contain the users‘ roles, which are compared against a policy on the
grid node listing the permitted roles, and a decision to grant or deny access is made. A check is
also carried out that the entity that issued the ACcertificate to the user (with the PERMIS
Privilege Allocator tool) was authorised to do so.

PERMIS greatly simplifies access control for managers of grid nodes through the use of the
role based access control paradigm - privileges are given to roles rather than individual users.
Whilst the individuals who fulfil roles in an organisation may come and go with relative
frequency, the roles themselves are relatively unchanging. In this paradigm, the access control
task is simplified to giving privileges to roles, with an additional job of distributing roles to
users. The management task is further reduced by delegatingion of the task of distribution of
ACs job to named individuals, (called Sources of Authority (SOAs). The manager of a grid
node need only write the names of the SOAs into the access control policy at his/her node,-
SOAs (managers) and then (s)he can leave it up to these SOAs (managers) in other locations or
institutions comprising the grid project tocan distribute the ACs to their own users.

1.2 Why the policy editor

PERMIS access control policies are currently written by hand in XML. XML policies have
several advantages:

- they are machine processable and can be easily parsed and understood by the access
control engine;

- the content of them can be controlled by a DTD or schema thus ensuring that the
manager creates syntactically correct policies;

- open source tools are available for manipulating XML data structures thereby reducing
implementation costs;

- XML policies can be automatically generated by applications (for example in an open
tendering application developed in the PERMIS project, the tender application
generated a specific policy governing the submission proves for each tender).

 {Salford to complete please!}

However, PERMIS developers considered that writing XML would not be efficient for grid
managers, for the following reasons:

1. We predicted that the users would be e-Scientists-unfamiliar with RBAC, PERMIS and

XML.

2. The opportunity for error - XML requires a strict grammar be followed which users may
make mistakes in;

3. Recall rather than recognition – users would have to remember the correct tags, rather
than recognise them;

4.

5.4. Effort - machine readable security policies require interpretive infrastructure (such as
tags to denote different classes of policy items) to avoid ambiguity, which tend to add
extra length to the resulting policy. PERMIS policies are brief compared with
alternatives such as Akenti’s or XACML (OASIS 2002), but still require two pages of

Formatted: Bullets and Numbering

XML for a policy that can be written in a few sentences of English.

In addition, since the intended user's were predicted to know nothing about RBAC PERMIS,

6.5. Learnability- a graphical user interface (GUI) should make PERMIS and RBAC

concepts easier to learn so users can be productive more quickly.

It was therefore decided to build a tool to produce the XML for grid managers, assisting
them with RBAC concepts and leaving them to concentrate on the semantics of the policy.
Furthermore, it was decided to use a graphical user interface, so that this interaction style‘s best
features could be used to full effect, for example by using drag-and-drop and point-and-click to
reduce the effort used in policy construction.

2 First prototype

2.1 Design features

The policy editor toolbar is the main focus for interaction (Figure 1). Users click on buttons in
the toolbar to open windows - forms that are used to fill in parts of the access control policy.
There is one button and form for each part of a PERMIS access control policy - and the names
for these have been taken directly from the technical language of PERMIS policy elements. The
Subject policy window is shown in Figure 1.

Each grid protected by PERMIS will refer to or contain at least one LDAP directory
1
, which

is a repository for the x.509 attribute certificates used to store users‘ roles. The policy editor is
configured to browse these LDAP directories, and represent them as trees in its domain
windows (subject , SOA, and target buttons) - see lower left-hand corner of Figure 1.

In normal operation the user browses the directory tree until finding the desired entry (for
example University College London Department of Computer Science), which can be double
clicked to enter it into the LDAP DN field. The user indicates that this DN should be included
in the subject domain policy by clicking the include button. The policy writer then types a
nickname for the subject domain he is defining in the Domain ID field, for example ―UCL‖,
which he will have to refer to in other windows. The information is added to the policy by
clicking the OK button, and the window is then closed by clicking the Close button.

