
Where do I begin? A problem solving approach inteaching functional programmingSimon ThompsonComputing LaboratoryUniversity of Kent at CanterburyS.J.Thompson@ukc.ac.ukAbstract. This paper introduces a problem solving method for teach-ing functional programming, based on Polya's How To Solve It, an in-troductory investigation of mathematical method. We �rst present thelanguage independent version, and then show in particular how it appliesto the development of programs in Haskell. The method is illustrated bya sequence of examples and a larger case study.Keywords. Functional programming, Haskell, palindrome recognition,Polya, problem solving.1 IntroductionMany students take easily to functional programming, whilst others experiencedi�culties of one sort or another. The work reported here is the result of attemptsto advise students on how to use problem solving ideas to help them design anddevelop programs.Some students come to a computer science degree with considerable experi-ence of programming in an imperative language such as Pascal or C. For thesestudents, a functional approach forces them to look afresh at the process ofprogramming; it is no longer possible to construct programs `from the middleout'; instead design has to be confronted from the start. Other students come toa CS programme with no prior programming experience, and so with no `bag-gage' which might encumber them. Many of these students prefer a functionalapproach to the imperative, but lacking the background of the experienced stu-dents need encouragement and advice about how to build programs.1In this paper we report on how we try to answer our students' question`Where do I begin?' by talking explicitly about problem solving and what itmeans in programming. Beyond enabling students to program more e�ectivelya problem solving approach has a number of other important consequences. Theapproach is not only bene�cial in a functional programming context, as we areable to use the approach across our introductory curriculum, as reported in [1],reinforcing ideas in a disparate set of courses including imperative programmingand systems analysis. It is also striking that the cycle of problem solving is very1 Further reports on instructors' experience of teaching functional programming weregiven at the recent Workshop in the UK [6].

close to the `understand, plan, write and review' scheme which is recommendedto students experiencing di�culties in writing essays, emphasising the fact thatproblem solving ability is a transferable skill.In this paper we �rst review our general problem solving strategy, mod-elled on Polya's epoch-making How To Solve It, [5], which brought these ideasto prominence in mathematics some �fty years ago. This material is largelylanguage-independent. We then go on to explore how to take these ideas intothe functional domain by describing `How to program it in Haskell'. After lookingat a sequence of examples we examine the case study of palindrome recognition,and the lessons to be learned from this example. We conclude by reviewing thefuture role of problem solving in functional programming and across the com-puter science curriculum, since the material on problem solving can also be seenas the �rst stage in learning software engineering, `in the small' as it were; moredetails are given in [1].I am very grateful to David Barnes and Sally Fincher with whom the cross-curricular ideas were developed, and to Jan Sellers of the Rutherford StudyCentre at the University of Kent who provided support for workshops in problemsolving, as well as pointing out the overlap with essay writing techniques. TheAlumni Fund of the University of Kent provided funding for Jan to work withus. Finally I would like to acknowledge all the colleagues at UKC with whom Ihave taught functional programming, and from whom I have learned an immenseamount.2 How To Program ItPolya's How To Solve It, [5], contains a wealth of material about how to ap-proach mathematical problems of various kinds. This ranges from speci�c hintswhich can be used in particular circumstances to general methodological ideas.The latter are summarised in a two-page table giving a four-stage process (ormore strictly a cycle) for solving problems. In helping students to program, wehave speci�ed a similar summary of method { How To Program It { which ispresented in Figures 1 and 2. The stages of our cycle are: understanding theproblem; designing the program; writing the program and �nally looking back(or `re
ection').The table is largely self-explanatory, so we will not paraphrase it here; insteadwe will make some comments about its structure and how it has been used.How To Program It has been written in a language-independent way (at leastas much as the terminology of modern computing allows). In Section 3 we look athow it can be specialised for the lazy functional programming language Haskell,[4, 7]. Plainly it can also be used with other programming languages, and at theUniversity of Kent we have used it in teaching Modula-3, [1], for instance.Our approach emphasizes that a novice can make substantial progress incompleting a programming task before beginning to write any program code.This is very important in demystifying the programming process for those who�nd it di�cult. As the title of this paper suggests, getting started in the task

