
Benoy, Florence and King, Andy (1996) Inferring Argument Size Relationships
with CLP(R). In: Gallagher, John, ed. Logic Logic Program Synthesis and
Transformation 6th International Workshop. Lecture Notes in Computer
Science . Springer, Berlin, Germany, pp. 204-223. ISBN 978-3-540-62718-0.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21464/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/3-540-62718-9_12

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21464/
https://doi.org/10.1007/3-540-62718-9_12
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Inferring Argument Size Relationshipswith CLP(R)Florence Benoy and Andy KingComputing Laboratory,University of Kent at Canterbury, CT2 7NF, UK.fp.m.benoy, a.m.kingg@ukc.ac.ukAbstract. Argument size relationships are useful in termination analy-sis which, in turn, is important in program synthesis and goal-replacementtransformations. We show how a precise analysis for inter-argument sizerelationships, formulated in terms of abstract interpretation, can be im-plemented straightforwardly in a language with constraint support likeCLP(R) or SICStus version 3. The analysis is based on polyhedral ap-proximations and uses a simple relaxation technique to calculate leastupper bounds and a delay method to improve the precision of widening.To the best of our knowledge, and despite its simplicity, the analysisderives relationships to an accuracy that is either comparable or betterthan any existing technique.1 IntroductionTermination analysis is important in program synthesis, goal-replacement trans-formations and is also likely to be useful in o�-line partial deduction. Terminationanalysis is usually necessary in synthesis since synthesis often only guaranteessemantic or model-theoretic correctness. Termination analysis is often necessaryin transformation because termination usually must be preserved wrt. the initialprogram and transformed goals. Termination is typically proved by showing thata well-founded ordering exists between a goal and its sub-goals. In the case of theQs/2 program, termination is (basically) asserted by showing that the recursiveQs(l, sl) and Qs(g, sg) goals operate on lists that are strictly smaller than[x|xs]. (For the de�nition of the Ap/2 and Pt/4 predicates see appendix A.) Forprograms like Qs/2 which are not structurally recursive this, in turn, requiresthe derivation of inter-argument relationships. In the case Qs/2, for instance, itis necessary to infer that both l and g in the recursive calls are smaller than[x|xs]. This can only be inferred by deducing an inter-argument relation forPt/4, that is, that neither the third nor fourth argument are larger than thesecond argument.Qs([], []).Qs([x|xs], s) <-Pt(x, xs, l, g) &Qs(l, sl) & Qs(g, sg) &Ap(sl, [x|sg], s). QsA(0, 0).QsA(1+xs, s) <-PtA(, xs, l, g) &QsA(l, sl) & QsA(g, sg) &ApA(sl, 1+sg, s).

Note that G�odel notation is used throughout: variables are denoted by identi�ersbeginning with a lower case letter and constants by identi�ers beginning withan upper case letter.Once an appropriate measure of term size (norm) like list length, is deduced[12, 23], the problem of inferring argument relationships is essentially reducedto that of inferring invariants of a CLP(R) program [14]. QsA/2 for example,an abstraction of Qs/2, is a form of abstract program [14] that is obtained by asyntactic transformation in which each term in the �rst program is replaced by itssize wrt. list length. An analysis for inferring invariants between the variables ofthe second program [9, 20] can then be re-interpreted as an analysis for deducingthe size invariants (inter-argument relationships) of the �rst program [8, 31].For example, one invariant in the second program is that the third and fourtharguments of Pt/4 sum to the second argument. Thus, in the �rst program, thesum of the lengths of the third and fourth arguments of Pt/4 must be coincidentwith the length of the second argument.In broad terms, analyses for inferring invariants have either been built arounda�ne sub-spaces [14, 20, 31], or in terms of (closed) polyhedral convex sets[8, 18, 30]. (The di�erence equation approach [11] to inferring inter-argumentrelationships, although potentially useful, requires computer algebra machineryto manipulate and solve the di�erence equations and therefore is probably toocomplicated for most partial deduction systems.) In the a�ne approach, invari-ants are represented by a�ne subspaces, basically