In some cases the LDAP directories will not be available for some reason
2
, so no LDAP tree

will appear in the window. The user will then have to type in DNs into the LDAP DN field from
memory instead of seeing, pointing and clicking.

The two most important policy windows are the Target Access policy window and the Role
Assignment window (Figure 2). These windows refer to policy items defined in the other
windows by using combo-boxes (see SOA Roles, and Subject boxes in Figure 2). The combo-
boxes contain the ID nicknames users created in previous windows - so for example if the user
typed UCL into the domain ID field in Figure 1, it could be selected in the target domain
combo-box in Figure 2, and that the user was referring to the subject domain he defined as
University College London‘s Computer Science Department.

1
 the grid may use an external LDAP directory – e.g. LDAP directory of a collaborating institution. In

extreme cases a grid may not need its own LDAP server, but usually it does.

2
 Some of the reasons are: a) security restrictions – LDAP directory may not be publicly browsable, b)

firewalls - attempting to connect from a location disallowed by the institutional policy, c) network
unavailability – the manager is working on the policy whilst on a plane or train

2.2 Efficiency with intermediate to expert users

Informal comparisons by UCL and PERMIS developers showed that their first prototype
dramatically improved the efficiency with which PERMIS policies could be written. At least
one developer reported that policy creation times were shortened by more than 530%. The
prototype therefore showed the planned improvement in usability for users who are familiar
both with it and PERMIS policies - predicting a considerable increase in productivity for
intermediate and expert users.

It was therefore decided to focus further development efforts on improving learnability, to
increase the speed with which novice users could progress to intermediate status, and achieve
higher levels of satisfaction with the tool earlier.

2.3 Usability trial study

Three research fellows from UCL were recruited who did not know anything about PERMIS,
nor who had specialist knowledge of computer security (a biological anthropologist who uses
computationally intensive statistical analyses, a Human-Computer Interaction researcher, and a
grid developer). The policy editor was installed on a workstation in an open plan office, with
screen recording software and a microphone to record audio.

Participants went through the trial one at a time. The test facilitator described the procedure
to the research fellows (participants), mentioning the recording, and consent was sought to
continue. Participants were then briefed that they were about to use software for writing access
control policies, but not given further information about the architecture of PERMIS, nor given
information about role-based access control. They were then given a scenario sheet containing
a simple access control policy written in natural language (see Table 3), and given 15 minutes to
implement this using the policy editor.

The test facilitator sat by the side of each participant writing down observations and asking
them to think aloud, and prompting them to describe their thoughts whenever they appeared
confused or attempted incorrect actions. The participants were not given access to a manual or
help materials (none existed at this point, nor were they created for the trial). The test facilitator
was evasive when asked for help, answering in generalities rather than specifics, and asking
participants to continue for a few more minutes where appropriate. At the end of the allotted
time, the facilitator stopped the participants, and gave them a debriefing interview.

The lead developer objected in principle to this methodology, arguing that it used the wrong
set of participants, or at least, did not give them sufficient background knowledge before they
started. Because they did not understand the structure of LDAP DNs or understand the
vocabulary used in policy based authorisation -it was argued that they were set up to fail, and
implied that computer managers should have been used instead – this further implied that
computer managers would have the necessary background knowledge. It was proposed that this
background knowledge be measured if possible. In contrast, tThe test designer believed that
users of the PERMIS policy editor would have the title of computer manager thrust upon them,
rather than attain it through expertise, implying that the PERMIS system (including graphical
user interface, help and training materials) should supply the knowledge necessary to create
policies. This issue remains open and cannot be resolved until the policy editor is released and
its users questioned about their background.

A further objection was raised, that 20 minutes was unrealistically short for each trial‘s total
duration.- iIn real use someone writing policies with the software would not have such short
deadlines, and would be able to spend more time to learning the user interface. These are
powerful criticisms. The test designerwriter argued that these flaws were unavoidable due to
pragmatics – recruitment of volunteers would be extremely difficult for trials of realistic
duration, and existing users could not be observed in an ethnographic study as none yet exist. It
was further argued that the trials would still reveal useful information, particularly relating to

the initial barriers to use of the policy editor, though some longer term usability issues would
also be quickly observable.

