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Typed Norms for Typed Logic ProgramsJonathan Martin� Andy Kingy and Paul Soper�1 IntroductionSuch is the complex nature of termination that ad hoc methods for its automatic detection in logicprograms are giving way to techniques more �rmly based on theory. Many of these approachesrelate to the early theoretical result [3] which showed that a logic program terminates for boundedgoals if and only if it is recurrent. De�nitions of recurrency and boundedness are formulated interms of level mappings which assign natural numbers, or levels, to ground atoms.A predicate is recurrent with respect to some level mapping if the level of its head is greaterthan the level of each of its body atoms. The termination of bounded goals, whose level cannotincrease, then follows from the well-foundedness of the natural numbers.Level mappings are often de�ned in terms of norms which measure the size of terms. Forexample, the norm j:jlist-length de�ned to measure the length of a list, can be used as the basis fora level mapping for the Delete/3 predicate below. Comparing the size of the second argumentin the head of the recursive clause with the size of the second argument in the recursive call, andusing list length as a measure for size, we see that the size of this argument decreases by one oneach recursive call. Thus the predicate is recurrent with respect to the level mapping j:j de�nedby jDelete(t1; t2; t3)j = jt2jlist-length and terminates for all goals bounded with respect to j:j. Notethat the predicate is also recurrent with respect to other level mappings and indeed terminationcan be proved for other goals by choosing a di�erent mapping.Delete(x, [x|y], y).Delete(x, [y|z], [y|w]) <-Delete(x, z, w).Deducing termination for programs which are not structurally recursive is more complex, re-quiring the derivation of inter-argument relationships [2]. Inter-argument relationships expresshow the sizes of an atom's arguments are related. In the case of Delete/3, for example, the lengthof the second argument is one plus the length of the third argument. The Perm/2 predicate de�nedbelow is one example where an inter-argument relationship is needed to prove termination.Perm([], []).Perm([h|t], [a|p]) <-Delete(a, [h|t], l) &Perm(l, p).In fact it can be shown that this program is not recurrent and will not terminate for allground queries { recurrency implies that a program terminates for all computation rules and herethere exists a computation rule which selects non-ground Delete/3 goals which lead to in�nitederivations. It can be shown however to be acceptable [1], an analogous concept to recurrency forprograms executed using a left-to-right computation rule. A key step in the proof is to show thatthe size of the �rst argument in the head of the recursive clause is strictly greater than the size�Department of Electronics and Computer Science, University of Southampton, Southampton, SO9 5NH, UK.fjcm93r, pjsg@ecs.soton.ac.ukyComputing Laboratory, University of Kent at Canterbury, Canterbury, CT2 7NF, UK. a.m.king@ukc.ac.uk1



of the �rst argument in the recursive call, that is jljlist-length < j[hjt]jlist-length. This can only beinferred by deducing the inter-argument relationship for Delete/3 given above.Choosing the right norm is crucial in deducing termination and deriving inter-argument rela-tionships. Furthermore, di�erent norms are often needed for each case. As an example, considerthe predicate FlattenAndLength/3 de�ned below which 
