University of

"1l Kent Academic Repository

Benoy, Florence and King, Andy (1996) Inferring Argument Size Relationships
with CLP(R). In: Gallagher, John, ed. Logic Logic Program Synthesis and
Transformation 6th International Workshop. Lecture Notes in Computer
Science . Springer, Berlin, Germany, pp. 204-223. ISBN 978-3-540-62718-0.

Downloaded from
https://kar.kent.ac.uk/21464/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/3-540-62718-9 12

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21464/
https://doi.org/10.1007/3-540-62718-9_12
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Inferring Argument Size Relationships
with CLP(R)

Florence Benoy and Andy King

Computing Laboratory,
University of Kent at Canterbury, CT2 7TNF, UK.
{p.m.benoy, a.m.king}@ukc.ac.uk

Abstract. Argument size relationships are useful in termination analy-
sis which, in turn, is important in program synthesis and goal-replacement
transformations. We show how a precise analysis for inter-argument size
relationships, formulated in terms of abstract interpretation, can be im-
plemented straightforwardly in a language with constraint support like
CLP(R) or SICStus version 3. The analysis is based on polyhedral ap-
proximations and uses a simple relaxation technique to calculate least
upper bounds and a delay method to improve the precision of widening.
To the best of our knowledge, and despite its simplicity, the analysis
derives relationships to an accuracy that is either comparable or better
than any existing technique.

1 Introduction

Termination analysis is important in program synthesis, goal-replacement trans-
formations and is also likely to be useful in off-line partial deduction. Termination
analysis is usually necessary in synthesis since synthesis often only guarantees
semantic or model-theoretic correctness. Termination analysis is often necessary
in transformation because termination usually must be preserved wrt. the initial
program and transformed goals. Termination is typically proved by showing that
a well-founded ordering exists between a goal and its sub-goals. In the case of the
Qs/2 program, termination is (basically) asserted by showing that the recursive
Qs(1, s1) and Qs(g, sg) goals operate on lists that are strictly smaller than
[x|xs]. (For the definition of the Ap/2 and Pt/4 predicates see appendix A.) For
programs like Qs/2 which are not structurally recursive this, in turn, requires
the derivation of inter-argument relationships. In the case Qs/2, for instance, it
is necessary to infer that both 1 and g in the recursive calls are smaller than
[x|xs]. This can only be inferred by deducing an inter-argument relation for
Pt/4, that is, that neither the third nor fourth argument are larger than the
second argument.

Qs(01, [1). Qs“(0, 0).
Qs([xlxs], s) <- Qs? (1+xs, s) <-
Pt(x, xs, 1, g) & PtA(_, xs, 1, g) &
Qs(1, s1) & Qs(g, sg) & QsA(1, s1) & QSA(g, sg) &

Ap(sl, [xlIsgl, s). ApA(sl, 1+sg, s).

Note that Godel notation is used throughout: variables are denoted by identifiers
beginning with a lower case letter and constants by identifiers beginning with
an upper case letter.

Once an appropriate measure of term size (norm) like list length, is deduced
[12, 23], the problem of inferring argument relationships is essentially reduced
to that of inferring invariants of a CLP(R) program [14]. Qs*/2 for example,
an abstraction of Qs/2, is a form of abstract program [14] that is obtained by a
syntactic transformation in which each term in the first program is replaced by its
size wrt. list length. An analysis for inferring invariants between the variables of
the second program [9, 20] can then be re-interpreted as an analysis for deducing
the size invariants (inter-argument relationships) of the first program [8, 31].
For example, one invariant in the second program is that the third and fourth
arguments of Pt/4 sum to the second argument. Thus, in the first program, the
sum of the lengths of the third and fourth arguments of Pt/4 must be coincident
with the length of the second argument.

In broad terms, analyses for inferring invariants have either been built around
affine sub-spaces [14, 20, 31], or in terms of (closed) polyhedral convex sets
[8, 18, 30]. (The difference equation approach [11] to inferring inter-argument
relationships, although potentially useful, requires computer algebra machinery
to manipulate and solve the difference equations and therefore is probably too
complicated for most partial deduction systems.) In the affine approach, invari-
ants are represented by affine subspaces, basically points, lines or hyper-planes
in R", which can be represented and manipulated using matrices. The affine
approach is attractive because, although is cannot express inequalities between
variables, the approximation is Noetherian and therefore the termination of the
analysis is not an issue.

The convex set approach characterises argument relationships as sets of con-
joined linear inequalities [18, 30]. To be precise, linear inequalities represent a
collection of closed half-spaces the intersection of which, defines a polyhedral
convex set. In [30], a suite of transformations are defined, formulated in terms
of matrices, for mechanising the derivation of argument relationships. This ap-
proach is promising because inequalities are more expressive than equalities since
every affine sub-space is polyhedral.

sp([1, [1, [1). spt(0, 0, 0).
Sp([xlxs], [xlos], es) <- SpA(1+xs, 1+os, es) <-
Sp(xs, es, os). SpA(xs, es, 0s).

