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Typed Norms for Typed Logic Programs

Jonathan Martin* Andy King' and Paul Soper*

1 Introduction

Such is the complex nature of termination that ad hoc methods for its automatic detection in logic
programs are giving way to techniques more firmly based on theory. Many of these approaches
relate to the early theoretical result [3] which showed that a logic program terminates for bounded
goals if and only if it is recurrent. Definitions of recurrency and boundedness are formulated in
terms of level mappings which assign natural numbers, or levels, to ground atoms.

A predicate is recurrent with respect to some level mapping if the level of its head is greater
than the level of each of its body atoms. The termination of bounded goals, whose level cannot
increase, then follows from the well-foundedness of the natural numbers.

Level mappings are often defined in terms of norms which measure the size of terms. For
example, the norm |.|ys¢e-1engtn defined to measure the length of a list, can be used as the basis for
a level mapping for the Delete/3 predicate below. Comparing the size of the second argument
in the head of the recursive clause with the size of the second argument in the recursive call, and
using list length as a measure for size, we see that the size of this argument decreases by one on
each recursive call. Thus the predicate is recurrent with respect to the level mapping |.| defined
by |Delete(t1,t2,t3)| = |t2|ust-tength and terminates for all goals bounded with respect to |.|. Note
that the predicate is also recurrent with respect to other level mappings and indeed termination
can be proved for other goals by choosing a different mapping.

Delete(x, [xlyl, y).
Delete(x, [ylzl, [ylwl) <-
Delete(x, z, w).

Deducing termination for programs which are not structurally recursive is more complex, re-
quiring the derivation of inter-argument relationships [2]. Inter-argument relationships express
how the sizes of an atom’s arguments are related. In the case of Delete/3, for example, the length
of the second argument is one plus the length of the third argument. The Perm/2 predicate defined
below is one example where an inter-argument relationship is needed to prove termination.

Perm([1, [1).

Perm([hlt], [alpl) <-
Delete(a, [hlt]l, 1) &
Perm(1l, p).

In fact it can be shown that this program is not recurrent and will not terminate for all
ground queries — recurrency implies that a program terminates for all computation rules and here
there exists a computation rule which selects non-ground Delete/3 goals which lead to infinite
derivations. Tt can be shown however to be acceptable [1], an analogous concept to recurrency for
programs executed using a left-to-right computation rule. A key step in the proof is to show that
the size of the first argument in the head of the recursive clause is strictly greater than the size
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of the first argument in the recursive call, that is |{|zist-1engtn < |[P]t]]1ist-1engtn. This can only be
inferred by deducing the inter-argument relationship for Delete/3 given above.

Choosing the right norm is crucial in deducing termination and deriving inter-argument rela-
tionships. Furthermore, different norms are often needed for each case. As an example, consider
the predicate FlattenAndLength/3 defined below which flattens a list of lists and computes the
length of the original list. The norm which sums the lengths of the sublists of the first argument
can be used to deduce termination and is also needed to infer a useful inter-argument relationship
between the first and second arguments. To derive a precise relationship between the first and
third arguments, however, the norm |.|ist.1engeh 15 also needed.

FlattenAndLength([1, [1, 0).

FlattenAndLength([elx], r, Succ(z)) <-
Append(e, y, 1) &
FlattenAndLength(x, y, z).

Early work on termination relied on the user to provide the necessary norms. As this had
limited usefulness a method to automatically generate norms from a program was proposed in [6].
The approach focuses on deriving norms from type graphs that have previously been inferred by an
analysis of the program. The technique is effective in generating norms for proving termination of
many of the programs found in the termination literature. The approach is clearly inappropriate,
however, in the context of a typed language such as Goédel [11] when the types are already known.