attens a list of lists and computes thelength of the original list. The norm which sums the lengths of the sublists of the �rst argumentcan be used to deduce termination and is also needed to infer a useful inter-argument relationshipbetween the �rst and second arguments. To derive a precise relationship between the �rst andthird arguments, however, the norm j:jlist-length is also needed.FlattenAndLength([], [], 0).FlattenAndLength([e|x], r, Succ(z)) <-Append(e, y, r) &FlattenAndLength(x, y, z).Early work on termination relied on the user to provide the necessary norms. As this hadlimited usefulness a method to automatically generate norms from a program was proposed in [6].The approach focuses on deriving norms from type graphs that have previously been inferred by ananalysis of the program. The technique is e�ective in generating norms for proving termination ofmany of the programs found in the termination literature. The approach is clearly inappropriate,however, in the context of a typed language such as G�odel [11] when the types are already known.As typed logic programming becomes more mainstream, system building tools like partialdeduction systems will need to be mapped from untyped languages to typed ones. SAGE [9] is oneexample of a partial deduction system developed for the typed language G�odel. Although SAGEdoes well to demonstrate the e�ectiveness of self-application and how the overheads of the groundrepresentation in meta-programs can be removed, there is much potential for improvement [10]. Itsmain weakness lies in a rather rudimentary termination analysis which would bene�t considerablyfrom the well developed techniques found in the termination literature. Inevitably, norms willplay a crucial role in such an analysis. It is important, however, when mapping techniques acrossfrom the untyped setting that the new techniques should exploit the new type system as muchas possible. In the case of automatic norm derivation the approach in [6] clearly would not takeadvantage of the prescribed types. As a result of this and since \any state-of-the-art approach totermination analysis needs to take type information into account" [7], new techniques are neededto derive norms directly from these types and avoid the overhead of type graph generation. Wepresent one such technique.In this paper we show how norms can be generated from the prescribed types of a programwritten in a language which supports parametric polymorphism, e.g. G�odel [11]. Interestingly,the types highlight restrictions of earlier norms and suggest how these norms can be extended toobtain some very general and powerful notions of norm which can be used to measure any term inan almost arbitrary way. We see our work on norm derivation as a contribution to the terminationanalysis of typed logic programs which, in particular, forms an essential part of partial deductionsystems such as SAGE.The paper is structured as follows. The next section introduces polymorphic, many-sortedlanguages and programs. Section 3 de�nes linear, semi-linear and hierarchical typed norms anddiscusses the problem of rigidity in a polymorphic many-sorted context. Section 4 describes howto infer the norms of section 3 from the prescribed types of a program. Related work is addressedin the penultimate section and we conclude with some directions for future work.2 Theoretical foundations2.1 Polymorphic many-sorted languagesLet �� (resp. �f ) be an alphabet of type constructor (resp. typed function) symbols which includesat least one base (resp. constant) and let �p be an alphabet of predicate symbols. Let U denote a2



countably in�nite set of type parameters so that the term structure T (�� ; U ) represents the set ofparametric types. Let V = fV� j � 2 T (�� ; U )g denote a family of countably in�nite, disjoint sets ofvariables for polymorphic (and monomorphic) formulae, where each v� 2 V� has type � . Variableswill be denoted by the letters v; w; x; y, and z, whereas parameters will be denoted by the letteru. Each f� 2 �f (resp. p� 2 �p) is assigned a unique1 type (modulo renaming) � = h�1 : : : �n; � i(resp. � = �1 : : : �n) where �1 : : : �n 2 T (�� ; U )? and � 2 T (�� ; U ) n U . We call � the range typeof fh�1 :::�n;�i 2 �f when n > 0. Types are unique in the sense that if fh�1 :::�n ;�i, fh�1 :::�n ;�i 2 �f(resp. p�1:::�n , p�1:::�n 2 �p) then �i = �i and � = � . A symbol will often be written without itstype if it is clear from the context. The triple L = h�p;�f ; V i de�nes a polymorphic many-sorted�rst-order language.Terms, atoms and formulae are de�ned in the usual way [11]. We denote by var(o) (resp.par(o)) the