points, lines or hyper-planesin IRn, which can be represented and manipulated using matrices. The a�neapproach is attractive because, although is cannot express inequalities betweenvariables, the approximation is Noetherian and therefore the termination of theanalysis is not an issue.The convex set approach characterises argument relationships as sets of con-joined linear inequalities [18, 30]. To be precise, linear inequalities represent acollection of closed half-spaces the intersection of which, de�nes a polyhedralconvex set. In [30], a suite of transformations are de�ned, formulated in termsof matrices, for mechanising the derivation of argument relationships. This ap-proach is promising because inequalities are more expressive than equalities sinceevery a�ne sub-space is polyhedral.Sp([], [], []).Sp([x|xs], [x|os], es) <-Sp(xs, es, os). SpA(0, 0, 0).SpA(1+xs, 1+os, es) <-SpA(xs, es, os).To illustrate the expressiveness of inequalities, consider the Sp/3 predicate [27] ofmerge sort in which the elements at the odd and even positions in a list are sepa-rated into two lists. The query <- Sp([A, B, C], o, e). will succeed with theanswer fe = [B], o = [A, C]g. Polyhedral approximations are expressivenessenough to even describe the invariants of Sp/3, that is,�hx; y; zi 2 IR3 ���� z = (�y) + x ^ y � x � 0 ^z � y � z + 1 ^ (�y) � 0 �

The polyhedral work of [30] is incomplete, however, because the iterative processrequired to compute argument relationships for recursive predicates may notconverge in �nitely many steps. Cousot and Cousot explain, however, how torectify this problem with widening [8]. Widening essentially trades precision for�niteness by weakening inequality constraints to obtain stability of the iterates.Our contribution is to show how a precise analysis based on polyhedra (ratherthan a�ne sub-spaces [14]) can be implemented straightforwardly in a languagewith constraint support like CLP(R) or SICStus version 3. In fact the initialprototype is less than 200 clauses and took just two person weeks to code anddebug. Speci�cally, we adopt a relaxation technique used in disjunctive con-straint programming [10] to compute convex hulls. With the use of the solverand projection machinery of CLP(R) and the clp(Q,R) libraries of SICStus, ithas not been necessary to manipulate matrices, like [20, 30, 31]; or frames, like[9, 15]; or implement the Chernikova conversion mechanism, like [32].Convergence of the iterates is enforced by widening and it is our observationthat precision can be improved by delaying widening for a few (typically oneor two) iterations. This simple approach seems to achieve comparable or betterresults to the more sophisticated widening of [8], without loss of precision. Theprincipal advantage is in the simplicity in the implementation.The applications of inferring argument relationships extend well beyond par-tial deduction. Argument relationships are useful for planning the evaluation ofqueries in deductive databases [29], optimising database queries [21], and play animportant role in time-complexity analysis [11]. Horspool [18] proposed the useof argument relationships for improving the memory management of cdr-codedlists. Also, in Reform compilation [25], where bounded iteration (the for loop)is used to implement recursion to avoid the overheads of run-time unfolding,argument relationships can extend the scope for parallelisation by recognisingpredicates that are de�ned by structural recursion. Intuitively, this means thatthe compiler can deduce the recursion bound by just looking at the input argu-ments [26].The exposition is structured as follows. Section 2 outlines the analysis with aworked example. Section 3 present some theory and notation to aid the presenta-tion. Sections 4 and 5 cover the convex hull calculation and widening operation.Section 6 outlines the implementation and �nally Sections 7 and 8 present therelated and future work. The table in appendix A summaries some interestinganalysis results obtained by our analyser.2 Worked ExampleConsider an argument size analysis for the predicate Ap/3. As with Qs/2, analysisis performed on an abstract program, here denoted ApA/3. The arguments ofeach predicate in the abstract program represent the sizes of the arguments ofthe corresponding predicate in the concrete program. Therefore the relationshipsthat hold between arguments of ApA/3 exist as inter-argument size relationshipsfor Ap/3 the concrete program.