As typed logic programming becomes more mainstream, system building tools like partial
deduction systems will need to be mapped from untyped languages to typed ones. SAGE [9] is one
example of a partial deduction system developed for the typed language Godel. Although SAGE
does well to demonstrate the effectiveness of self-application and how the overheads of the ground
representation in meta-programs can be removed, there is much potential for improvement [10]. Tts
main weakness lies in a rather rudimentary termination analysis which would benefit considerably
from the well developed techniques found in the termination literature. Inevitably, norms will
play a crucial role in such an analysis. It is important, however, when mapping techniques across
from the untyped setting that the new techniques should exploit the new type system as much
as possible. In the case of automatic norm derivation the approach in [6] clearly would not take
advantage of the prescribed types. As a result of this and since “any state-of-the-art approach to
termination analysis needs to take type information into account” [7], new techniques are needed
to derive norms directly from these types and avoid the overhead of type graph generation. We
present one such technique.

In this paper we show how norms can be generated from the prescribed types of a program
written in a language which supports parametric polymorphism, e.g. Godel [11]. Interestingly,
the types highlight restrictions of earlier norms and suggest how these norms can be extended to
obtain some very general and powerful notions of norm which can be used to measure any term in
an almost arbitrary way. We see our work on norm derivation as a contribution to the termination
analysis of typed logic programs which, in particular, forms an essential part of partial deduction
systems such as SAGE.

The paper is structured as follows. The next section introduces polymorphic, many-sorted
languages and programs. Section 3 defines linear, semi-linear and hierarchical typed norms and
discusses the problem of rigidity in a polymorphic many-sorted context. Section 4 describes how
to infer the norms of section 3 from the prescribed types of a program. Related work is addressed
in the penultimate section and we conclude with some directions for future work.

2 Theoretical foundations

2.1 Polymorphic many-sorted languages

Let X, (resp. £;) be an alphabet of type constructor (resp. typed function) symbols which includes
at least one base (resp. constant) and let £, be an alphabet of predicate symbols. Let U denote a



countably infinite set of type parameters so that the term structure T(X,, U) represents the set of
parametric types. Let V = {V; |7 € T(X;,U)} denote a family of countably infinite, disjoint sets of
variables for polymorphic (and monomorphic) formulae, where each v, € V; has type 7. Variables
will be denoted by the letters v, w, z,y, and z, whereas parameters will be denoted by the letter
u. Bach f, € X5 (resp. p, € &) is assigned a unique' type (modulo renaming) o = (r...7,,7)
(resp. ¢ =7y ...7y) where 7 ...7, € T(Z;,U)* and 7 € T(X;,U) \ U. We call 7 the range type
of fi7,..7,r) € Xy when n > 0. Types are unique in the sense that if fi,, 5, 0}, fir.. .r.,7) € Xf
(resp. Poy..on, Pra...7n € Xp) then 0, = 7, and ¢ = 7. A symbol will often be written without its
type if it is clear from the context. The triple L = (X,,3;, V) defines a polymorphic many-sorted
first-order language.

Terms, atoms and formulae are defined in the usual way [11]. We denote by var(o) (resp.
par(o)) the set of variables (resp. parameters) in a syntactic object o. The set of term (resp.
type) substitutions is denoted by Sub (resp. Sub;). The set of all instances of X is denoted by

E} = {fuo)|fo €Xf A € Sub,}.

2.2 Polymorphic many-sorted programs

Let P = (A, S) be a polymorphic many-sorted logic program where A is a triple (A;, Ay A} of
type declarations and S is a set of statements of the form V(a < w) where a is an atom and w
is either absent or a polymorphic many-sorted formula. The type declarations A., Ay and A,
define respectively X, X and X,.

Each function declaration f: 7 X ...x 7, — 7 € Ay (resp. constant declaration ¢ : 7 € Ay)
where 71,..., 7, € T(X;,U) and 7 € T(X;,U)\ U implies fi-, .. -y € X (resp. ¢(er) € Xy).
Similarly, each predicate declaration p : 7 x ... x 7, € A, (resp. proposition declaration p € A,)
where 7,..., 7, € T(X,,U) implies p, ,, € X, (resp. pc € ;). Ay (resp. A,) is assumed to be
universal, that is, each symbol has exactly one declaration in Ay (resp. A,) so that X (resp. X,)
1s well-defined.

