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Abstract

In this paper, an output feedback stabilisation problem is considered for

a class of large scale interconnected time delay systems with uncertainties.

The uncertainties appear in both isolated subsystems and interconnections.

The bounds on the uncertainties are nonlinear and time delayed. It is not

required that either the known interconnections or the uncertain intercon-

nections are matched. Under the assumption that the time delay is known, a

decentralised static output feedback variable structure control is synthesised

to stabilise the system globally uniformly asymptotically using Lyapunov

Razumikhin approach. A case study relating to a river pollution control

problem is presented to illustrate the proposed approach.

Keywords: Decentralised control, interconnected systems, static output

feedback, time delay, variable structure system.

1. Introduction

Interconnected systems exist widely in the real world. Examples include

power networks, cellular systems, ecological systems and river pollution

systems. Such systems are often widely distributed in space. A fundamental
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characteristic of interconnected systems, which holds for both natural and

engineered systems, is that they tend to operate in a decentralised manner.

For interconnected systems, the presupposition of centrality generally fails

to hold due to the lack of centralised information or the lack of a centralised

decision making focus. Issues such as the economic cost and reliability

of communication links, particularly when systems are characterised by

geographical separation, limit the appetite for centralised control. This has

motivated the development of a wide literature in the area of decentralised

control, see, for example, [1, 14, 24].

Interconnected systems are often modelled as dynamical equations com-

posed of interconnections between a collection of lower-dimensional sub-

systems. A fundamental property of any interconnected system is that a

perturbation of one subsystem can affect the other subsystems as well as the

overall performance of the network. The purpose of control paradigms from

the domain of engineering within an interconnected systems architecture

is thus to minimise the effect of any uncertainty on the overall system

behaviour. Moreover, interconnections between two or more subsystems in

a network are often accompanied by phenomena such as material transfer,

energy transfer and information transfer, which from a mathematical point

of view, can be represented by delay elements [16]. However, for such a

time delay system, the presence of even a small delay may greatly affect the

performance of the system; a stable system may become unstable, or chaotic

behaviour may result [16]. Therefore, the study of large scale interconnected

systems in the presence of time delay is very important.

It should be noted that large scale interconnected systems with time

delay is full of challenge especially when decentralised strategy is considered

[17]. A class of time delay interconnected systems is considered by Mahmoud

and Bingulac in [15] where time delay is not involved in the interconnections.

Although many results have been achieved for time delay interconnected

systems, most of them assume that the system states are available [1, 6]. The

associated results based on decentralised output feedback control for time-

delayed interconnected systems are few. An output feedback decentralised

control scheme is given in [13] where discrete interconnected systems are

considered. A class of nonlinear interconnected systems with triangular

structure is considered in [8], and an interconnected system composed of
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a set of single input single output subsystems with dead zone input is

considered in [25]. In both [8] and [25], dynamical output feedback control

is employed which increases the computation greatly due to the associated

closed-loop system possessing possibly double the order of the actual plant.

A decentralised model reference adaptive control scheme is proposed in [11]

where the considered interconnections are linear and matched. In all of

the existing output feedback control strategies for large-scale interconnected

time delay systems, it is required that the bounds on the uncertainties are

functions of the outputs and/or largely linear [7, 13, 25]. Building on the

work in the area of control of delay systems [21] and interconnected systems

[23], a global decentralised output feedback sliding mode control scheme

for time delay interconnected systems has been proposed in [22]. However,

it is required that the known interconnections is linear to delayed outputs

and the uncertain interconnections bounded by a functions of outputs and

delayed outputs in [22].

In this paper, a class of time delay interconnected systems with nonlinear

uncertainties is considered. The bounds on the uncertainties are nonlinear

and time delayed. The same as [22] where sliding mode techniques are

employed, it is assumed that the time delay is known. Unlike the work

in [22], both the known interconnections and the bounds on the uncertain

interconnections are allowed to involve delayed states which including the

interconnections considered in [22] as a special case. Both the isolated

subsystems and the interconnections involve multiple time varying delays.

A static decentralised variable structure control strategy is proposed using

only output information, and sufficient conditions are derived such that the

corresponding closed-loop variable structure systems formed by the control

and the considered interconnected systems are globally uniformly asymptot-

ically stable based on the well-known Lyapunov Razumikhin approach. The

study shows that the effects of the uncertainties can be largely rejected if the

uncertainties bounded by functions of system outputs and delayed outputs.