set of variables (resp. parameters) in a syntactic object o. The set of term (resp.type) substitutions is denoted by Sub (resp. Sub� ). The set of all instances of �f is denoted by�yf = ff (�)jf� 2 �f ^  2 Sub�g.2.2 Polymorphic many-sorted programsLet P = h�; Si be a polymorphic many-sorted logic program where � is a triple h�� ;�f ;�pi oftype declarations and S is a set of statements of the form 8(a w) where a is an atom and wis either absent or a polymorphic many-sorted formula. The type declarations �� , �f and �pde�ne respectively �� , �f and �p.Each function declaration f : �1 � : : :� �n ! � 2 �f (resp. constant declaration c : � 2 �f )where �1; : : : ; �n 2 T (�� ; U ) and � 2 T (�� ; U ) n U implies fh�1 :::�n;�i 2 �f (resp. ch�;�i 2 �f ).Similarly, each predicate declaration p : �1 � : : :� �n 2 �p (resp. proposition declaration p 2 �p)where �1; : : : ; �n 2 T (�� ; U ) implies p�1:::�n 2 �p (resp. p� 2 �p). �f (resp. �p) is assumed to beuniversal, that is, each symbol has exactly one declaration in �f (resp. �p) so that �f (resp. �p)is well-de�ned.Given a language L = h�p;�f ; V i de�ned by a program P , we de�ne a family of extendedHerbrand domains as follows. Each EDHerb;� is the least set such that if v� 2 V� then v� 2EDHerb;� ; if fh�;�i 2 �f and � =  (�) then fh�; (�)i 2 EDHerb;� ; and if fh�1 ::: �n ;�i 2 �f andti 2 EDHerb;�i with par(�i) \ par(�j) = ; for all i; j and par(�j) \ par(�k) = ; for all j 6= kand  2 mgu(f�1 = �1; : : : ; �n = �ng [ f�i = �j j v�i 2 ti ^ v�j 2 tjg) then  (f(t1 ; : : : ; tn)) 2EDHerb; (�).3 Norms for typed logic programsA norm is a mapping that measures the size of a term. The norm list length, for example, mighttypically count the number of Cons symbols that occur in a list.Example 3.1 The length of a list of integers can be expressed asjNilj=0jCons(t1; t2)j=1 + jt2j 2The mapping is partial since it is only de�ned for closed, that is Nil-terminated, lists. Tode�ne norms as total mappings we introduce the alphabets �� = fLing and �f = f+hLin:Lin;Lini,0h�;Lini, 1h�;Linig so that EDHerb;Lin represents the class of linear expressions on VLin where termssuch as xLin + yLin + yLin + 1h�;Lini + 1h�;Lini + 1h�;Lini are abbreviated to x+ 2y + 3.It is usually too restrictive to use a single norm to measure the size of any term in a program.Di�erent terms need to be measured according to their structure or, equivalently, according totheir type. This motivates the introduction of a typed norm j:j� which only measures terms oftype � .1For overloaded symbols, for example +, we assume the symbol is uniquely renamed for each of its types.3



De�nition 3.1 (typed norm I) A typed norm for a polymorphic type � is a mappingj:j� : EDHerb;� ! EDHerb;Lin. 2Example 3.2 The typed norm j:jList(Int) : EDHerb;List(Int)! EDHerb;Lin de�ned below mea-sures the length of both open and closed lists of integers.jvjList(Int)= vjNiljList(Int)=0jCons(t1; t2)jList(Int)=1 + jt2jList(Int) 2It is appropriate at this point to review the important concept of rigidity. This idea wasoriginally introduced in [5] in order to prove termination for a class of goals with possibly non-ground terms. A rigid term is one whose size, as determined by a norm, is not a�ected bysubstitutions applied to the term.De�nition 3.2 (rigid term) Let j:j� be a typed norm for � and t be a term of type � . Then tis rigid with respect to j:j� i� 8� 2 Sub, jtj� = jt�j� .Example 3.3 The term Cons(x;Cons(y;Nil)) is rigid wrt the norm j:jList(Int) of example 3.2since for every substitution fx 7! t1; y 7! t2g where t1 and t2 are terms jCons(t1; Cons(t2; Nil))j= 2. 