Given a language L = (X,,X;,V) defined by a program P, we define a family of extended
Herbrand domains as follows. Each EDp.rp ; is the least set such that if v, € V; then v, €
EDgervr; if fleo) € Xy and 7 = (o) then ficy(o)y € EDgers,r; and if fio, . 5,5 € Xy and
ti € EDpgery 7, with par(o;) Npar(r;) = 0 for all ¢,j and par(r;) Npar(ry) = 0 for all j # k
and ¢ € mgu({oy = 11,...,00 = T} U{pi = pj|vp, € ti Avp, € t5}) then (f(t1,...,1,)) €
EDHerb,w(U)~

3 Norms for typed logic programs

A norm is a mapping that measures the size of a term. The norm list length, for example, might
typically count the number of C'ons symbols that occur in a list.

Example 3.1 The length of a list of integers can be expressed as

[N =0
|Cons(ty,ta)| =14 |t O

The mapping is partial since it is only defined for closed, that is Nil-terminated, lists. To
define norms as total mappings we introduce the alphabets ¥ = {Lin} and ¥; = {+(Lin.Lin,Lin),
0, Lin)> 1(5,Lm)} so that £ Dgerp 1in Tepresents the class of linear expressions on Vz;, where terms
such as @rin + Yrin + YrLin + L(e,Lin) + L{e,Lin) + 1(c,Lin) are abbreviated to x + 2y + 3.

It is usually too restrictive to use a single norm to measure the size of any term in a program.
Different terms need to be measured according to their structure or, equivalently, according to
their type. This motivates the introduction of a typed norm |.|; which only measures terms of

type 7.

1For overloaded symbols, for example 4, we assume the symbol is uniquely renamed for each of its types.



Definition 3.1 (typed norm I) A {yped norm for a polymorphic type 7 is a mapping
|~|7— : EDHerb,T - EDHerb,Lirr =

Example 3.2 The typed norm |.|rssi(rnt) : EDmers, List(int) — £ Drers,Lin defined below mea-
sures the length of both open and closed lists of integers.

|U|List(1nt): v
INil|Liso(rne) =0
|Cons(ti,t2)|List(nt)y=1 + [t2|List(Int) |

It is appropriate at this point to review the important concept of rigidity. This idea was
originally introduced in [5] in order to prove termination for a class of goals with possibly non-
ground terms. A rigid term is one whose size, as determined by a norm, is not affected by
substitutions applied to the term.

Definition 3.2 (rigid term) Let |.|; be a typed norm for 7 and ¢ be a term of type 7. Then ¢
is rigid with respect to |.|; iff VO € Sub, |t|; = |t0],.

Example 3.3 The term Cons(x, Cons(y, Nil)) is rigid wrt the norm |.|pss¢(1n1) of example 3.2
since for every substitution {# — t1,y — t2} where t; and t5 are terms |Cons(t1, Cons(ta, Nil))]
= 2. O

By defining level mappings in terms of norms, it 1s possible to define a class of bounded goals
[3] in terms of rigidity. More precisely, an atom is bounded with respect to a level mapping if
each argument of the atom whose size is measured in the level mapping is rigid. A problem arises,
however, with the typed norms used in level mappings. In measuring the level of an atom, a norm
||+, which can only measure terms of type 7 may be applied to a term of type o, where o = (1)
for some ¢ € Sub;.

Example 3.4 Given that ¥, = {Int, List}, X5 = {Nil(c pist(u)), CONS(u List(u),List(u))}> Sp =
{Traversepisiu)} and S = {Traverse(Nil)., Traverse(Cons(x,y)) — Traverse(y).} then the
norm |.|z5:() defined by
|U|List(u)zv
|Nll|Lzst(u) =0
|Cons(ti,t2)|List(uy =1+ [t2]List(w)

can be used to define a level mapping |.| for the Traverse/1 predicate as follows
|Traverse(t)| = |t|List(u)

The problem is that in trying to prove recurrency with respect to the level mapping |.| for
Traverse/1, the level mapping can be applied to atoms such as Traverse(Cons(1, Nil)), yet
the type of the argument of Traverse in this instance, List(Int), is not the type List(u) for which
the mapping is defined. a

This problem arises due to the polymorphism in our typed language and is not difficult to
remedy. The domain of the norm must be changed and a constraint imposed to ensure that the
rigidity property still holds.