The limitation that the rate of change of the time delay is relaxed when

compared with the ones when Lyapunov Krasovski approach is employed

([4, 12]). A compensator, which increases the required computation levels

for large-scale interconnected systems as in [8, 23, 25], is not required in

this paper. Case study of a river pollution control problem is given to

demonstrate the work. Simulations show the effectiveness of the obtained

3



results.

2. Preliminaries

Notation: In this paper, R+ denotes the nonnegative set of real numbers

{t | t ≥ 0}. The symbol C[a,b] represents the set of Rn-valued continuous

function on [a, b] and In denotes the unit matrix with dimension n. For

a matrix A, the expression A > 0 (A < 0) means that A is symmet-

ric positive (negative) definite and λmax(A) (λmin(A)) represents its maxi-

mum (minimum) eigenvalue. The symbol diag{A1, A2, · · · , An} represents

diagonal/block-diagonal matrix with diagonal entries A1, A2, · · · , An. For

vectors x = (x1, x2, . . . , xn1)
T ∈ Rn1 and y = (y1, y2, . . . , yn2)

T ∈ Rn2 ,

the expression f(x, y) denotes a function f(x1, x2, . . . , xn1 , y1, y2, . . . , yn2)

defined on Rn1+n2 . Finally, ∥ · ∥ denotes the Euclidean norm or its induced

norm.

Consider a time-delay system

ẋ(t) = f(t, x(t− d(t)) (1)

with initial condition

x(t) = ϕ(t), t ∈ [−d, 0]

where f : R+×C[−d,0] 7→ Rn takesR× (bounded sets of C[−d,0]) into bounded

sets in Rn; d(t) is the time-varying delay and d := supt∈R+{d(t)} <∞.

Lemma 1. Consider system (1). If there exists a quadratic function V0(x) =

xTPx with P > 0 such that for d ∈ [−d, 0], the time derivative of V0 along

the solution of system (1) satisfies

V̇0(t, x) ≤ −q1∥x∥2 if V0(x(t+ d)) ≤ q2V0(x(t)) (2)

for some q1 > 0 and q2 > 1, then system (1) is globally uniformly asymp-

totically stable.

Proof: See Lemma 2 in Appendix 1 in [22]. △

Lemma 2. Assume that matrix B ∈ Rn×m is of full column rank and

C ∈ Rm×n is full of row rank. If there exists a matrix F ∈ Rm×m such that

PB = CTF where P ∈ Rn×n is nonsingular, then F is nonsingular.
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Proof: From the condition that B ∈ Rn×m is of full column rank and

C ∈ Rm×n is full of row rank,

rank(B) = m, rank(C) = m

Since P is nonsingular, it is clear that rank(PB) = rank(B) = m. Then

from PB = CTF where F ∈ Rm×m, it follows that

rank(F ) ≥ rank(CTF ) = rank(PB) = m

which implies that rank(F ) = m and thus F is nonsingular. Hence the

conclusion follows. △

Lemma 3. Assume the matrix/vector functions Hij(t, xj) ∈ Rni×mj with

ni and mj positive integral numbers, and x = col(x1, x2, · · · , xn) where

xi ∈ Rni for i, j = 1, 2, . . . , n. Then

n∑
i=1

n∑
j=1

j ̸=i

Hij(t, xj) =
n∑

i=1

n∑
j=1

j ̸=i

Hji(t, xi)

Proof: From the fact that

n∑
i=1

n∑
j=1

Hij(t, xj) =
n∑

j=1

n∑
i=1

Hij(t, xj)

The conclusion follows by the similar proof as in the result 2 of Lemma 4 in

Appendix 2 in [22]. △

The results presented in this section will be used in the later analysis.