UNDERSTANDING THE PROBLEMFirst understand theproblem.Name the program orfunction.What is its type? What are the inputs (or arguments)? What are the outputs(or results)? What is the speci�cation of the problem?Can the speci�cation be satis�ed? Is it insu�cient? orredundant? or contradictory? What special conditions arethere on the inputs and outputs?Does the problem break into parts? It can help to drawdiagrams and to write things down in pseudo-code or plainEnglish.DESIGNING THE PROGRAMIn designing the programyou need to think aboutthe connections betweenthe input and the output.If there is no immediateconnection, you mighthave to think of auxiliaryproblems which wouldhelp in the solution.You want to give yourselfsome sort of plan of howto write the program.
Have you seen the problem before? In a slightly di�erentform?Do you know a related problem? Do you know anyprograms or functions which could be useful?Look at the speci�cation. Try to �nd a familiar problemwith the same or similar speci�cation.Here is a problem related to yours and solved before. Couldyou use it? Could you use its results? Could you use itsmethods? Should you introduce some auxiliary parts to theprogram?If you cannot solve the proposed problem try to solve arelated one. Can you imagine a more accessible related one?A more general one? A more speci�c one? An analogousproblem?Can you solve part of the problem? Can you get somethinguseful from the inputs? Can you think of information whichwould help you to calculate the outputs? How could youchange the inputs/outputs so that they were closer to eachother?Did you use all the inputs? Did you use the specialconditions on the inputs? Have you taken into account allthat the speci�cation requires?Fig. 1. How To Program It, Part I

WRITING YOUR PROGRAMWriting the programmeans taking your designinto a particularprogramming language.Think about how you canbuild programs in thelanguage. How do youdeal with di�erent cases?With doing things insequence? With doingthings repeatedly orrecursively?You also need to knowthe programs you havealready written, and thefunctions built into thelanguage or library.
In writing your program, make sure that you check eachstep of the design. Can you see clearly that each step doeswhat it should?You can write the program in stages. Think about thedi�erent cases into which the problem divides; in particularthink about the di�erent cases for the inputs. You can alsothink about computing parts of the result separately, andhow to put the parts together to get the �nal results.You can think of solving the problem by solving it for asmaller input and using the result to get your result; this isrecursion.Your design may call on you to solve a more general ormore speci�c problem. Write the solutions to these; theymay guide how you write the solution itself, or may indeedbe used in that solution.You should also draw on other programs you have written.Can they be used? Can they be modi�ed? Can they guidehow to build the solution?LOOKING BACKExamine your solution:how can it be improved? Can you test that the program works, on a variety ofarguments?Can you think of how you might write the programdi�erently if you had to start again?Can you see how you might use the program or its methodto build another program?Fig. 2. How To Program It, Part IIcan be a block for many students. For example, in the �rst stage of the process astudent will have to clarify the problem in two complementary ways. First, theinformal statement has to be clari�ed, and perhaps restated, giving a clear infor-mal goal. Secondly, this should mean that the student is able to write down thename of a program or function and more importantly give a type to this artifactat this stage. While this may seem a small step, it means that misconceptionscan be spotted at an early stage, and avoid a student going o� in a mistakendirection.The last observation is an example of a general point. Although we have made