Definition 3.3 (typed norm II) A {yped norm for a polymorphic type 7 is a mapping
|.|7 : Upesub, EDgerb y(r) — EDmers Lin Where

Vi € Subr, |firyrnr) (st = [ fiwir)w(r) ) (st 0



To see why the constraint i1s required, suppose that the term ¢ is rigid wrt the type II norm
|.|7, then, by the definition of rigidity

Yo € Sub, |t], = |t6], (1)

Now applying a variable substitution to a term often has the effect of further instantiating the
type of the term. For example the type of the term Cons(z, Nil) is List(u), but the type of
Cons(z, Nil){x — 1} = Cons(1, Nil) is List(Int). Hence we constrain the equations defining |.|,
so that equation (1) holds.

The following proposition provides us with a (weak) syntactical characterisation of rigid terms.
This can be strengthened to the if and only if version by imposing some rather natural conditions
on the way norms are defined. Unfortunately space restrictions do not allow us to give the details
here. We only remark that these conditions do not restrict the norms in any way.

Proposition 3.1 (rigid term — weak) Let |.|; be a typed norm for 7 and ¢ be a term of type
7. Then t is rigid with respect to |.|, if var(|t|;) = 0. O

Throughout the remainder of this paper we will only be concerned with type II norms. Hence-
forth |.|; will only denote a type IT norm whose domain is unambiguously defined by definition 3.3.
In view of the constraint on type IT norms, we will write |f(¢1,...,%,)|; where f represents
St w(ra) () for all ¥ € Sub;. Although each norm is annotated with its type, the following
example illustrates that several norms may exist for the same type.

Example 3.5 The typed norm |.|lLefst(List(Im)) measures the length of a list whose elements are
lists of integers. The typed norm |.|5Ll;?;(ust([m)) sums the lengths of the elements of such a list.

|U|;L€inst(List(Int)) =v
|Nll|lfinst(ust(1m)) =0 1
|Cons(ty, to) |y nisecrniy =1+ Bl Lisicme))

|“|sLlf?}(List(1m)) =v
|NZI|SLI;$(List(Int)) =0
|Cons(ty, t2)| 13 Liseciney) = 1l Eivtcne) + E2lTist Lisecine))

where |'|8L%?(1m) is equal to the norm |.|1ss1(1n¢) of example 3.2. Note that the norm |.|lLefst(List(Im))
is characterised by a weight of 1 in its recursive equation and the selection of the second argument
position only, whereas the norm |.|5Ll;?}(ust([m)) is characterised by a weight of 0 in its recursive
equation and the selection of both argument positions. a

To uniquely characterise a norm we introduce a pair s = (ws, I;) of partial mappings where

Ws E} — IN assigns a weight to each function symbol and I; : E} — p(IN) selects a subset of the
argument positions for each function symbol. The definition of a norm for a type 7 depends on s
and therefore we denote the norm by |.|5 .

Example 3.6 In example 3.5 len = (wien, 1en) where

Wien = {Nil — 0, Cons— 1}
Tien = {Nil — {}, Cons — {2}} o

We are now in a position to define a notion of linear and semi-linear norms [4, 13] for typed
programs.

Definition 3.4 (linear typed norm) A typed norm |.|2 is linear iff

Vo € Viy(r), V¢ € Sub; [v|]2 = v
Vf(Tl"'T"’T) € E} |f(t1’ t ’tn)|f' = ws(f<71~~~7—n77—)) + ZiEIs(f(T1...rn,T)) |tl|f’
where I(fir,. .7, 7)) =11,...,n}. a



Note that the types highlight an inherent restriction of linear norms, that is, these norms are only
defined when 7; = 7 for ¢ = 1,...,n. Such norms have limited applicability.