Ap([], s, s).Ap([x|xs], s, [x|t]) <-Ap(xs, s, t). ApA(0, s, s).ApA(1 + r, s, 1 + t) <-ApA(r, s, t).Analysis iterates to a �xpoint that characterises the inter-argument relation-ships. We denote the ith iterate by Ii. Each iteration in the �xpoint calculationtakes an Ii as input and generates an Ii+1 as output. I0, the bottom element, is;. Generally, to compute Ii+1, the body atoms of each clause of the program areuni�ed with the atoms in Ii. Since I0 is empty, however, I1 will abstract onlythose relationships embodied in the unit clause of ApA/3, that is,I1 = fhr; s; ti 2 IR3 j r � 0 ^ �r � 0 ^ s � t � 0 ^ t� s � 0gNote that I1 is expressed in terms of a set of inequalities. Thereafter, at eachiteration, there will be a set of inequalities that describe the inter-argumentrelationships for each predicate. The number of atoms can grow at each iterationand therefore, to keep the size of the iterate small, the sets of inequalities foreach predicate are collected and approximated by an over-estimate, a convexhull. The convex hull can itself be expressed as a single set of inequalities sothat it is necessary only to maintain one set of inequalities for each predicate inthe program. The convex hull derives a succinct expression of the disjunction ofspaces with a minimal loss of information. The convex hull operation denoted[, is used to compute I2 and the ensuing iterates.I2 = fhr; s; ti 2 IR3 j r = 0 ^ s = tg[fh1 + r; s; 1 + ti 2 IR3 j r = 0 ^ s = tg= fhr; s; ti 2 IR3 j r = 0 ^ s = tg[fhr; s; ti 2 IR3 j r = 1 ^ s = t� 1g= fhr; s; ti 2 IR3 j 0 � r ^ r � 1 ^ t = r + sgThe equalities denote pairs of inequalities for brevity. Although the convex hulloperation computes an approximation, useful relationships are still preservedsince the convex hull corresponds to the smallest convex space enclosing thespaces represented by the sets of inequalities. Note too, the convex hull calcu-lation e�ectively generates inter argument relationships, like t = r + s, that arecommon to both clauses of the predicate.One problem with the linear inequality representation, however, is that ar-bitrarily large sets of inequalities can arise as the analysis proceeds. This canimpede termination. Widening is therefore employed to constrict the growth ofthe sets and enforce convergence of the iterates to those inequalities that arecommon to all iterations. To be precise, I3 = I25 I30 whereI30 = fhr; s; ti 2 IR3 j r = 0 ^ s = tg [fh1 + r; s; 1 + ti 2 IR3 j 0 � r ^ r � 1 ^ t = r + sg= fhr; s; ti 2 IR3 j r = 0 ^ s = tg [fhr; s; ti 2 IR3 j 1 � r ^ r � 2 ^ t = r + sg= fhr; s; ti 2 IR3 j 0 � r ^ r � 2 ^ t = r + sgThe widening I2 5 I30 basically derives those inequalities that are common toboth I2 and I30. More precisely, it selects those inequalities of I2 that hold forI30.

Each iteration will generate a space that is described by the set of inequalities.Until the widening is initiated, successive iterations will typically yield a spacethat both includes and extends the previous space. Intuitively, the invariantcondition will be an expression of those spatial boundaries that are commonbetween iterations. Those inequalities that are excluded, by widening, will bethose that relate to variables whose size increases with each iteration and, in thiscase, represents the unconstrained growth of an argument that is a list. Oncewidening commences, termination follows since the set of inequalities at eachiteration cannot grow any further. For this iteration, I3 = I25 I03 = fhr; s; ti 2IR3 j 0 � r^ t = r+ sg. Similarly, it can be shown that I4 = fhr; s; ti 2 IR3 j 0 �r ^ t = r + sg, and hence the iteration sequence converges.3 Preliminaries3.1 Concrete SemanticsTo express the widening and explain the implementation it is helpful to clarifythe semantics. The semantics of the abstract program (and the concrete pro-gram) can be expressed in an s-style semantics for constraint logic programs [5].The semantics is parameterised over an algebraic structure, C, of constraints.We write c j= c0 i� c entails c0 and c = c0 i� c j= c0 and c0 j= c. The interpreta-tion base BC for the language de�ned by a program P is the set of unit clausesof the form p(x) c quotiented by equivalence. Equivalence, �, is de�ned by:p(x) c � p(x0) c0 i� c � var(x) = (c0^(x = x0)) � var(x0) where � denotesprojection. When C corresponds to the Herbrand universe Herb, for example,� is variance. The �xpoint semantics FC is de�ned, as usual, in terms of animmediate consequences operator like so: FC [[P]] = lfp(TP).De�nition1 �xpoint s-semantics for CLP. The immediate consequencesoperator TP : BC ! BC is de�ned by:TP (I) = 8>>>><>>>>:[p(x) c0]� ����������w 2 P ^ w = p(t) c; p1(t1); : : : ; pn(tn) ^[wi]� 2 I ^ wi = pi(xi) ci ^8i:var(w) \ var(wi) = ; ^8i 6= j:var(wi) \ var(wj) = ; ^c0 = ^ni=1(xi = ti ^ ci) ^ (x = t) ^ c 9>>>>=>>>>; 23.2 Abstract SemanticsOrdering A preorder is a preordered set L (v) where the relation v is re
exiveand transitive. A poset is a preorder L (v) where v is also antisymmetric. Acpo is a complete poset, that is, ant IN-termed increasing chain xi 2 L has aleast upper bound ti=1xi 2 L.