re
ection (or `looking back') the �nal stage of the process, it should permeatethe whole process. At the �rst stage, once a type for a function has been given, itis sensible to re
ect on this choice: giving some typical inputs and correspondingoutputs, does the type speci�ed actually re
ect the problem? This means thata student is forced to check both their understanding of the problem and of thetypes of the target language.At the design stage, students are encouraged to think about the context of theproblem, and the ways in which this can help the solution of the problem itself.We emphasise that programs can be re-used either by calling them or by mod-ifying their de�nitions, as well as the ideas of specialisation and generalisation.Generalisation is particularly apt in the modern functional context, in whichpolymorphism and higher-order functions allow libraries of general functions tobe written with little overhead (in contrast to the C++ Standard TemplateLibrary, say).Implementation ideas can be discussed in a more concrete way in the contextof a particular language. The ideas of this section are next discussed in thecontext of Haskell by means of a succession of examples in Section 3 and by alengthier case study in Section 4. Note that the design stage of the case studyis essentially language independent.Students are encouraged to re
ect on what they have achieved throughoutthe problem solving cycle. As well as testing their �nished programs, pencil andpaper evaluation of Haskell programs is particularly e�ective, and we expectstudents to use this as a way of discovering how their programs work.3 Programming it in HaskellAs we saw in the previous section, it is more di�cult to give useful language-independent advice about how to write programs than it is about how to designthem. It is also easier to understand the generalities of How To Program It inthe context of particular examples. We therefore provide students with particularlanguage-speci�c advice in tabular form. These tables allow us to{ give examples to illustrate the design and programming stages of the process,and{ discuss the programming process in a much more speci�c way.The full text of Programming it in Haskell is available on the World Wide Web,[9]. Rather than reproduce it here, in the rest of this section we look at some ofthe examples and the points in the process which they illustrate.Problem: �nd the maximum of three integersA �rst example is to �nd the maximum of three integers. In our discussion welink various points in the exposition to the four stages of How To Program It.

Understanding the problem Even in a problem of this simplicity there canbe some discussion of the speci�cation: what is to be done in the case when two(or three) of the integers are maximal? This is usually resolved by saying thatthe common value should be returned, but the important learning point here isthat the discussion takes place. Also one can state the name and type, beginningthe solution:maxThree :: Int -> Int -> Int -> IntDesigning and writing the program More interesting points can be madein the design stage. Given a function max to �nd the maximum of two integers,max :: Int -> Int -> Intmax a b| a>=b = a| otherwise = bthis can be used in two ways. It can form a model for the solution of the problem:maxThree a b c| a>=b && a>=c = a|or it can itself be used in a solutionmaxThree a b c = max (max a b) cIt is almost universally the case that novices produce the �rst solution ratherthan the second, so this provides a useful �rst lesson in the existence of designchoices, guided by the resources available (in this case the function max). Al-though it is di�cult to interpret exactly why this is the case, it can be takenas an indication that novice students �nd it more natural to tackle a problemin a single step, rather than stepping back from the problem and looking at itmore strategically. This lends support to introducing these problem solving ideasexplicitly, rather than hoping that they will be absorbed `osmotically'.We also point out that given maxThree it is straightforward to generalise tocases of �nding the minimum of three numbers, the maximum of four, and soon.Looking back Finally, this is a non-trivial example for program testing. A notuncommon student error here is to make the inequalities strict, thusmaxThreeErr a b c| a>b && a>c = a| b>c && b>a = b| otherwise = cThis provides a discussion point in how test data are chosen; the vast majorityof student test data sets do not reveal the error. A systematic approach shouldproduce the data which indicate the error { a and b jointly maximal { and indeedthe cause of error links back to the initial clari�cation of the speci�cation.