Example 3.7 Given ¥, = {T'ree} and Xy = {Leaficrree), Node(pree reerec)}, the linear
typed norm for T'ree that counts the number of function symbols in a term is defined by

size __

|U|T'7'ee_v
Leafl§ize, =1
Nod |t { |Z;gi€_1 { size { size O
| 0 6( 1 2)T7‘ee_ +|1|T7‘ee+|2T7‘ee

The following definition generalises linear typed norms by allowing I;(f(r,...r, -)) € {1,...,n}.
In the special case when I;(f(7,.. 7, 7)) =11,...,n} the two definitions are equivalent.

Definition 3.5 (semi-linear typed norm) A typed norm |.|2 is semi-linear iff

Vo € Viy(r), V¢ € Sub; [v|]2 = v
Vf(Tl"'T"’T) € E} |f(t1’ tC ’t”)|f' = ws(f<71~~~7—n77—)) + ZiEIs(f(T1...rn,T)) |tl|f’
where I(fir,. .7, 7)) CAL,...,n}. a

Example 3.8 Given X, = {Int, List} and X5 = {Nil(c rist(u)), CONS(u.List(u)List(w))}, then the
norm |.|lL€i’lst(List(Int)) defined in example 3.5 is semi-linear. O

Semi-linear norms are not expressive enough to measure the sizes of terms that can be defined
in a typed language such as Godel. To quote [4, pp. 72, paragraph 2] “The recursive structure
of a semi-linear norm gets into the term structure by only one level. Moreover so far it is not
defined how different semi-linear norms can be linked to work together. The definition of a semi-
linear norm is recursively based only onto itself and it is easy to understand that this is a severe
restriction.” Again the types highlight where the essential problem lies: the norm applied to ¢; is
|.|- whereas the type of ¢; is 7;. The following definition overcomes this limitation of semi-linear
norms.

Definition 3.6 (hierarchical typed norm) A typed norm |.|2 is hierarchical iff

Yv € V¢(T),V1/J € Sub, [v|]2 = v
Vf(Tl"'T"’T) € E} |f(t1’ o ’tn)|f' = ws(f<71~~~7—n77—)) + ZiEIs(f(T1...rn,T)) |tl f—z
where I(fir,. .r,-)) €{1,...,n} and |t;|;, are hierarchical typed norms. a

Example 3.9 Given the alphabets of example 3.8, the norm |.|5Ll;?}(ust([m)) defined in example 3.5
is hierarchical and, in fact, cannot be expressed as a semi-linear norm. a

Note that definition 3.6 is closely related to definition 4.5 of [6]. Both generalise the definition
of a type norm proposed in [13]. In [6] the relationship between typed norms and semi-linear norms
1s not made explicit, but our presentation makes the relationships between the various norms clear.
In particular, we see that every linear typed norm is semi-linear and every semi-linear typed norm
is hierarchical.

Although hierarchical norms allow us to inspect the structure of terms at a deeper level than
in the semi-linear case, the pair of mappings s maps a functor of a given type to the same pair of
values regardless of its depth in the term. In certain (pathological) circumstances this can impede
the detection of a well-founded ordering.

Example 3.10 With X, and X; as defined in example 3.9, consider the hierarchical typed norm
||5ye. defined by

|/U|§17'€€ =v
|Leafly,,, = ws(Leaf)
|N0de(t1’t2)|§“ree = ws(NOde) + ZiEIS(Node) |ti|§”ree



There is no definition of s which will satisfy the inequality
|Node(Node(w, Node(z,y)), 2)|7pee. > |Node(Node(Node(w, ), y), 2)|7ree (2)

needed to prove recurrency for the predicate Shift/1 defined by

Shift(Node(Node(_, Leaf), Leaf)).
Shift(Node(Node(w, Node(x, y)), z)) <-
Shift(Node(Node(Node(w, x), y), z)).

The following table illustrates that for all values of I;(Node) and w;(Node) and for every variable
assignment for w, ¢, y, z the left-hand side is always less than or equal to the right-hand side.