2By de�ning level mappings in terms of norms, it is possible to de�ne a class of bounded goals[3] in terms of rigidity. More precisely, an atom is bounded with respect to a level mapping ifeach argument of the atom whose size is measured in the level mapping is rigid. A problem arises,however, with the typed norms used in level mappings. In measuring the level of an atom, a normj:j� , which can only measure terms of type � may be applied to a term of type �, where � =  (� )for some  2 Sub� .Example 3.4 Given that �� = fInt; Listg, �f = fNilh�;List(u)i, Conshu:List(u);List(u)ig, �p =fTraverseList(u)g and S = fTraverse(Nil):; T raverse(Cons(x; y))  Traverse(y):g then thenorm j:jList(u) de�ned by jvjList(u)= vjNiljList(u)=0jCons(t1; t2)jList(u)=1 + jt2jList(u)can be used to de�ne a level mapping j:j for the Traverse=1 predicate as followsjTraverse(t)j = jtjList(u)The problem is that in trying to prove recurrency with respect to the level mapping j:j forTraverse=1, the level mapping can be applied to atoms such as Traverse(Cons(1; Nil)), yetthe type of the argument of Traverse in this instance, List(Int), is not the type List(u) for whichthe mapping is de�ned. 2This problem arises due to the polymorphism in our typed language and is not di�cult toremedy. The domain of the norm must be changed and a constraint imposed to ensure that therigidity property still holds.De�nition 3.3 (typed norm II) A typed norm for a polymorphic type � is a mappingj:j� : [ 2Sub�EDHerb; (�) ! EDHerb;Lin where8 2 Sub� ; jfh�1:::�n;�i(t1; : : : ; tn)j� = jfh (�1)::: (�n); (�)i(t1; : : : ; tn)j� 24



To see why the constraint is required, suppose that the term t is rigid wrt the type II normj:j� , then, by the de�nition of rigidity8� 2 Sub; jtj� = jt�j� (1)Now applying a variable substitution to a term often has the e�ect of further instantiating thetype of the term. For example the type of the term Cons(x;Nil) is List(u), but the type ofCons(x;Nil)fx 7! 1g = Cons(1; Nil) is List(Int). Hence we constrain the equations de�ning j:j�so that equation (1) holds.The following proposition provides us with a (weak) syntactical characterisation of rigid terms.This can be strengthened to the if and only if version by imposing some rather natural conditionson the way norms are de�ned. Unfortunately space restrictions do not allow us to give the detailshere. We only remark that these conditions do not restrict the norms in any way.Proposition 3.1 (rigid term { weak) Let j:j� be a typed norm for � and t be a term of type� . Then t is rigid with respect to j:j� if var(jtj� ) = ;. 2Throughout the remainder of this paper we will only be concerned with type II norms. Hence-forth j:j� will only denote a type II norm whose domain is unambiguously de�ned by de�nition 3.3.In view of the constraint on type II norms, we will write jf(t1; : : : ; tn)j� where f representsfh (�1)::: (�n); (�)i for all  2 Sub� . Although each norm is annotated with its type, the followingexample illustrates that several norms may exist for the same type.Example 3.5 The typed norm j:jlenList(List(Int)) measures the length of a list whose elements arelists of integers. The typed norm j:jsumList(List(Int)) sums the lengths of the elements of such a list.jvjlenList(List(Int))= vjNiljlenList(List(Int))=0jCons(t1; t2)jlenList(List(Int))=1 + jt2jlenList(List(Int))jvjsumList(List(Int))= vjNiljsumList(List(Int))=0jCons(t1; t2)jsumList(List(Int))= jt1jsumList(Int)+ jt2jsumList(List(Int))where j:jsumList(Int) is equal to the norm j:jList(Int) of example 3.2. Note that the norm j:jlenList(List(Int))is characterised by a weight of 1 in its recursive equation and the selection of the second argumentposition only, whereas the norm j:jsumList(List(Int)) is characterised by a weight of 0 in its recursiveequation and the selection of both argument positions. 2To uniquely characterise a norm we introduce a pair s = hws; Isi of partial mappings wherews : �yf ! IN assigns a weight to each function symbol and Is : �yf ! }(IN) selects a subset of theargument positions for each function symbol. The de�nition of a norm for a type � depends on sand therefore we denote the norm by j:js� .Example 3.6 In example 3.5 len = hwlen; Ileni wherewlen = fNil 7! 0; Cons 7! 1gIlen = fNil 7! fg; Cons 7! f2gg 2We are now in a position to de�ne a notion of linear and semi-linear norms [4, 13] for typedprograms.De�nition 3.4 (linear typed norm) A typed norm j:js� is linear i�8v 2 V (�); 8 2 Sub� jvjs� = v8fh�1 :::�n;�i 2 �yf jf(t1; : : : ; tn)js� = ws(fh�1 :::�n;�i) +Pi2Is(fh�1:::�n;�i) jtijs�where Is(fh�1 :::�n;�i) = f1; : : : ; ng. 25