The test scenario could be completed by the test facilitator in five minutes. None of the
participants completed the scenario after 15 minutes. The grid developer was given extra time,
and had not finished the scenario after 30 minutes when the trial was stopped.

There were four main reasons that participants found it difficult to complete the task. Three
of these were related to terminology, and the fourth was a difficulty in writing well-formed
LDAP distinguished names. These difficulties are described below.

Toolbar and window labels. None of the participants understood the label SOA. Two of
the participants did not understand RBAC. One of the participants thought that what should
have been entered into the SOA window was a role that should in fact be defined in the Role
Hierarchy policy. One of the participants correctly identified the purpose of the Subject and
Targets policies, but ascribed the purpose of the subject policy to the target policy, and vice
versa.

ID field labels. All three participants believed that the ID fields (in the target, subject, SOA,
target access and role assignment windows) had some pre-existing correct value that they didn‘t
know, and therefore could not input. These fields were intended to collect a value which users
would find easy to recognise when seen in other windows. One of the three, who had guessed
the purpose of the RBAC policy ID field, incorrectly copied the policy‘s object ID number into
all of the other ID fields in the application.

Exclude button. The scenario required that people from Germany be prevented from using
a resource, which should have been achieved by not specifying Germany as a subject domain
(PERMIS denies all access except that which has been explicitly allowed). The only participant
who attempted this part of the scenario incorrectly tried to define a subject domain with
Germany as an excluded node. This mistake showed that the user did not fully understand the
function of the exclude button (see Table 2), since exclude can only be used after a superior
node has been included. Nor did he understand the underlying deny all access except nature of
PERMIS policies

3
. This latter misunderstanding may be a common issue for people who are not

intimately familiar with access control lists or similar mechanisms which only allow people to
have access (rather than allow and deny access). However, the technical terminology appeared
to support the misunderstanding, rather than correct it.The role that labelling plays in
understanding this common property of access control policies should be further studied, as it
may be key in making the misunderstanding less common.

LDAP distinguished names. None of the participants were able to write syntactically
correct distinguished names (DNs) to refer to authorisation targets, subject domains or sources
of authority. Whereas the previous problems would be serious in all predicted uses of the policy
editor, the LDAP DN syntax problem would only occur in the unusual circumstance that the
policy editor would not able to browse the grid‘s LDAP directory. However, this result is a
cause of concern should this circumstance arise.

3 The second prototype

3.1 Design features

The second prototype retains the overall look and feel of its predecessor. However, an effort
was made to make the language in the interface more intuitive for people with less background

3
 The observed use of the Exclude button on Germany would have been correct if a superior node had

first been included. However, a superior node was available (“Directory” –see Figure 1) and the user did
not seek to include it nor create an alternative superior node such as “the world” to include.

in role-based access control and PERMIS, and to make it more prescriptive:

1. Many of the labels and bubble help text were changed, and where the labels were not

changed the bubble help was (see Figure 3 and Table 2).

2. The alert boxes were also changed to make them more intuitive (see Table 4).

3. Steps were taken to improve users’ understanding of the nature of PERMIS policies, so
that confusion about the function of the exclude button could be avoided (Figure 3).

4.A new field was added to the Target (now Resource) domain window (Figure 4).

The first prototype only contained a subset of the functionality of the PERMIS policy, and an
additional function - the ability to select between types of resources in a domain - was added to
the Target (now Resource) domain window (see Figure 4). In addition, tThe new labels, bubble
helps and alerts were created by using the Java resource bundle class. This allows the display
strings to be written in a table, with keys identifying each row of the table. Column are used to
hold the display strings in different languages (locales), so that the interface becomes
multilingual and can be easily switched to another language by simply changing the locale.