3. System Description and Problem Formulation

Consider a class of interconnected systems with time-varying delays

composed of n ni-th order subsystems described by

ẋi = Aixi +Bi (ui + gi(t, xi, xidi)) +
n∑

j=1

j ̸=i

(
Dijxjdj + Eijxj

+ϕij(t, xj , xjdj )
)

(3)

yi = Cixi, i = 1, 2, . . . , n, (4)
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where x := col(x1, . . . , xn), xi ∈ Rni and ui, yi ∈ Rmi are the states, inputs

and outputs of the i-th subsystem respectively, and Ai, Bi, Ci, Dij and Eij

(i ̸= j) represent constant matrices of appropriate dimensions with Bi of

full column rank and Ci of full row rank. The functions gi(·) are matched

nonlinear uncertainties in the i-th subsystem. The terms

n∑
j=1

j ̸=i

(Dijxjdj + Eijxj) and
n∑

j=1

j ̸=i

ϕij(t, xj , xjdj )

are, respectively, the known and uncertain interconnections of the i-th sub-

system; xidi := xi(t− di) are the delayed states, and the symbols di := di(t)

denote the time-varying delays which are assumed to be known, nonnegative

and bounded in R+, that is

di := sup
t∈R+

{di(t)} <∞, i = 1, 2, . . . , n

The initial conditions associated with the time delays are given by

xi(t) = ψi(t), t ∈ [−di, 0]

where ψi(·) are continuous in [−di, 0] for i = 1, 2, . . . , n. All the nonlinear

functions are assumed to be smooth enough such that the unforced inter-

connected system has a unique continuous solution.

Definition 1. Consider system (3)–(4). The systems

ẋi = Aixi +Bi(ui + gi(t, xi, xidi))

yi = Cixi, i = 1, 2, . . . , n,

are called the i-th isolated subsystems of the system (3)–(4), and the systems

ẋi = Aixi +Biui (5)

yi = Cixi, i = 1, 2, . . . , n, (6)

are called the i-th nominal isolated subsystems of the system (3)–(4).

For the interconnected system (3)–(4), the following basic conditions are

imposed on the system firstly.

Assumption 1. The triple (Ai, Bi, Ci) are output feedback stabilisable.
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Assumption 1 is a basic requirement for the triple (Ai, Bi, Ci). Under

Assumption 1, there exist matrices Ki ∈ Rmi×mi such that for any Qi > 0,

the Lyapunov equations

(Ai −BiKiCi)
TPi + Pi(Ai −BiKiCi) = −Qi < 0 (7)

have unique solutions Pi > 0 for i = 1, 2, · · · , n.

Assumption 2. For the input distribution matrices Bi and the output

distribution matrices Ci, the matrix equations

PiBi = CT
i Fi (8)

are solvable for Fi, where Pi satisfy (7) for i = 1, 2, · · · , n.

Remark 1. Assumption 2 is a limitation on the solution Pi of the Lyapunov

equation (7). Assumptions 1 and 2 together forms the standard Constrained

Lyapunov Problem (CLP) [5]. A similar condition has been imposed by

many authors (see e.g, [5, 20]). A discussion for solving the CLP is available

in [5, 3]. Since Bi are full column rank, Ci are full row rank and Pi > 0, it

follows from Lemma 2 that the solutions Fi to equations (8) are nonsingular.

Assumption 3. There exist known continuous functions ξi(·), ηi(·), αij(·)
and βij(·) such that for i, j = 1, 2, . . . , n

∥gi(t, x, xidi)∥ ≤ ξi(t, yi, yidi) + ηi(t, yi, yidi)∥xidi∥ (9)

∥ϕij(t, xj , xjdj )∥ ≤ αij(t, yj , yjdj )∥yj∥+ βij(t, xj)∥xjdj∥, (i ̸= j) (10)

Remark 2. Assumption 3 is a limitation on the uncertainties that can

be tolerated by the system. It is not required that the interconnections

are described or bounded by functions of the system outputs, which is

in comparison with the work in [22, 18, 25]. Moreover, both the known

interconnections and the uncertain interconnections involve time delayed

states in this paper, which makes the work applicable to a wide class of

large scale interconnected systems.

The objective of this paper is, under the assumption that all the nominal

isolated subsystems are output feedback stabilisible, to design a control law

in form of

ui = ui(t, yi, yidi), i = 1, 2, . . . , n (11)
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and to develop a set of conditions under which the resultant closed-loop

system formed by applying the control law in (11) to the large scale inter-

connected system (3)–(4), is globally uniformly asymptotically stable even

in the presence of the uncertainties and time delays. It is straight forward

to see that the control ui in (11) are only dependent on time t, time delay

di and local outputs yi. Such class of controllers is called decentralised

static output feedback control. In order to largely cancel the effects from

the uncertainties, a variable structure control will be proposed subsequently

and the bounds on the uncertainties will be fully employed in control design

to reduce the conservatism.