I;(Node) | |Node(Node(w, Node(x,y)), 2)|5, .. | |Node(Node(Node(w,z),y), 2)|5, ..

{1,2} Bws(Node)+w+az+y+=z 3ws(Node)+w+z+y+z
W ode) + w W ode) + w

{1} | 2w, (Node) 3w,(Node)

{2} ws(Node) + z ws(Node) + z

{} ws(Node) ws(Node)

e inequality can be satisfied, however, by substituting in the norm |. efined by
The i li be satisfied, h by substituting in (2) th telt  defined b
lolyte, = v [vlyyee = v
[Node(ty, t2)|7t,. = 1+ [tilpfll  [Node(tr,ta) 700 = 1+ |tal7 e O

The definition of a hierarchical typed norm can be generalised further to accommodate such
examples by replacing |¢;]7, in the definition with [¢;|3: where each s; is a new pair of mappings.
This additional expressiveness allows a term to be measured in a very flexible way, though in prac-
tice it is unlikely that such generality will be needed and besides which the complexity introduced

i1s mind-boggling.

4 Automatic generation of norms

We show how the typed norms of the previous section can be derived directly from the prescribed
types of a program. For a program P, we require a finite set of norms which will enable us to
measure the size of any term occurring in P. The norms needed will be determined by the types
that can occur in P. In the following we consider two types to be equivalent if one is a renaming
of the other.

Definition 4.1 (argument types) Suppose that P defines the language (X,,X;, V). The set
of argument types for P is denoted by T,y = {7 | pry..7, € Zp Al < i < n}. ]

The set T,., represents the types of all terms occurring as arguments of atoms in P, in that
if the type of an argument of some atom is 7, then either 7 € T4, or It € Sub,, Jo € T4y such
that 7 = ¢(¢). The following definition captures the types of subterms of arguments.

Definition 4.2 (argument subtypes) For each 7 € T,,, we define 77, , the set of subtypes of
7 to be the least set such that 7 € 77, and if 0 € T7,;, fip,. p..0) € Xy and 0 = ¥(p), then
Y(pi)eT],, foralli=1 ... n a

Example 4.1 If Xy = {Nil(c Lisi(u)), COnS(u Lisi(u) List(u))} and Ny = {Prisi(List(u)), QList(w)},
then Typy = {List(List(u)), List(u)}, TESME 00 = (List(List(u)), List(u), u} and T=#1 =

{List(u), u}. O



By defining a norm |.|, for each 7 € T,,,, we are able to measure the size of any argument
occurring in the program. The sets 77!, are used to facilitate the definitions of these norms. It
will often be the case that some of the arguments in a program have the same type and different
norms may be required to measure the sizes of such arguments. We thus define for each 7 € T3,, a
norm parameterised by a pair s as in the preceding section. Later, s can be defined for individual
arguments.

Before defining the induction process we first make an important observation which has an
effect on the definition of the norms. We first note that the type of a constant or the range type
of a function must be either a base type or a type with a top-level constructor. A consequence
of this is that any term whose type is a parameter is a variable. The term structure of any term
assigned to this variable cannot be accessed or altered in any way within the local computation,
since if 1t could, the type of the term would be known and thus the variable would be of a more
specific type. Thus the term (and its size measured wrt to any norm) never changes and hence
has no effect on termination at the local level. This means that when defining the norm |.|,, where
u € U, the value of |t|, for any term ¢ should be constant. To simplify the definition we assume
the constant value is zero. Furthermore, the norm |.|, can be removed from any definition which
depends on it.

Definition 4.3 (induced typed norm) For each 7 € T,,, we define the hierarchical typed
norm |[.|% : Uyesub, EDgert () — EDHers Lin a8 the least set of equations FZ as follows. If 7 € U
then 2 = {].|2 = 0}, else

Ef’ :{|U|i:v|V6TsTub}U

s _ s faezf/\(f:(pl...pn,p)/\
o ta)ly = wslfuto) + Lieriruon Eiloen | e 17 Av = (p) At € Sub,

5

A pair s = (w;, I,) is partially defined for each 7 € T,,, as follows. For each v € T}, , and f, € X¢,

o ={p1...pn,p) such that v = ¥(p) for some ¢» € Sub,, we add the mapping fy,) — w € N to
w, and the mapping fy(,) — I C {1,...,n} to I; with the constraint that i € I for all p; € U. O

su

Note that due to the definition of 77, each |.|fp(al) is defined in FZ. Thus each FZ is well
defined pending a complete definition of the pair s = {w;, I).