3.2 Analytic study

The metaphor evaluation matrix (cf. Anderson et al., 1994) was applied to the first and second
prototype‘s labels by one team member. This qualitative technique requires the analyst to fill
cells in the matrix for a label or metaphor through a process of guided introspection, taking the
user‘s point of view (Clark & Sasse, 1997). Empirical techniques (interviews, questionnaires,
etc.) can be used to supplement introspection if required.

The second prototype‘s labels such as Users, Managers, Resources, and Access Control gave
a large improvement in the amount of supported functionality that they implied (i.e. M+S+ cell
entries). For example, prototype one‘s Subject label would imply specification of something to
which the policy applied, but would not be enough for a non-specialist user to understand what
kind of thing should be specified, whereas its prototype two version Users would imply the
specification of persons who wish to use the protected resource - almost a perfect match for this
part of the system‘s functionality.

However, the analysis suggested that prototype two labels contained conceptual baggage
that would cause misunderstandings with some users. For example: Users implies the
specification of individual persons who wish to use a protected resource - something which
cannot be specified in PERMIS policies, because PERMIS gives access to roles rather than
individuals.

Table 1. A metaphor evaluation matrix (cf. Anderson et al., 1994)

 M+ M-

S+ Desirable

Features provided by the system and supported
by the metaphor.

Leads to correct use of system.

Undesirable

Features provided by the system and
not supported by the metaphor.

Leads to underused features.

S- Very undesirable

Features implied by the metaphor but not
supported by the system: Conceptual baggage

Not important

Features not implied by the metaphor
and not supported by the system

Formatted: Bullets and Numbering

Leads to user errors.

4 The third prototype

4.1 Design features

The eight main button labels were revised using the metaphor evaluation matrix, and minor bug
fixes made. The revised labels can be seen in Table 2 and Table 5.

4.2 Questionnaire Study

The questionnaire was designed to test the intuitiveness of the version 2 and 3 labels. Each
questionnaire was in two sections. The first section gave the labels and a policy goal, and asked
respondents to describe and give an example of what should go in the relevant window. This
gave a sense of respondents understanding of PERMIS functionality from knowing the labels
alone. Tthe second section of the questionnaire gave each label, a different policy goal, and
policy statements that had been derived from the goal - one per label. Respondents were asked
to match labels to policy statements by drawing a line between them. This measurement is
similar to the first one but gives respondents extra cues that are like those that would be
available when looking at the actual prototype.

A call to participate was sent out by email to UCL‘s and the University of Cambridge‘s
internal mailing lists for people who were interested in e-Science (predominantly e-Scientists,
system administrators and e-Science researchers/developers)– approximately 207 people. In
addition, a call to participate was sent out to the TrustCoM project (80 people), and 3 people
who had downloaded PERMIS and had previously answered a requirements questionnaire. No
material inducements were given to participate (entry into a prize draw, etc.). 8 responses were
received, giving a response rate of 2.8%.

The scores for each Section were aggregated. Version 2 labels scored an average of 9.25 out
of 16 (57.8%; minimum score = 6.5, maximum =10.5), and version 3 labels scored an average
of 13.9 out of 16 (86.7%; minimum score =12, maximum =16). This difference was statistically
significant (paired t=6.28, df=7, p=.000 two tailed), showing that version 3 labels are more
intuitive than version 2 labels, with a large effect size (f=0.78).

The improvements in intuitiveness scores of individual labels varied greatly between
versions two and three (Table 5). User privileges, Account administrator privileges and
Resource functionality showed particularly good improvements. The relatively low score for
resource functionality in particular was a matter of concern, leading to a reassessment of the
entire set and production of a 4

th
 set of labels (see appendix) to be tested in an upcoming

usability trial.

5 Discussion

The developers set out to improve the usability of the PERMIS system for writing access
control policies, and by so doing made PERMIS more accessible to the community at large.
They have achieved this goal using four techniques:

Allocation of function - the task of writing XML was reallocated from the user to software,
thus producing a large increase in the efficiency with which intermediate and expert users could
create policies.