Remark 3. Clearly the controller (11) requires that the time delays are

known as in much of the existing work [17, 9, 22]. This may limit the appli-

cation of the work. However, in some industrial systems such as flow through

pipes and web forming processes, the delay existing in the process is known,

and can thus be employed in the control design and/or the observer design

[19]. Moreover, if the time delay is unavailable, the approach proposed in

[2] can be employed to identify the time delay.

4. Main Results

In this section, a decentralised output feedback variable structure con-

troller will be synthsised for the interconnected systems (3)–(4).

Under Assumption 2, it follows form Lemma 2 that the matrix Fi satis-

fying equation (8) is nonsingular. Then, consider the control law

ui = −Kiyi −
1

2εi
F T
i yiη

2
i (t, yi, yidi) + uai (·) + ubi(·) (12)

where Ki ∈ Rmi×mi satisfy Assumption 2, εi > 0 are constant, and uai (·)
and uai (·) are defined by

uai (·) :=

 −ξi(t, yi, yidi)∥Fi∥F−1
i

yi
∥yi∥ , yi ̸= 0

0, yi = 0
(13)

ubi(·) := −F−1
i yi

n∑
j = 1
j ̸= i

1

εji
∥Pj∥2α2

ji(t, yi, yidi) (14)
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where Fi satisfy (8) and εji > 0 (j ̸= i) are constants for i, j = 1, 2, . . . , n.

Note the structure of the control ui in (12) are variable due to the term

uai (·) defined in (13). It is clear that ui in (12) are decentralised because ui
are only dependent on time t, time delay di and local output information yi.

Thus the ui in (12) are called time dependent decentralised output feedback

variable structure controllers.

The following result is now ready to be presented.

Theorem 1. Under Assumptions 1-3, the closed-loop system formed by ap-

plying control (12) into system (3)–(4) is globally uniformly asymptotically

stable if γ := infxi∈Rni{λmin

(
ΓT (·) + Γ(·)

)
} > 0 where the matrix

Γ :=

[
Γ1 Γ2

Γ3 Γ4

]

is defined by

Γ1 :=



Θa
1 −2P1D12 · · · −2P1D1n

−2P2D21 Θa
2

. . .
...

...
. . .

. . . −2Pn−1D(n−1)n

−2PnDn1 · · · −2PnDn(n−1) Θa
n



Γ2 :=



0 −2P1E12 · · · −2P1E1n

−2P2E21 0
. . .

...

...
. . .

. . . −2Pn−1E(n−1)n

−2PnEn1 · · · −2PnEn(n−1) 0



Γ3 :=



0 −2P2E21 · · · −2PnEn1

−2P1E12 0
. . .

...

...
. . .

. . . −2Pn−1E(n−1)n

−2PnEn1 · · · −2PnEn(n−1) 0


9



and

Γ4 := diag
{
Θb

1,Θ
b
2, · · · ,Θb

n

}
where

Θa
i := Qi − qPi − 2

n∑
j = 1
j ̸= i

εijIni , Θb
i := Pi −

(
εi +

n∑
j = 1
j ̸= i

1

εji
β2ji(·)||Pj∥2

)
Ini

for i = 1, . . . , n and q > 1.

Proof: Applying the control (12) into system (3)–(4), the closed-loop sys-

tem is described by

ẋi = Aixi +Bi

(
−KiCixi −

1

2εi
F T
i yiη

2
i (t, yi, yidi) + uai (t, yi, yidi) + ubi(·)

+gi(t, xi, xidi)
)
+

n∑
j=1

j ̸=i

(
Dijxjdj + Eijxj + ϕij(t, xj , xjdj )

)
(15)

where uai (·) and ubi(·) are defined by (13) and (14) respectively for i =

1, 2, . . . , n. For the closed-loop system (15), consider the Lyapunov function

candidate

V (x(t)) =
n∑

i=1

xTi (t)Pixi(t) (16)

where Pi > 0 satisfy (7) for i = 1, 2, . . . , n. Then, the time derivative of V (·)
along the trajectories of system (15) is given by

V̇ = −
n∑

i=1

xTi Qixi + 2
n∑

i=1

xTi PiBi

(
− 1

2εi
F T
i yiη

2
i (t, yi, yidi) + uai (t, yi, yidi)