Example 4.2 Given T,,, as defined in example 4.1, we partially define a pair s = (w;, I, for the
type List(List(u)) and a pair t = (wy, I) for the type List(u) as follows:

w. — { Nilie List(List(u))y 7= W1, CONS(List(u) List(List(u)), List(List(u))) = W2,
° Nilie List(u)) — ws, Cons(u.List(u),List(w)) F— Wa

;o { Nilie pist(List(u)) = 1} CONS(List(u).List(List(u)), List(List(u))) = 11 € {1,2} }
° Nilie pist(u)) = 1} Cons(u.List(u), List(w)) + 12 C

wy = { Nilie List(u)) — Ws, CONS(u. List(u),List(u)) — We
Iy = { Nilie Lisiqwy) — {}, Consiu. Listcu), Listw)y — I3 € {2} }
where wy, wa, w3, wq, ws, ws € IN.
Choosing for example w1 = ws = w3 = ws = 0, ws = wg = 1, [} = {1,2} and I, = I3 = {2}
we derive the following equation sets

|v|2is;(List(u)) =9
|Nll|List(List(u)) =0,

Es. ) _ |COn5(t1’ t2)|iist(List(u)) = |t1|iist(u) + |t2|iist(List(u))’

List(List(u)) — |v|2ist(u) = v,

|Nll|izst(u) =0,
|COn5(t1’t2)|iist(u) =1+ |t2|iist(u)
|v|tList(u) =Y

Eiist(u) = |Nll|tL“’t(u) =0,
|COn5(t1’t2)|tList(u) =1+ |t2|tList(u) o



Note that the sets of terms for which the norms are defined are not disjoint. For example, the
domain of the norm |.|5List(ust(u)) of example 4.2 is a subset of the domain for the norm |'|tList(u)'
There is no confusion, however, when deciding which norm to use on a particular argument of an
atom since the choice is determined by the atom’s predicate symbol.

Example 4.3 Consider the atom Qpr;si(u)(Cons(Cons(1, Nil), Nil)) which may appear as part
of a goal for the predicate Qris(u). Although the type of the atom’s argument is List(List(Int)),
the correct norm to use would be |'|tList(u) for some ¢ since the type of the predicate is List(u). O

All that remains now to complete the definitions of our derived norms is to define suitable
weight and index functions. This in itself is a non-trivial problem.

4.1 Defining the weight and index functions

Most of the approaches to termination analysis based on norms essentially use a simple generate-
and-test method for deducing termination. Norms are generated (either automatically or oth-
erwise) and used to form level mappings which are then applied to the program for which a
termination proof is sought. Inequalities are then derived whose solubility indicates the success
or failure of the termination proof.

The main difficulty with this approach is the potentially infinite number of norms that can be
generated. To reduce the complexity of this problem a number of heuristics can be used. Decorte
et al. [6], for example, propose the following (adapted) heuristics for deriving typed norms.

o A weight of one is assigned to all functors of arity n > 0.
e A weight of zero is assigned to all constants.

e Any argument position whose type is not a parameter is selected.

Applying these heuristics to our partially derived norms allows us to obtain the same norms that
would be derived by [6] given the same type information in the form of a type graph. Although
this approach works well on a large number of examples, there are occasions when it will fail
to generate norms that can be used in a termination proof. The naive reverse program with
an accumulating parameter [6] is one example where a reduced number of arguments needs to
be selected. In that paper a solution to this problem is sketched using symbolic norms which
effectively define an argument index function through an exhaustive search. Also, below we give
an example of where constants must be assigned weights other than zero.