Note that the types highlight an inherent restriction of linear norms, that is, these norms are onlyde�ned when �i = � for i = 1; : : : ; n. Such norms have limited applicability.Example 3.7 Given �� = fTreeg and �f = fLeafh�;Treei , NodehTree:Tree;Treeig, the lineartyped norm for Tree that counts the number of function symbols in a term is de�ned byjvjsizeTree= vjLeaf jsizeTree= 1jNode(t1; t2)jsizeTree= 1 + jt1jsizeTree + jt2jsizeTree 2The following de�nition generalises linear typed norms by allowing Is(fh�1 :::�n;�i) � f1; : : : ; ng.In the special case when Is(fh�1 :::�n;�i) = f1; : : : ; ng the two de�nitions are equivalent.De�nition 3.5 (semi-linear typed norm) A typed norm j:js� is semi-linear i�8v 2 V (�); 8 2 Sub� jvjs� = v8fh�1 :::�n;�i 2 �yf jf(t1; : : : ; tn)js� = ws(fh�1 :::�n;�i) +Pi2Is(fh�1:::�n;�i) jtijs�where Is(fh�1 :::�n;�i) � f1; : : : ; ng. 2Example 3.8 Given �� = fInt; Listg and �f = fNilh�;List(u)i, Conshu:List(u);List(u)ig, then thenorm j:jlenList(List(Int)) de�ned in example 3.5 is semi-linear. 2Semi-linear norms are not expressive enough to measure the sizes of terms that can be de�nedin a typed language such as G�odel. To quote [4, pp. 72, paragraph 2] \The recursive structureof a semi-linear norm gets into the term structure by only one level. Moreover so far it is notde�ned how di�erent semi-linear norms can be linked to work together. The de�nition of a semi-linear norm is recursively based only onto itself and it is easy to understand that this is a severerestriction." Again the types highlight where the essential problem lies: the norm applied to ti isj:j� whereas the type of ti is �i. The following de�nition overcomes this limitation of semi-linearnorms.De�nition 3.6 (hierarchical typed norm) A typed norm j:js� is hierarchical i�8v 2 V (�); 8 2 Sub� jvjs� = v8fh�1 :::�n;�i 2 �yf jf(t1; : : : ; tn)js� = ws(fh�1 :::�n;�i) +Pi2Is(fh�1:::�n;�i) jtijs�iwhere Is(fh�1 :::�n;�i) � f1; : : : ; ng and jtijs�i are hierarchical typed norms. 2Example 3.9 Given the alphabets of example 3.8, the norm j:jsumList(List(Int)) de�ned in example 3.5is hierarchical and, in fact, cannot be expressed as a semi-linear norm. 2Note that de�nition 3.6 is closely related to de�nition 4.5 of [6]. Both generalise the de�nitionof a type norm proposed in [13]. In [6] the relationship between typed norms and semi-linear normsis not made explicit, but our presentation makes the relationships between the various norms clear.In particular, we see that every linear typed norm is semi-linear and every semi-linear typed normis hierarchical.Although hierarchical norms allow us to inspect the structure of terms at a deeper level thanin the semi-linear case, the pair of mappings s maps a functor of a given type to the same pair ofvalues regardless of its depth in the term. In certain (pathological) circumstances this can impedethe detection of a well-founded ordering.Example 3.10 With �� and �f as de�ned in example 3.9, consider the hierarchical typed normj:jsTree de�ned by jvjsTree = vjLeaf jsTree = ws(Leaf)jNode(t1; t2)jsTree = ws(Node) +Pi2Is(Node) jtijsTree6



There is no de�nition of s which will satisfy the inequalityjNode(Node(w;Node(x; y)); z)jsTree > jNode(Node(Node(w; x); y); z)jsTree (2)needed to prove recurrency for the predicate Shift=1 de�ned byShift(Node(Node(_, Leaf), Leaf)).Shift(Node(Node(w, Node(x, y)), z)) <-Shift(Node(Node(Node(w, x), y), z)).The following table illustrates that for all values of Is(Node) and ws(Node) and for every variableassignment for w; x; y; z the left-hand side is always less than or equal to the right-hand side.Is(Node) jNode(Node(w;Node(x; y)); z)jsTree jNode(Node(Node(w; x); y); z)jsTreef1; 2g 3ws(Node) +w + x+ y + z 3ws(Node) + w + x+ y + zf1g 2ws(Node) +w 3ws(Node) + wf2g ws(Node) + z ws(Node) + zfg ws(Node) ws(Node)The inequality can be satis�ed, however, by substituting in (2) the norm j:jleftTree de�ned byjvjleftTree = v jvjrightTree = vjNode(t1; t2)jleftTree = 1 + jt1jrightTree jNode(t1; t2)jrightTree = 1 + jt2jrightTree 2The de�nition of a hierarchical typed norm can be generalised further to accommodate suchexamples by replacing jtijs�i in the de�nition with jtijsi�i where each si is a new pair of mappings.This additional expressiveness allows a term to be measured in a very 