Problem: add the positive numbers in a listWe use this example to show how to break down the process of designing andwriting a program { stages two and three of our four-step process { into a numberof simpler steps. The function we require isaddPos :: [Int] -> IntWe �rst consider the design of the equations which describe the function. Aparadigm here if we are to de�ne the function from scratch is primitive recursion(or structural recursion) over the list argument. In doing this we adopt thegeneral schemeaddPos [] = ...addPos (a:x) = ... addPos x ...in which we have do de�ne the value at [] outright and the value at (a:x) fromthe value at x. Completing the �rst equation givesaddPos [] = 0The (a:x) case requires more thought. Guidance can often come from lookingat examples. Here we take lists[-4,3,2,-1][2,3,2,-1]which respectively give sums 0 and 6. In the �rst case the head does not con-tribute to the sum; in the second it does. This suggests the case analysisaddPos (a:x)| a>0 = ...| otherwise = ...from which point in development the answer can be seen. The point of thisexample is less to develop the particular function than to illustrate how theprocess works.The example is also enlightening for the other design possibilities it o�ers byway of looking back at the problem. In particularly when students are acquaintedwith filter and foldr the explicit de�nitionaddPos = foldr (+) 0 . filter (>0)is possible. The de�nition here re
ects very clearly its top-down design.Further examplesOther examples we have used includeMaximum of a list This is similar to addPos, but revisits the questions raisedby the maxThree example. In particular, will the max function be used in thede�nition?

Counting how many times a maximum occurs among three numbersThis gives a reasonable example in which local de�nitions (in a where clause)naturally structure a de�nition with a number of parts.Deciding whether one list is a sublist of another This example naturallygives rise to an auxiliary function during its development.Summing integers up to n This can give rise to the generalisation of sum-ming numbers from m to n.The discussions thus far have been about algorithms; there is a wealth of materialwhich addresses data and object design, the former of which we address in [9].4 Case study: palindromesThe problem is to recognise palindromes, such as"Madam I'm Adam"It is chosen as an example since even for a more con�dent student it requires somethought before implementation can begin. Once the speci�cation is clari�ed itpresents a non-trivial design space in which we can illustrate how choices betweenalternative designs can take place. Indeed, it is a useful example for small-groupwork since it is likely that di�erent groups will produce substantially di�erentinitial design ideas. It is also an example in which a variety of standard functionscan be used.We address the main ideas in this section; further details are available on theWorld Wide Web [8].Understanding the problemThe problem is stated in a deliberately vague way. A palindrome can be identi�edas a string which is the same read forwards or backwards, so long as(1) we disregard the punctuation (punctuation marks and spaces) in the string;(2) we disregard the case (upper or lower: that is capital or small) of the lettersin the string.Requirement (2) is plainly unambiguous, whilst (1) will need to be revisited atthe implementation stage.Overall designThe palindrome example lends itself to a wide choice of designs. The simplerproblem in which there is no punctuation and all letters in lower case can behelpful in two ways. It can either form a guide about how to write the fullsolution, or be used as a part of that solution. The choice here provides a usefuldiscussion point.

Design: the simpler problemPossible designs which can emerge here may be classi�ed in two di�erent ways.{ Is the string handled as a single entity, or split into two parts?{ Is comparison made between strings, or between individual characters?These choices generate these outline designs:{ The string is reversed and compared with itself;{ the string is split, one part reversed and the result compared with the otherpart;{ the �rst and last characters are compared, and if equal are removed and aniteration or a recursion is performed;{ the string is split, one part reversed and the strings are then compared onecharacter at a time.Again, it is important for students to be able both to see the possibilities avail-able, and to discuss their relative merits (in the context of the implementationlanguage). Naturally, too, there needs to be a comparison of the di�erent waysin which the string is represented.Design: the full problemAssuming we are to use the solution to the simpler problem in solving the fullproblem, we reach our goal by writing a function which removes punctuation andchanges all upper case letters to lower case. Here again we can see an opportunityto split the task in two, and also to discuss the order in which the two operationsare performed: do we remove punctuation before or after converting letters tolower case? This allows a discussion of relative e�ciency.Writing the programAt this point we need to revisit the speci�cation and to make plain what is meantby punctuation. This is not clear from the example given in the speci�cation, andwe can choose either to be proscriptive and disallow everything but letters anddigits, or to be permissive and to say that punctuation consists of a particularset of characters.There are more speci�c implementation decisions to be taken here; thesereinforce the discussions in Section 3. In particular there is substantial scope forusing built-in or library functions.We give a full implementation of the palindrome recognition problem in Fig-ure 3.