Example 4.4 If each constant occurring in the program below is assigned a weight of zero then
the interargument relation derived for Path(x, y) would be || = |y| = 0. With this relationship,
termination cannot be proved since we require that |#| > |z| in the recursive TransitiveClosure/2
clause. To prove termination each constant must take on a different value.

TransitiveClosure(x, y) <- Path(x, y).
TransitiveClosure(x, y) <- Path(x, z) & TransitiveClosure(z, y).

Path(a, b).
Path(b, c). O

This example seems to suggest that the determination of weights must take place as an integral
part of a termination analysis — the variety of the weights occurring indicates the futility of a
generate and test approach in this instance.

In summary, we see that there are several approaches to the problem of deriving the weight
and index functions. We do not advocate any particular method here since it is necessary to
further investigate and compare suitable methods. We believe that the open-ended definitions of
our derived norms should facilitate such a study.



5 Related work

One weakness of [6] is that its norms are derived from type graphs. Type graph analyses, however,
have not always been renowned for their tractability. Even for small programs, the prototype
analyser of [12], used in [6], is typically 15 times slower than the optimising PLM compiler [15].
Recently, type graph analysis has been shown to be practical for medium-sized Prolog programs [14]
when augmented with an improved widening and compacting procedure. In addition, Gallagher
and de Waal have shown how type graphs can be efficiently represented as unary logic programs
in [8]. Clearly, however, any approach which avoids the costs of inferring type graphs is preferable.

Bossi et al. [4] define a very general concept of norm in terms of type schemata which describe
structural properties of terms. Their typed norms for termination analysis are very similar to the
ones presented in this paper, though they are able to define some norms which cannot be inferred
using our present framework.

Example 5.1 Consider the following program from [4]

Check(Cons(x, xs)) <- Check(xs).
Check(Cons(x, Nil)) <- Nat(x).
Nat(Succ(x)) <- Nat(x).

Nat(0).

We would like to define a norm |.|List(Nm) so that we can prove termination for goals <-
Check(x) where x is rigid wrt |.|p;ss(var)- The following norm adapted from [4] satisfies this
criterion.

[v|List(Nat) = v [v|Nat = v V] Empty = v
|Cons(ti,t2)|List(Nat) = 1+ [t2]List(Nar) 0| vat =0 |Nil| gmpty = 0
|COn5(t1at2)|List(Nat) = |t1|Nat + |t2|Empty |SUCC(t>|Nat =1+ |t|Naf

This norm cannot be inferred automatically using our method (nor that of [6]) since it re-
lies on the functor Cons having two distinct types, namely (Nat.List(Nat), List(Nat)) and
(Nat.Empty, List(Nat)), but this is forbidden in languages like Godel where the declarations
are universal. Note that this is not a limitation of our framework but rather a limitation of the
type system on which it is based. Given a more flexible system it would be possible to infer such
norms as the above directly from the prescribed types. a

We note that the typed norms of [4] are not derived automatically. By contrast, our norms,
are simple enough to be easily derived using only the type declarations of a program.

6 Conclusions and future work

In this paper, we have presented a flexible method for inferring a number of norms from the type
declarations of a program which are sufficient to measure the size of any Herbrand term occurring
in the program in an almost arbitrary way. The norms are intended for use in termination analysis
and the derivation of inter-argument relationships, though we believe that their applicability is
not restricted to these areas. The definition of each derived norm is parameterised by a weight
function and an argument index function. This open-ended definition allows the norms to be
incorporated into a wide range of analyses which define these functions in different ways. We
believe that defining weight and index functions in an efficient and intelligent way is a non-trivial
problem in itself. Our definitions of norms provide a useful framework in which to study this
problem.

It is our intention to examine exactly how these norms can be integrated into a termination
analysis for typed logic programs. With a working termination analysis we will be able to assess
the usefulness of the prescribed types in inferring norms. In particular, it would be interesting to
quantify how much faster the typed (Godel) approach is against the untyped (Prolog) approach.
We will investigate how to define the weight and index functions such that a minimal number of
useful norms are generated and we suspect that analysis can be used to achieve this.
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