Polyhedral Domains Let Lin denote the set of �nite sets of implicitly conjoinednon-strict inequalities. Lin (j=) is a preorder but lifts to a cpo Lin== (j=) withquotienting. Let Polyn denote the set of (closed) polyhedral convex sets in IRn.Polyn(�) is also a cpo. Given a �nite, ordered set of variables X = fx1; : : : ; xng,there is a natural mapping from Lin== to Polyn that is polyX ([c]=) = fx 2IRn j (Vni=1 xi = x0i) j= cg.The preordering on inequalities lifts to interpretations to de�ne a preorder}(BLin) (v) where I v I0 i� 8[p(x) c]� 2 I : 9[p(x) c0]� 2 I0 : c j= c0.The preorder de�nes an equivalence relation: I � I 0 i� I v I0 and I 0 v I which,in turn, de�nes the poset }(BLin)=� (v) where [I]� v [I 0]� i� I v I0. In fact}(BLin)=� (v) is a cpo. TP lifts to }(BLin)=� (v) by TP ([I]�) = [TP (I)]� andis continuous.Abstract Interpretation Rather than adopt the Galois connection approach toabstract interpretation [8] we require widening to obtain stability of our �xpointcalculation, because the domain does not satisfy the ascending chain property.De�nition2 widening. A widening 5 on the preorder L (v) is an operator5 : L � L ! L such that: 8x; y 2 L : x v x5 y and 8x; y 2 L : y v x5 yand for all increasing chains x0 v x1 v : : :, the increasing chain de�ned byy0 = x0, : : : , yi+1 = yi5 xi+1, : : : is not strictly increasing, that is, yl+1 v ylfor some l. 2To improve precision we adapt the widening strategy of [8] and only apply theoperator after a bounded number of iterations.Proposition3 adapted from [8]. If L (v;t) is a cpo, F : L ! L is contin-uous, ? 2 L is such that ? v F (?), 5 2 L � L ! L is a widening, then theupward iteration sequence with widening xi where i; k 2 IN is de�ned thus:x0 = ?xi+1 = xi if F (xi) v xixi+1 = F (xi) else if i � kxi+1 = xi5 F (xi) else if i > kwill converge and its limit A is such that lfp(F) v A and F (A) v A. 23.3 Argument Size AnalysisA concretisation mapping is used to clarify the relationship between a concreteand abstract program in terms of a norm jtj that measures the size of a term t.De�nition4
. Concretisation
(I) : }(BLin)! }(BHerb) is de�ned by:
(I) = � [p(x) Vni=1(xi = ti)]� ���� [p(x) c]� 2 I ^(Vni=1 xi = jtij) j= c � 2A program P over Herb is safely abstracted by abstract program PA over Lini� FHerb[[P]] �
(FLin[[PA]]).