)
+2

n∑
i=1

xTi PiBiu
b
i(t, yi, yidi) + 2

n∑
i=1

xTi PiBigi(·) + 2
n∑

i=1

n∑
j = 1
j ̸= i

xTi PiDijxjdj

+2
n∑

i=1

n∑
j = 1
j ̸= i

xTi PiEijxj + 2
n∑

i=1

n∑
j = 1
j ̸= i

xTi Piϕij(t, xj , xjdj ) (17)

From (9), (8) and Young’s inequality (ab ≤ 1
2εa

2 + ε
2b

2 for ε > 0), it follows

that for any εi > 0

xTi PiBigi(t, xi, xidi) = (F T
i yi)

T gi(t, xi, xidi)

≤ ∥Fi∥ ∥yi∥ξi(t, yi, yidi) + ∥F T
i yi∥ηi(t, yi, yidi)∥xidi∥

≤ ξi(t, yi, yidi)∥Fi∥ ∥yi∥+
1

2εi
∥F T

i yi∥2η2i (t, yi, yidi) +
εi
2
∥xidi∥

2 (18)
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From (8) and the definition of uai (·) in (13), it follows that

i) if yi = 0, then uai (·) = 0 and thus

xTi PiBiu
a
i (t, yi, yidi) + ∥Fi∥ ∥yi∥ξi(t, yi, yidi) = 0

ii) if yi ̸= 0, from the definition of uai (·) in (13),

xTi PiBiu
a
i (t, yi, yidi) + ∥Fi∥ ∥yi∥ξi(t, yi, yidi)

≤ −yTi Fiξi(t, yi, yidi)∥Fi∥F−1
i

yi
∥yi∥

+ ∥Fi∥ ∥yi∥ξi(t, yi, yidi)

= −ξi(t, yi, yidi)∥Fi∥
yTi yi
∥yi∥

+ ∥Fi∥ ∥yi∥ξi(t, yi, yidi)

= 0

Thus, from i) and ii) above,

xTi PiBiu
a
i (t, yi, yidi) + ∥Fi∥ ∥yi∥ξi(t, yi, yidi) ≤ 0, i = 1, 2, · · · , n (19)

Further, from (8),

− 1

2εi
xTi PiBiF

T
i yiη

2
i (t, yi, yidi) +

1

2εi
∥F T

i yi∥2η2i (t, yi, yidi)

= − 1

2εi
xTi C

T
i FiF

T
i yiη

2
i (t, yi, yidi) +

1

2εi
∥F T

i yi∥2η2i (t, yi, yidi)

= − 1

2εi
(F T

i yi)
TF T

i yiη
2
i (t, yi, yidi) +

1

2εi
∥F T

i yi∥2η2i (t, yi, yidi) = 0 (20)

Therefore, from (18), (19) and (20)

2
n∑

i=1

xTi PiBi

(
− 1

2εi
F T
i yiη

2
i (t, yi, yidi) + uai (·)

)
+2

n∑
i=1

xTi PiBigi(t, xi, xidi)

≤
n∑

i=1

εi∥xidi∥
2 (21)

From (10) and Young’s inequality,

xTi Piϕij(t, xj , xjdj ) ≤ ∥xi∥ ∥Pi∥(αij(t, yj , yjdj )∥yj∥+ βij(t, xj)∥xjdj∥)
= αij(t, yj , yjdj )∥Pi∥ ∥yj∥ ∥xi∥+ βij(t, xj)∥Pi∥ ∥xi∥∥xjdj∥

≤ 1

2εij
α2
ij(t, yj , yjdj )∥Pi∥2 ∥yj∥2 +

εij
2
∥xi∥2 +

1

2εij
β2ij(t, xj)∥Pi∥2 ∥xjdj∥

2
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+
εij
2
∥xi∥2

=
1

2εij
α2
ij(t, yj , yjdj )∥Pi∥2 ∥yj∥2 + εij∥xi∥2

+
1

2εij
β2ij(t, xj)∥Pi∥2 ∥xjdj∥

2 (22)

Consider the uncertain interconnection
∑n

j=1

j ̸=i
ϕij(t, xj , xjdj ). From (22)

2
n∑

i=1

n∑
j = 1
j ̸= i

xTi Piϕij(t, xj , xjdj )