exible way, though in prac-tice it is unlikely that such generality will be needed and besides which the complexity introducedis mind-boggling.4 Automatic generation of normsWe show how the typed norms of the previous section can be derived directly from the prescribedtypes of a program. For a program P , we require a �nite set of norms which will enable us tomeasure the size of any term occurring in P . The norms needed will be determined by the typesthat can occur in P . In the following we consider two types to be equivalent if one is a renamingof the other.De�nition 4.1 (argument types) Suppose that P de�nes the language h�p;�f ; V i. The setof argument types for P is denoted by Targ = f�i j p�1:::�n 2 �p ^ 1 � i � ng. 2The set Targ represents the types of all terms occurring as arguments of atoms in P , in thatif the type of an argument of some atom is � , then either � 2 Targ or 9 2 Sub� , 9� 2 Targ suchthat � =  (�). The following de�nition captures the types of subterms of arguments.De�nition 4.2 (argument subtypes) For each � 2 Targ we de�ne T �sub the set of subtypes of� to be the least set such that � 2 T �sub and if � 2 T �sub, fh�1 :::�n;�i 2 �f and � =  (�), then (�i) 2 T �sub, for all i = 1; : : : ; n. 2Example 4.1 If �f = fNilh�;List(u)i; Conshu:List(u);List(u)ig and �p = fPList(List(u)); QList(u)g,then Targ = fList(List(u)); List(u)g, TList(List(u))sub = fList(List(u)); List(u); ug and TList(u)sub =fList(u); ug. 27



By de�ning a norm j:j� for each � 2 Targ , we are able to measure the size of any argumentoccurring in the program. The sets T �isub are used to facilitate the de�nitions of these norms. Itwill often be the case that some of the arguments in a program have the same type and di�erentnorms may be required to measure the sizes of such arguments. We thus de�ne for each � 2 Targ anorm parameterised by a pair s as in the preceding section. Later, s can be de�ned for individualarguments.Before de�ning the induction process we �rst make an important observation which has ane�ect on the de�nition of the norms. We �rst note that the type of a constant or the range typeof a function must be either a base type or a type with a top-level constructor. A consequenceof this is that any term whose type is a parameter is a variable. The term structure of any termassigned to this variable cannot be accessed or altered in any way within the local computation,since if it could, the type of the term would be known and thus the variable would be of a morespeci�c type. Thus the term (and its size measured wrt to any norm) never changes and hencehas no e�ect on termination at the local level. This means that when de�ning the norm j:ju whereu 2 U , the value of jtju for any term t should be constant. To simplify the de�nition we assumethe constant value is zero. Furthermore, the norm j:ju can be removed from any de�nition whichdepends on it.De�nition 4.3 (induced typed norm) For each � 2 Targ we de�ne the hierarchical typednorm j:js� : [ 2Sub�EDHerb; (�) ! EDHerb;Lin as the least set of equations Es� as follows. If � 2 Uthen Es� = fj:js� = 0g, elseEs� =� jvjs� = v j � 2 T �sub 	[�jf(t1; : : : ; tn)js� = ws(f (�)) +Pi2Is(f (�)) jtijs (�i) ���� f� 2 �f^ � = h�1 : : : �n; �i^� 2 T �sub^� =  (�) ^  2 Sub� �A pair s = hws; Isi is partially de�ned for each � 2 Targ as follows. For each � 2 T �sub and f� 2 �f ,� = h�1 : : : �n; �i such that � =  (�) for some  2 Sub� , we add the mapping f (�) 7! w 2 IN tows and the mapping f (�) 7! I � f1; : : : ; ng to Is with the constraint that i 62 I for all �i 2 U . 