4 Convex Hull CalculationPrevious approaches [9, 15, 16, 22, 32] to computing the convex hull of polyhedrarely on the frame representation. Speci�cally, the polyhedra are represented asa system of generators, that is, two �nite sets, V and R, of vertices and rays:P =8<:Xvi2V �i:vi + Xrj2R �j:rj ������i � 0 ^ �j � 0 ^Xi �i = 19=;The convex hull P of two polyhedra P1 and P2, respectively represented byhV1; R1i and hV2; R2i, is then given by hV;Ri where V = V1[V2 and R = R1[R2Example 1. Consider the point P1 and the line P2. The convex hull of P1 andP2 is the space PC. Both the constraint and frame representations of P1, P2 andPC are given below followed by two graphs that depict the polyhedra.P1 = 8>><>>:hx; yi 2 IR2 ��������x � 0 ^0 � x ^y � 1 ^1 � y 9>>=>>; V1 = ��01�� R1 = ;P2 = 8<:hx; yi 2 IR2 ������ x � y ^y � x ^�x � 0 9=; V2 = ��00�� R2 = ��11��PC = 8<:hx; yi 2 IR2 ������x� y � 0 ^y � x � 1 ^�x � 0 9=; VC = ��01� ; �00�� RC = ��11��
-����������6rP1h0; 1i P2y = xy x -�����������������6 PCh0; 1i y = x+ 1 y = xy x 2Usually the constraints and frame are represented together and the Chernikovaalgorithm is used to convert between them. For example to compute an overapproximation of the convex hull, VC and RC are computed and then the

Chernikova algorithm is used to generate PC . Both representations are usedsimultaneously as \experience shows that this redundant representation is muchless expensive than the frequent use of conversions" [9]. It is interesting to notethat it is the closure of the convex hull that is returned by both methods, thatis the smallest polyhedral convex set that includes the convex hull.By using a di�erent approach to computing the convex hull, it is possible touse a single representation, namely a set of linear inequalities. CLP(R) providesthe projection and solver machinery for manipulating sets of inequalities andthus allows us to implement the convex hull in an e�cient but relatively simpleway. The naive approach to the calculating the convex hull in CLP(R) canlead to
oundering. Floundering occurs because non-linear constraints may beinde�nitely postponed. Suppose that two arbitrary polyhedra, P1 and P2, arerepresented in standard form, that is,P1 = fX 2 IRn jA1X � B1g; P2 = fX 2 IRn jA2X � B2gThe convex hull of P1 [P2, P , is then de�ned by:PC = 8<:X 2 IRn ������X = �1X1 + �2X2 ^ �1 + �2 = 1 ^A1X1 � B1 ^ A2X2 � B2 ^��1 � 0 ^ ��2 � 0 9=;The equation �1X1 + �2X2 = 1, however, is non-linear and in a constraintlanguage that delays non-linear constraints the worst case can result in an in�niteloop [17]. Following [10], however, equations can be reformulated by puttingY1 = �1X1 and Y2 = �2X2 so thatX = Y1 +Y2; A1Y1 � �1B1; A2Y2 � �2B2so that PC is also de�ned by:PC = 8<:X 2 IRn ������X = Y1 +Y2 ^ �1 + �2 = 1 ^A1Y1 � �1B1 ^ A2Y2 � �2B2 ^��1 � 0 ^ ��2 � 0 9=;Example 2. To illustrate the method, we refer to our earlier example. Substitut-ing for the matrices A1and A2, and the vectors B1 and B2, the above system ofequations is as follows:PC = 8>>>>>><>>>>>>:X 2 IRn ������������ X = Y1 +Y2 ^ �1 + �2 = 1 ^2664 1 0�1 00 10 �13775Y1 � �12664 001�13775 ^ 24 1 �1�1 1�1 035Y2 � �22400035 ^��1 � 0 ^ ��2 � 0 9>>>>>>=>>>>>>;

Note that X = hx1; x2i and Yi = hy1i ; y2i i,PC =8>>>>>><>>>>>>:X 2 IR2 ������������ x1 = y11 + y21 ^ �1 + �2 = 1 ^x2 = y12 + y22 ^ ��1 � 0 ^y11 � 0 ^ ��2 � 0 ^�y11 � 0 ^ y12 � y22 � 0 ^y21 � �1 ^ �y12 + y22 � 0 ^�y21 � ��1 ^ �y12 � 0 9>>>>>>=>>>>>>;and hence PC can be derived through projection. 