palin :: String -> Boolpalin st = simplePalin (disregard st)simplePalin :: String -> BoolsimplePalin st = (rev st == st)rev :: String -> Stringrev [] = []rev (a:st) = rev st ++ [a]disregard :: String -> Stringdisregard st = change (remove st)remove :: String -> Stringchange :: String -> Stringremove [] = []remove (a:st)| notPunct a = a : remove st| otherwise = remove stnotPunct ch = isAlpha ch || isDigit chchange [] = []change (a:st) = convert a : change stconvert :: Char -> Charconvert ch| isCap ch = toEnum (fromEnum ch + offset)| otherwise = chwhereoffset = fromEnum 'a' - fromEnum 'A'isCap :: Char -> BoolisCap ch = 'A' <= ch && ch <= 'Z'Fig. 3. Recognising palindromes in Haskell

Looking backUsing the approach suggested here, students see that the solution which theyhave chosen represents one branch in a tree of choices. Their solution can beevaluated against other possibilities, including those written by other students.There is also ample scope for discussion of testing in this problem.For instance, the solution given in Figure 3 can give rise to numerous discus-sion points.{ No higher order functions are used in the solution; we would expect to revisitthe example after covering HOFs to reveal that change is map convert andthat remove is filter notPunct.{ In a similar way we would expect to revisit the solution and discuss incor-porating function-level de�nitions such aspalin = simplePalin . disregardThis would also apply to disregard itself.{ Some library functions have been used; digits and letters are recognised byisDigit and isAlpha.{ An alternative de�nition of disregard is given bydisregard st = remove (change st)and other solutions are provided by implementing the two operations in asingle function de�nition, rather than as a composition of two separate piecesof functionality.{ We have chosen the proscriptive de�nition of punctuation, considering onlyletters and digits to be signi�cant.5 ConclusionIn this paper we have given an explicit problem solving method for beginning(functional) programmers, motivated by the desire to equip them with tools toenable them to write complex programs in a disciplined way. The method alsogives weaker students the con�dence to proceed by showing them the ways inwhich a seemingly intractable problem can be broken down into simpler partswhich can be solved separately. As well as providing a general method we thinkit crucial to illustrate the method by examples and case studies { this latterapproach is not new, see [2] for a very e�ective account of using case studies inteaching Pascal.To conclude, it is worth noting that numerous investigations into mathe-matical method were stimulated by Polya's work. Most prominent are Lakatos'investigations of the roles of proof and counterexample, [3], which we believehave useful parallels for teachers and students of computer science. We intendto develop this correspondence further in the future.

References1. David Barnes, Sally Fincher, and Simon Thompson. Introductory problem solvingin computer science. In CTC97, Dublin, 1997.2. Michael Clancy and Marcia Linn. Designing Pascal Solutions: Case studies usingdata structures. Computer Science Press, W. H. Freeman and Co., 1996.3. Imre Lakatos. Proofs and Refuations: The Logic of Mathematical Discovery. Cam-bridge University Press, 1976. Edited by John Worrall and Elie Zahar.4. John Peterson and Kevin Hammond, editors. Report on the Programming LanguageHaskell, Version 1.3.http://haskell.cs.yale.edu/haskell-report/haskell-report.html, 1996.5. G. Polya. How To Solve It. Princeton University Press, second edition, 1957.6. Teaching functional programming: Opportunities & di�culties.http://www.ukc.ac.uk/CSDN/conference/96/Report.html, September 1996.7. Simon Thompson. Haskell: The Craft of Functional Programming. Addison-Wesley,1996.8. Simon Thompson. Problem solving: recognising palindromes.http://www.ukc.ac.uk/computer_science/Haskell_craft/palindrome.html,1996.9. Simon Thompson. Programming it in Haskell.http://www.ukc.ac.uk/computer_science/Haskell_craft/ProgInHaskell.html,1996.

This article was processed using the LaTEX macro package with LLNCS style