Usability trials - identified particular features of the user interface that could be altered to
improve the speed which novice users could appreciate the functions of different parts of the
software.

Conceptual design - generated design ideas and informed design decisions for improving
learnability for novice users, and so lowering the costs of adopting our software.

Low fidelity prototyping/questionnaire studies - were used to test design ideas without
using precious programming resources.

We've noted a number of points during this development that other e-Science security
projects may wish to consider. Incorporating established usability techniques improved our
development process and our resulting software (see above), and having usability specialists on
the team made this easier. In particular, we found that testing often and early was of benefit, as
it gave us powerful insights into design when we had resources to do something about them.
The availability of usability data from testing shortened arguments about design decisions. In
contrast, design discussions could become quite drawn-out where data was not available. This
was particularly an issue with the analytic (rather than empirical) usability technique heuristic
evaluation (Nielsen, 1994a, 1994b), which we later found to have made valid predictions.

We were surprised by the difficulty of recruiting test participants from among the e-Science
community - our calls for participation had a 2.8% response rate for questionnaire studies, and a
0% response rate for usability trials. User trials could only be conducted by using face-to-face
meetings for recruiting. As a result, we were not able to achieve the level of testing we desired,
and this made our development process more difficult. PERMIS and e-Science are relatively
new - there were few members of an existing user group that would be motivated by self-
interest (in having improved software) to take part in testing - participation in usability trials can
take up to an hour. We were forced to create low impact test instruments to make participation
more attractive - short questionnaires that implemented some aspects of low fidelity prototype
testing. However, we found these to be an excellent way of collecting data - quick, cheap,
informative, and requiring no programming resource. Having other means of attracting test
participants would have been beneficial - budgeting to pay for test participants, or having a large
group of project partners who could be put under social or contractual pressure to participate.
Future projects may make more extensive use of usability inspection methods - such as heuristic
evaluation and cognitive walk-through or its more streamlined derivatives (e.g. Spencer, 2000) -
which do not require any test participants, but can identify significant numbers of issues
revealed by usability trials (Desurvire, 1994).

Whilst some usability interventions (such as reallocation of function of XML creation from
the user to the computer) required deep changes to our software - other improvements were
almost cosmetic in terms of the coding required to implement them (changes to button labels
lead by conceptual design) - but nevertheless brought significant improvements to usability.
Good software engineering practices made these improvements easier to implement - however,
such practices have much wider benefits, for example making software localisation more
efficient.

The utility of our questionnaire studies showed that it was not necessary to have working
code to get useful design data. We conclude that in some instances it can be preferable to test in
the absence of a working prototype, as design ideas can be tested without throwing code away
(Snyder, 2003). This leads to the conclusion that testing and freezing of user interface designs
should be done as much as possible before coding begins, or if not then as early as possible -
giving the developers greater flexibility in design, and a more efficient and often more
rewarding software engineering process (Cooper, 1999).

There is a perception that the difficulty in getting e-Science technology to work drives
security considerations to the back of the queue, and that security mechanisms impede
application users rather than support them. This perception causes users to find ways of
subverting the security mechanism (Sasse, Brostoff, & Weirich, 2001). We feel that

incorporating usability principles and techniques into the development of e-Science security
software can make it more attractive to the wider e-Science community, increasing its uptake
and appropriate use.

References

Anderson, B., Smyth, M., Knott, R. P., Bergan, M., Bergan, J., & Alty, J. L. (1994). Minimising
conceptual baggage: making choices about metaphor. Paper presented at the People
and computers IX, Glasgow.

BSI. (1998). Ergonomic requirements for office work with visual display terminals (VDTs).
Guidance on usability (BS EN ISO 9241-11:1998). London: BSI.

Chadwick, D. W., Otenko, A., & Ball, E. (2003). Implementing Role Based Access Controls
Using X.509 Attribute Certificates. IEEE Internet Computing, 62-69.

Clark, L., & Sasse, M. A. (1997, August). Conceptual Design Reconsidered - The Case of the
Internet Session Directory Tool. Paper presented at the HCI '97, Bristol.