2In terms of implementation, the chief technicality is in constructing the equa-tions AiYi � �iBi from AiXi � Bi. In fact each AiYi � �iBi can be generatedby a single recursive pass over the ground representation of AiXi � Bi whichbasically collects and then scales the numeric constants. Once the equations aresetup, a projection onto X then gives PC encoded in a ground representation.5 Widening OperationWidening is required to enforce the convergence of the iterates. Essentially ittrades precision for �niteness by weakening inequality constraints to obtainstability of the iterates. Since TP is continuous on the cpo }(BLin)=� (v),? v TP (?) where ? = [;]�, by Proposition 3 it only remains to de�ne a suit-able 5 operator for }(BLin)=� and to select an appropriate k. The widening[I]�5[I0]� is basically an adaption of the widening of [9] lifted to interpretations.Since I and I 0 both contain at most one set of inequalities for each predicatesymbol, the widening lifts in a straightforward way.De�nition5.[I]�5 [I 0]� = [�[p(x) c5 c0]� ��[p(x) c]� 2 I ^ [p(x) c0]� 2 I0]�where c5 c0 = �i 2 c �� c0 j= i	 2The widening c5 c0 relaxes the constraint c by selecting those inequalities i ofc which are entailed by c0. Since c, c0 are encoded in the ground representation,the test for entailment amounts to scanning the list of constraints representing cand then testing each i in the list against c0 with entailment. Termination followssince the widening stops the set (list) representing c0 including new inequalities.(Interestingly, we have found that the naive widening c5c0 = c\c0 can work wellif the constraints always appear in the same syntactic form.) The main subtletyin widening is choosing a useful k, that is, deciding when to widen. Sections 5.1,5.2 and 5.3 explain how k a�ects the precision for di�erent classes of predicate.

5.1 Widening with Uniform IncrementsConsider the ApA/3 program of Section 2 listed below.ApA(0, s, s).ApA(1 + r, s, 1 + t) <- ApA(r, s, t).Each iteration of the analysis generates an atom ApA(x; y; z) c where thevariables x and z are both incremented by 1 relative to the previous iterate.To be more precise, the ith iteration of the analysis, [Ii]�, takes the form Ii =f[ApA(x; y; z) ci]�g where each ci de�nes a polyhedral convex set in IR3 bypolyfx;y;zg(ci) = pi. For examplep1 = fhx; y; zi jx = 0; y = zg; p2 = fhx; y; zi j 0 � x; x � 1; z = x+ ygMore generally ApA/3 de�nes pi+1 = pi[fh1+x; y; 1+zi j hx; y; zi 2 pig so thatthe space pi+1 extends and includes that of pi. Each pi+1 can be obtained from piin a predictable way since pi+1 di�ers from pi by uniform increments in the �rstand third dimensions. Although inter-argument relationships 0 � x; z = x + yare implicit in p1, they are not explicit until p2 and the ensuing pi. Widening cantherefore be performed to obtain the third iterate, that is k = 2, without loss ofsigni�cant information. The invariant condition is then con�rmed in the thirditeration to obtain p3 = fhx; y; zi j 0 � x; z = x+yg. Widening prematurely loosesinformation. We conjecture that for a directly recursive predicate with uniformincrement, all of the common invariants can be found within three iterations.5.2 Widening within a HierarchyConsider the QsA program of section A. The program consists of a hierarchy ofseveral predicates, where the top level predicate QsA=2 has calls in its body toother predicates, the auxiliaries PtA=4 and ApA=3. Each Ii therefore will consistof possibly many [p(x) c]�, at most one for each predicate symbol p. Ii+1 canonly include [QsA(x) c]�, however, provided Ii includes [PtA(x) c]� and[ApA(x) c]�. PtA and ApA are directly recursive with uniform increment andtherefore can be widened with k = 2. In general, however, precision can be lost ifa predicate is widened before its auxiliaries are widened and thus stable. By in-specting the clauses of a program, the call graph and its SCCs can be computed.The SCCs of the QsA program, for example, are the clause sets ffApA=3=1g,fApA=3=2g, fPtA=4=1g, fPtA=4=2, PtA=4=3g, fQsA=2=1g, fQsA=2=2gg where thep=n=m notation abbreviates the mth clause de�ning the predicate p=n. SCCscan be used to compute the �xpoint in a bottom-up fashion by considering theSCCs in (reverse) topological order. See Figure 1. Analysis begins with the basecases of the deepest predicates, and progressing upwards to derive �xpoints forPtA and ApA, before moving on to QsA. A complete analysis for QsA is given inthe table.