≤ 2
n∑

i=1

n∑
j = 1
j ̸= i

εij∥xi∥2 +
n∑

i=1

n∑
j = 1
j ̸= i

1

εij
α2
ij(t, yj , yjdj )∥Pi∥2 ∥yj∥2

+
n∑

i=1

n∑
j = 1
j ̸= i

1

εij
β2ij(t, xj)∥Pi∥2 ∥xjdj∥

2

= 2
n∑

i=1

( n∑
j = 1
j ̸= i

εij
)
∥xi∥2 +

n∑
i=1

n∑
j = 1
j ̸= i

1

εji
α2
ji(t, yi, yidi)∥Pj∥2∥yi∥2

+
n∑

i=1

( n∑
j = 1
j ̸= i

1

εji
β2ji(t, xi)∥Pj∥2

)
∥xidi∥

2 (23)

where Lemma 3 is used to obtain the last equality. From the definition of

ubi(·) in (14),

xTi PiBiu
b
i(·) +

n∑
j = 1
j ̸= i

1

εji
α2
ji(t, yi, yidi)∥Pj∥2∥yi∥2

≤ −xTi CT
i FiF

−1
i yi

n∑
j = 1
j ̸= i

1

εji
α2
ji(t, yi, yidi)∥Pj∥2 + ∥yi∥2

n∑
j = 1
j ̸= i

1

εji
α2
ji(·)∥Pj∥2

= 0 (24)

Therefore, from (23) and (24)

2
n∑

i=1

xTi PiBiu
b
i(t, yi, yidi) + 2

n∑
i=1

n∑
j = 1
j ̸= i

xTi Piϕij(t, xj , xjdj )

≤ 2
n∑

i=1

( n∑
j = 1
j ̸= i

εij
)
∥xi∥2 +

n∑
i=1

( n∑
j = 1
j ̸= i

1

εji
β2ji(t, xi)∥Pj∥2

)
∥xidi∥

2 (25)
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Applying (21) and (25) to equation (17) yields

V̇ ≤ −
n∑

i=1

xTi Qixi +
n∑

i=1

εi∥xidi∥
2 + 2

n∑
i=1

n∑
j = 1
j ̸= i

xTi PiDijxjdj

+2
n∑

i=1

n∑
j = 1
j ̸= i

xTi PiEijxj + 2
n∑

i=1

( n∑
j = 1
j ̸= i

εij
)
∥xi∥2

+
n∑

i=1

( n∑
j = 1
j ̸= i

1

εji
β2ji(t, xi)∥Pj∥2

)
∥xidi∥

2 (26)

From the definition of V (·) in (16), it is clear that

V (x1d1 , x2d2 , . . . , xndn) ≤ qV (x1, x2, . . . , xn), (q > 1)

implies that

q
n∑

i=1

xTi Pixi −
n∑

i=1

xTidiPixidi ≥ 0 (27)

Therefore, from (27) and (26), it follows that when V (x1d1 , . . . , xndn) ≤
qV (x1, . . . , xn),

V̇ ≤ −
n∑

i=1

xTi Qixi +
n∑

i=1

εi∥xidi∥
2 + 2

n∑
i=1

n∑
j = 1
j ̸= i

xTi PiDijxjdj

+2
n∑

i=1

n∑
j = 1
j ̸= i

xTi PiEijxj + 2
n∑

i=1

( n∑
j = 1
j ̸= i

εij
)
∥xi∥2

+
n∑

i=1

( n∑
j = 1
j ̸= i

1

εji
β2ji(t, xi)∥Pj∥2

)
∥xidi∥

2

+q
n∑

i=1

xTi Pixi −
n∑

i=1

xTidiPixidi

≤ −
n∑

i=1

xTi

(
Qi − qPi − 2(

n∑
j = 1
j ̸= i

εij)Ini

)
xi

−
n∑

i=1

xTidi

{
Pi −

(
εi +

n∑
j = 1
j ̸= i

1

εji
β2ji(t, xi)∥Pj∥2

)
Ini

}
xidi

+2
n∑

i=1

n∑
j = 1
j ̸= i

xTi PiDijxjdj + 2
n∑

i=1

n∑
j = 1
j ̸= i

xTi PiEijxj

13



= −1

2
ZT (ΓT (·) + Γ(·))Z

≤ −1

2
λmin(Γ

T (·) + Γ(·))∥Z∥2

≤ −1

2
γ∥x∥2

where Z := col(x1, · · · , xn, x1d1 , . . . , xndn) and x = col(x1, · · · , xn).