Cooper, A. (1999). The Inmates Are Running the Asylum: Why High-tech Products Drive Us
Crazy and How to Restore the Sanity: Sams.

Desurvire, H. W. (1994). Faster, cheaper!! Are usability inspection methods as effective as
empirical testing? In J. Nielsen & R. L. Mack (Eds.), Usability inspection methods (pp.
173-202). New York: John Wiley & Sons, Inc.

Nielsen, J. (1994a). Heuristic Evaluation. In J. Nielsen & R. L. Mack (Eds.), Usability
inspection methods (pp. 25-62). New York: John Wiley & Sons.

Nielsen, J. (1994b). How to Conduct a Heuristic Evaluation, [Web page]. Available:
http://www.useit.com/papers/heuristic/heuristic_evaluation.html [2003, 9th December].

OASIS (2002) OASIS eXtensible Access Control Markup Language (XACML) v1.0, 12 Dec
2002, available from http://www.oasis-open.org/committees/xacml/

Sasse, A., Brostoff, S., & Weirich, D. (2001). Transforming the ‗weakest link‘ — a human-
computer interaction approach to usable and effective security. BT technology journal,
19(3), 122-131.

Snyder, C. (2003). Paper prototyping: The fast and easy way to design and refine user
interfaces. London: Morgan Kaufmann.

Spencer, R. (2000, April 1-6). The Streamlined Cognitive Walkthrough Method, Working
Around Social Constraints Encountered in a Software Development Company. Paper
presented at the CHI 2000, The Hague, The Netherlands.

Figure 1. Example screenshot from Prototype 1, showing the main interface buttons

in the policy editor toolbar, and the form type useful subject, SOA, and target policies.
LDAP directories can be expanded and collapsed (lower left-hand corner of window).

Figure 2. The Role Assignmenttarget access policy window (Prototype 1). Combo-

boxes contain the IDs created by users in other windows, so that policy items defined in
these other windows can be referred to.

Table 2.labels and bubble help for prototypes versions 1 and 2two, with a description of each interface items purpose. Keyboard
shortcuts have been removed from bubble help columns as they have not been changed. Revised bubble help for v3 and v4 not shown as
changes were not that significant

Labels v1 Bubble help v1 Labels v2 Bubble help v2 Labels v3 Labels v4 Meaning/Purpose

Rbac Edit RBAC policy Policy
Number

Select this to enter the
unique policy number

Policy object
ID

No change Enter the unique Policy OID

Subject Edit Subject
Policy

Users Select this to define or
view who the groups of
users are

Where users
are from

No change A branch of aAn LDAP directory
domaintree in which users reside (a
subject domain). This will which
issubsequently be put under the authority
of an SOA to upload allocate roles
(Attribute Certificates) to.

SOA Edit SOA Policy Managers Select this to define or
view who the trusted
managers are

Account
administrators

No change ―Source of Authority‖ – a person you
delegate to the task of assigning role ACs
to users.

Role
hierarchy

Edit Role
hierarchy Policy

Roles Select this to define or
view the roles covered
by this policy

User types User roles Naming of roles and the dDefinition of
the role hierarchy (i.e. inheritance-of-
privileges relationships between
roles)them

Role
assignment

Edit Role
assignment Policy

Role
allocations

Select this to define or
view which trusted
managers can assign
which roles to which
group of users

Administrator
privileges

No change Which roles an SOA can assign to which
subject domains for which targets

Target Edit Target Policy Resources Select this to define or
view what resources are
to be prtotected by this
policy

My protected
resources

No change An branch or leaves of an LDAP
directory domaintree which contains Grid
nodes owned by the grid node manager
that are to be protected by the policy
(target domain)

Labels v1 Bubble help v1 Labels v2 Bubble help v2 Labels v3 Labels v4 Meaning/Purpose

Action Edit Action Policy Actions Select this to define or
view the actions that
users are allowed to
perform on the
resources

Resource
functionality

Resource‘s‘
functions

Things that users can request to do on
targets, about which an access control
decision must be made

Target
access

Edit Target access
Policy

Access
control

Select this to define or
view which actions can
be performed on which
resources by which roles

User privileges No change

Which roles can do which actions on
which targets

Include Include in the
subject domain
spec

Include Select this to include the
domain entered in the
box above in the
SubjectPolicy

No change No change Indicate that you wish an LDAP subtree
branch to become part of a subject or
target or SOA domains.