2Note that due to the de�nition of T �sub each j:js (�i) is de�ned in Es� . Thus each Es� is wellde�ned pending a complete de�nition of the pair s = hws; Isi.Example 4.2 Given Targ as de�ned in example 4.1, we partially de�ne a pair s = hws; Isi for thetype List(List(u)) and a pair t = hwt; Iti for the type List(u) as follows:ws = � Nilh�;List(List(u))i 7! w1; ConshList(u):List(List(u));List(List(u))i 7! w2;Nilh�;List(u)i 7! w3; Conshu:List(u);List(u)i 7! w4 �Is = � Nilh�;List(List(u))i 7! fg; ConshList(u):List(List(u));List(List(u))i 7! I1 � f1; 2gNilh�;List(u)i 7! fg; Conshu:List(u);List(u)i 7! I2 � f2g �wt = � Nilh�;List(u)i 7! w5; Conshu:List(u);List(u)i 7! w6 	It = � Nilh�;List(u)i 7! fg; Conshu:List(u);List(u)i 7! I3 � f2g 	where w1; w2; w3; w4; w5; w6 2 IN.Choosing for example w1 = w2 = w3 = w5 = 0; w4 = w6 = 1, I1 = f1; 2g and I2 = I3 = f2gwe derive the following equation setsEsList(List(u)) =8>>>>>>><>>>>>>>: jvjsList(List(u)) = v;jNiljsList(List(u)) = 0;jCons(t1; t2)jsList(List(u)) = jt1jsList(u)+ jt2jsList(List(u));jvjsList(u) = v;jNiljsList(u) = 0;jCons(t1; t2)jsList(u) = 1 + jt2jsList(u) 9>>>>>>>=>>>>>>>;EtList(u) =8><>: jvjtList(u) = v;jNiljtList(u) = 0;jCons(t1; t2)jtList(u) = 1 + jt2jtList(u) 9>=>; 28



Note that the sets of terms for which the norms are de�ned are not disjoint. For example, thedomain of the norm j:jsList(List(u)) of example 4.2 is a subset of the domain for the norm j:jtList(u).There is no confusion, however, when deciding which norm to use on a particular argument of anatom since the choice is determined by the atom's predicate symbol.Example 4.3 Consider the atom QList(u)(Cons(Cons(1; Nil); Nil)) which may appear as partof a goal for the predicate QList(u). Although the type of the atom's argument is List(List(Int)),the correct norm to use would be j:jtList(u) for some t since the type of the predicate is List(u). 2All that remains now to complete the de�nitions of our derived norms is to de�ne suitableweight and index functions. This in itself is a non-trivial problem.4.1 De�ning the weight and index functionsMost of the approaches to termination analysis based on norms essentially use a simple generate-and-test method for deducing termination. Norms are generated (either automatically or oth-erwise) and used to form level mappings which are then applied to the program for which atermination proof is sought. Inequalities are then derived whose solubility indicates the successor failure of the termination proof.The main di�culty with this approach is the potentially in�nite number of norms that can begenerated. To reduce the complexity of this problem a number of heuristics can be used. Decorteet al. [6], for example, propose the following (adapted) heuristics for deriving typed norms.� A weight of one is assigned to all functors of arity n > 0.� A weight of zero is assigned to all constants.� Any argument position whose type is not a parameter is selected.Applying these heuristics to our partially derived norms allows us to obtain the same norms thatwould be derived by [6] given the same type information in the form of a type graph. Althoughthis approach works well on a large number of examples, there are occasions when it will failto generate norms that can be used in a termination proof. The naive reverse program withan accumulating parameter [6] is one example where a reduced number of arguments needs tobe selected. In that paper a solution to this problem is sketched using symbolic norms whiche�ectively de�ne an argument index function through an exhaustive search. Also, below we givean example of where constants must be assigned weights other than zero.Example 4.4 If each constant occurring in the program below is assigned a weight of zero thenthe interargument relation derived for Path(x, y) would be jxj = jyj = 0. With this relationship,termination cannot be proved since we require that jxj > jzj in the recursive TransitiveClosure/2clause. To prove termination each constant must take on a di�erent value.TransitiveClosure(x, y) <- Path(x, y).TransitiveClosure(x, y) <- Path(x, z) & TransitiveClosure(z, y).Path(a, b).Path(b, c). 2This example seems to suggest that the determination of weights must take place as an integralpart of a termination analysis { the variety of the weights occurring indicates the futility of agenerate and test approach in this instance.In summary, we see that there are several approaches to the problem of deriving the weightand index functions. We do not advocate any particular method here since it is necessary tofurther investigate and compare suitable methods. We believe that the open-ended de�nitions ofour derived norms should facilitate such a study.9