Hence, by applying Lemma 1, the conclusion follows from γ > 0. ∇

Remark 4. Consider (10) in Assumption 3. The bounds on the uncertain

interconnections in system (3) are dependent on the systems states, and thus

they cannot be employed in the control design since static output feedback is

used in this paper. The effects of such interconnections have been reflected

through βij(·) in the matrix Γ.

Next, consider that the uncertain interconnections ϕij(·) satisfy

∥ϕij(t, xj , xjdj )∥ ≤ αij(t, yj , yjdj )∥yj∥ (28)

which is a special case of (10) when βij(·) = 0. The inequality of (28)

implies that the bounds on the uncertain interconnections can be expressed

in functions of outputs and delayed outputs. In this case, the effects of the

uncertain interconnection ϕij(·) can be largely rejected by the control law

designed in (12). This is shown by the following result.

Corollary 1. For system (3)–(4), it is assumed that gi(·) satisfy (9) and ϕij
satisfy (28). Then under Assumptions 1-2, the closed-loop system formed

by applying the control (12) to the system (3)–(4) is globally uniformly

asymptotically stable if W T +W > 0 where the matrix

W :=

[
W1 W2

W3 W4

]

is defined by

W1 :=



Πa
1 −2P1D12 · · · −2P1D1n

−2P2D21 Πa
2

. . .
...

...
. . .

. . . −2Pn−1D(n−1)n

−2PnDn1 · · · −2PnDn(n−1) Πa
n


14



W2 := Γ2, W3 := Γ3

and

W4 := diag
{
Πb

1,Π
b
2, · · · ,Πb

n

}
where Γ2 and Γ3 are defined in Theorem 1, Πa

i := Qi − qPi − (
∑n

j = 1
j ̸= i

εij)Ini

and Πb
i := Pi − εiIni for i = 1, . . . , n and q > 1.

Proof: Consider the uncertain interconnection terms
∑n

j=1

j ̸=i
ϕij(t, xj , xjdj ).

From the condition (28) and Young’s inequality,

2xTi Piϕij(t, xj , xjdj )

≤ 2∥Pi∥ ∥xi∥αij(t, yj , yjdj )∥yj∥

≤ εij∥xi∥2 +
1

εij
∥Pi∥2 α2

ij(t, yj , yjdj )∥yj∥
2 (29)

for constant scalars εij > 0. By comparing the difference between (22) and

(29), the conclusion is obtained directly from the proof of Theorem 1. ∇

Remark 5. Corollary 1 shows that if the uncertain interconnections are

bounded by functions of system outputs and delayed outputs, then their

effects can be largely rejected by the control (12). Actually, from (29), it

is straightforward to see that the effects of the uncertain interconnections

ϕij(·) are reflected through εij and αij(·). As the second term in (29) has

been completely canceled by the designed control (12) (actually the term

ubi(·) in (14)). Thus εij will be the only term resulted from the uncertain

interconnections which appear in the matrix W1 through Πa
i . However, the

terms
∑n

j = 1
j ̸= i εij will be very small if the parameters εij is chosen to be small

enough although small εij usually result in high gain control.

Remark 6. Comparing the matrix Γ in Theorem 1 and the matrix W in

Corollary 1, it is clear to see that Γ is a function matrix whileW is a constant

matrix. The difference between Γ and W lies in the diagonal entries. From

the structure of the diagonal entries Γ1, Γ4,W1 andW4, it is straightforward

to see that ΓT + Γ > 0 implies that W T +W > 0. Therefore, the results in

Corollary 1 is less conservative than the result in Theorem 1 but Theorem

1 is applicable to a class of large-scale interconnected systems with a wider

class of uncertain interconnections.
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5. Case Study — River Pollution Control Problem

Consider a two-reach model of a river pollution control problem [10]. It

is assumed that the concentration of biochemical oxygen demand (BOD) for

the first subsystem is perturbed by a time delay. Then, the system can be

described by (See, [22])

ẋ1=

[
−1.32δ 0

−0.32 −1.2

]
x1 +

[
0.1

0

] (
u1 − 13.2(1− δ)y1d1

)
+ ϕ12(·)(30)

ẋ2=

[
−1.32 0

−0.32 −1.2

]
x2 +

[
0.1

0

]
(u2 + g2(·)) +

[
0.9δ 0

0 0

]
x1d1

+

[
0.9 0

0 0.9

]
x1 +

[
−0.9δy1

0

]
(31)

y1=[1 0]x1, y2 = [1 0]x2 (32)

where x1 := col(x11, x12) and x2 := col(x21, x22). The variables xi1 and xi2
represent the concentration of the BOD and the concentration of dissolved

oxygen respectively, and the control ui are the BOD of the effluent discharge

into the river for i = 1, 2. The constant δ ∈ [0, 1] is the retarded coefficient.