Exclude Exclude from the
subject domain
spec

Exclude Select this to exclude
the domain entered in
the box above from the
selected Include domain

No change No change Indicate that you wish to snip out a sub
branch from an LDAP tree branch that
you have included.

Delete Delete this node Delete Select this to delete the
item selected in the right
hand window

No change No change Delete branch or leaf from Subject Policy
box, SOAPolicy box, or TargetPolicy
box.

OK Press button to put
contents into
XML tree

OK Select this to add the
data from the form to
the policy in memory

No change No change Add the form contents to the access
control policy, keeping the form/window
open.

Cancel Cancel without
putting content to
tree

Cancel Select this to remove the
data from the form
without adding anything
to the policy in memory

No change No change Clears all the fields in the form.

Close Close this window Close Select this to close the
form

No change No change Closes the currently open form. Does not
check if form contents have been saved.

Labels v1 Bubble help v1 Labels v2 Bubble help v2 Labels v3 Labels v4 Meaning/Purpose

Remove Remove from list
of Actions domain

Remove Remove the selected
action from the window
above

No change No change Clears the Remove the Action fields
infrom the list in the form

Add Add Select this to define or
viewadd …. (contents
varied depending upon
context)

No change No change Move or copy text from one field to
another, without adding it to the access
control policyAdd the selected item to
the appropriate list (dependent upon
context)

Table 3. Scenario for User trials of prototype 1

―UCL‘s ―Computer Science‖ has a really great networked printer, called ―printer‖. The head
of department has put you in charge of access control for it.

He‘s instructed you to write a policy for it that will delegate to ―David Chadwick‖ of
―University of Salford‖ (in a department called ―ISI‖) the power to let ―staff‖ from Salford
University use our printer to ―print‖ as many ―copies‖ of documents as they like, as we‘ve very
close working ties with them.

However, the head of department is keen that no one from Salford‘s ―Long Book Dept‖ be
allowed to use our printer (as it would soon get too expensive). Also, he doesn‘t want anyone
from Germany (i.e. anyone from country code ―de‖) to use the printer, for licensing reasons.

Finally, he says that the College‘s computing standards mean you‘ll have to give the policy
an ID number of ―1.2.3.4.5.6‖‖

Figure 3. explanatory text in the user interface laying out the underlying nature of

PERMIS policies. (Prototype 2)

Figure 4. Screenshot showing the new Resource Type field (Prototype 2)

Table 4. Alert boxes from prototypes one and two, showing a progression to more
intuitive language: a) after starting the policy editor and selecting new from the file
menu, b) on clicking the okay button, c) on trying to quit without saving.

 Prototype 1 Prototype 2

A

B

C

Table 5. Intuitiveness of version 2 and 3 labels. Percentage correct is the proportion
of correct questionnaire responses for each label. 8 respondents answered two questions
about each label.

v3 Labels % correct v2 Labels % correct

User privileges 84.4% Access control 21.9%

Account administrator
privileges

87.5% Role allocations 37.5%

Account administrators 87.5% Managers 81.3%

User types 84.4% Roles 56.3%

Where users are from 100.0% Users 43.8%

My protected resources 90.6% Resources 90.6%

Resource functionality 59.4% Actions 37.5%

Policy object ID 100.0% Policy number 93.8%

Table 6 – Alert box on clicking OK when there’s an empty ID field and LDAP DN
field – see figure 4.

Prototype No. Alert box

Prototype 2

Prototype 3

Figure 5. Screenshot from prototype 4, showing most version 4 labels and tailored ID
field focus /instructions