5 Related workOne weakness of [6] is that its norms are derived from type graphs. Type graph analyses, however,have not always been renowned for their tractability. Even for small programs, the prototypeanalyser of [12], used in [6], is typically 15 times slower than the optimising PLM compiler [15].Recently, type graph analysis has been shown to be practical formedium-sized Prolog programs [14]when augmented with an improved widening and compacting procedure. In addition, Gallagherand de Waal have shown how type graphs can be e�ciently represented as unary logic programsin [8]. Clearly, however, any approach which avoids the costs of inferring type graphs is preferable.Bossi et al. [4] de�ne a very general concept of norm in terms of type schemata which describestructural properties of terms. Their typed norms for termination analysis are very similar to theones presented in this paper, though they are able to de�ne some norms which cannot be inferredusing our present framework.Example 5.1 Consider the following program from [4]Check(Cons(x, xs)) <- Check(xs).Check(Cons(x, Nil)) <- Nat(x).Nat(Succ(x)) <- Nat(x).Nat(0).We would like to de�ne a norm j:jList(Nat) so that we can prove termination for goals <-Check(x) where x is rigid wrt j:jList(Nat). The following norm adapted from [4] satis�es thiscriterion. jvjList(Nat) = v jvjNat = v jvjEmpty = vjCons(t1; t2)jList(Nat) = 1 + jt2jList(Nat) j0jNat = 0 jNiljEmpty = 0jCons(t1; t2)jList(Nat) = jt1jNat + jt2jEmpty jSucc(t)jNat = 1 + jtjNatThis norm cannot be inferred automatically using our method (nor that of [6]) since it re-lies on the functor Cons having two distinct types, namely hNat:List(Nat); List(Nat)i andhNat:Empty; List(Nat)i, but this is forbidden in languages like G�odel where the declarationsare universal. Note that this is not a limitation of our framework but rather a limitation of thetype system on which it is based. Given a more 
exible system it would be possible to infer suchnorms as the above directly from the prescribed types. 2We note that the typed norms of [4] are not derived automatically. By contrast, our norms,are simple enough to be easily derived using only the type declarations of a program.6 Conclusions and future workIn this paper, we have presented a 
exible method for inferring a number of norms from the typedeclarations of a program which are su�cient to measure the size of any Herbrand term occurringin the program in an almost arbitrary way. The norms are intended for use in termination analysisand the derivation of inter-argument relationships, though we believe that their applicability isnot restricted to these areas. The de�nition of each derived norm is parameterised by a weightfunction and an argument index function. This open-ended de�nition allows the norms to beincorporated into a wide range of analyses which de�ne these functions in di�erent ways. Webelieve that de�ning weight and index functions in an e�cient and intelligent way is a non-trivialproblem in itself. Our de�nitions of norms provide a useful framework in which to study thisproblem.It is our intention to examine exactly how these norms can be integrated into a terminationanalysis for typed logic programs. With a working termination analysis we will be able to assessthe usefulness of the prescribed types in inferring norms. In particular, it would be interesting toquantify how much faster the typed (G�odel) approach is against the untyped (Prolog) approach.We will investigate how to de�ne the weight and index functions such that a minimal number ofuseful norms are generated and we suspect that analysis can be used to achieve this.10
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