The uncertainties g2(·) and ϕ12(·) are added to illustrate the obtained results.

In order to fully use system output information, it is necessary to rewrite

the system (30)–(32) in the following form

ẋ1=

[
−1.32δ 0

−0.32 −1.2

]
︸ ︷︷ ︸

A1

x1 +

[
0.1

0

]
︸ ︷︷ ︸

B1

(
u1 + (−13.2(1− δ))y1d1︸ ︷︷ ︸

g1(·)

)

+ϕ12(·) (33)

ẋ2=

[
−1.32 0

−0.32 −1.2

]
︸ ︷︷ ︸

A2

x2 +

[
0.1

0

]
︸ ︷︷ ︸

B2

(u2 + g2(·)) +
[
0.9δ 0

0 0

]
︸ ︷︷ ︸

D21

x1d1
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+

[
0 0

0 0.9

]
︸ ︷︷ ︸

E21

x1 +

[
(1− δ)0.9y1

0

]
︸ ︷︷ ︸

ϕ21(·)

(34)

y1=[1 0]︸ ︷︷ ︸
C1

x1, y2 = [1 0]︸ ︷︷ ︸
C2

x2 (35)

It is assumed that

|g2(·)| ≤ 1 + sin y2︸ ︷︷ ︸
ξ2

+ |y2|︸︷︷︸
η2

∥x2d2∥, ∥ϕ12∥ ≤ |y2y2d2 | sin2 t︸ ︷︷ ︸
α12

|y2| (36)

Let ξ1 = 0, η1(·) = 13.2(1 − δ) and α21 = 0.9(1 − δ). It is clear to see that

Assumption 3 holds. Then choose σ = 0.20, K1 = 20, K2 = 30 and

Q1 =

[
4.5280 0.3200

0.3200 2.4000

]
, Q2 =

[
8.6400 0.3200

0.3200 2.4000

]

The solutions to the Lyapunov equations in (7) are P1 = P2 = I2 and the

equations (8) are satisfied with D1 = D2 = 0.1. Comparing system (33)–

(34) with the system (3)–(4), it is straightforward to see that D12 = E12 =

0. Let ε1 = ε2 = 0.5 and ε12 = ε21 = 0.1. Clearly both the unknown

interconnections ϕ12(·) and ϕ21(·) are bounded by functions of the local

outputs and time delay. Consider the Corollary 1. By direct computation,

W1 =


3.418 0.32 0 0

0.320 1.29 0 0

0 0 7.53 0.32

0 −1.80 0.32 1.29

 , W2 =


0 0 0 0

0 0 0 0

−0.36 0 0 0

0 0 0 0



W3 =


0 0 −0.36 0

0 0 0 0

0 0 0 0

0 0 0 0

 , W4 =


0.5 0 0 0

0 0.5 0 0

0 0 0.5 0

0 0 0 0.5


and the matrix W T + W where W is defined in Corollary 1, is positive

definite. Then, from Corollary 1, the controllers (12)–(14) which are well

defined, stabilise the system (30)-(32) globally uniformly asymptotically.
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For simulation purposes, the delays are chosen as

d1(t) = 3− 2 sin t and d2(t) = 2− cos t

and the delay related initial conditions are chosen as

ψ1(t) = col(2 cos t, 1) and ψ2(t) = col(0, 1− sin t)

The simulation results shown in Figure 1 are as expected.
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Figure 1: The time responses of the state variables of system (30)–(31)

6. Conclusions

This paper has presented delay dependent control strategies for a class

of uncertain interconnected systems with time-varying delays. The pro-

posed controllers are decentralised and based on only output information,

which is convenient for real implementation. A set of sufficient conditions

has been developed to guarantee that the resultant closed-loop system is

globally uniformly asymptotically stable. The study also shows that if the

18



uncertain interconnections are bounded by the functions of outputs and

delayed outputs, then their effects can be largely rejected by designing ap-

propriate controllers. The proposed approach can be used to accommodate

mismatched uncertain interconnections.
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