To illustrate the expressiveness of inequalities, consider the Sp/3 predicate [27] of

merge sort in which the elements at the odd and even positions in a list are sepa-

rated into two lists. The query <= Sp([A, B, €], o, e). will succeed with the

answer {e = [B], o = [4, C]}. Polyhedral approximations are expressiveness
enough to even describe the invariants of Sp/3, that is,

slz=(-y)+zNy—xz<0A

{“"“”ER z§y(§l+1 A (=) <0 }

The polyhedral work of [30] is incomplete, however, because the iterative process
required to compute argument relationships for recursive predicates may not
converge in finitely many steps. Cousot and Cousot explain, however, how to
rectify this problem with widening [8]. Widening essentially trades precision for
finiteness by weakening inequality constraints to obtain stability of the iterates.

Our contribution is to show how a precise analysis based on polyhedra (rather
than affine sub-spaces [14]) can be implemented straightforwardly in a language
with constraint support like CLP(R) or SICStus version 3. In fact the initial
prototype is less than 200 clauses and took just two person weeks to code and
debug. Specifically, we adopt a relaxation technique used in disjunctive con-
straint programming [10] to compute convex hulls. With the use of the solver
and projection machinery of CLP(R) and the clp(Q,R) libraries of SICStus, it
has not been necessary to manipulate matrices, like [20, 30, 31]; or frames, like
[9, 15]; or implement the Chernikova conversion mechanism, like [32].

Convergence of the iterates is enforced by widening and it is our observation
that precision can be improved by delaying widening for a few (typically one
or two) iterations. This simple approach seems to achieve comparable or better
results to the more sophisticated widening of [8], without loss of precision. The
principal advantage is in the simplicity in the implementation.

The applications of inferring argument relationships extend well beyond par-
tial deduction. Argument relationships are useful for planning the evaluation of
queries in deductive databases [29], optimising database queries [21], and play an
important role in time-complexity analysis [11]. Horspool [18] proposed the use
of argument relationships for improving the memory management of cdr-coded
lists. Also, in Reform compilation [25], where bounded iteration (the for loop)
is used to implement recursion to avoid the overheads of run-time unfolding,
argument relationships can extend the scope for parallelisation by recognising
predicates that are defined by structural recursion. Intuitively, this means that
the compiler can deduce the recursion bound by just looking at the input argu-
ments [26].

The exposition is structured as follows. Section 2 outlines the analysis with a
worked example. Section 3 present some theory and notation to aid the presenta-
tion. Sections 4 and 5 cover the convex hull calculation and widening operation.
Section 6 outlines the implementation and finally Sections 7 and 8 present the
related and future work. The table in appendix A summaries some interesting
analysis results obtained by our analyser.

2 Worked Example

Consider an argument size analysis for the predicate Ap/3. As with Qs/2, analysis
is performed on an abstract program, here denoted Ap*/3. The arguments of
each predicate in the abstract program represent the sizes of the arguments of
the corresponding predicate in the concrete program. Therefore the relationships
that hold between arguments of Ap*/3 exist as inter-argument size relationships
for Ap/3 the concrete program.

Ap(0, s, s). Ap™ (0, s, s).
Ap([xlxs], s, [x]t]) <- ApA(i +r,s,1+1t)<-
Ap(xs, s, t). ApA(r, s, t).

Analysis iterates to a fixpoint that characterises the inter-argument relation-
ships. We denote the i*® iterate by I;. Each iteration in the fixpoint calculation
takes an [; as input and generates an I; ;1 as output. Iy, the bottom element, is
(. Generally, to compute I; 1, the body atoms of each clause of the program are
unified with the atoms in I;. Since I is empty, however, I; will abstract only
those relationships embodied in the unit clause of Ap#/3, that is,

L={(rst)eR®|r<O0A-—1<0As—t<O0At—s5<0}

Note that I; is expressed in terms of a set of inequalities. Thereafter, at each
iteration, there will be a set of inequalities that describe the inter-argument
relationships for each predicate. The number of atoms can grow at each iteration
and therefore, to keep the size of the iterate small, the sets of inequalities for
each predicate are collected and approximated by an over-estimate, a convex
hull. The convex hull can itself be expressed as a single set of inequalities so
that it is necessary only to maintain one set of inequalities for each predicate in
the program. The convex hull derives a succinct expression of the disjunction of
spaces with a minimal loss of information. The convex hull operation denoted
U, is used to compute /5 and the ensuing iterates.

I={{rst) €ER>|r=0As =t}0{(1 47,5141 €ER’ | r=0A5=1}
={(rns,) ER®|r=0As=t}0{(rs,) ER® | r=1As=1t—1}
={(rst) eR®[0<rAr<1At=r+s}

The equalities denote pairs of inequalities for brevity. Although the convex hull
operation computes an approximation, useful relationships are still preserved
since the convex hull corresponds to the smallest convex space enclosing the
spaces represented by the sets of inequalities. Note too, the convex hull calcu-
lation effectively generates inter argument relationships, like ¢ = r + s, that are
common to both clauses of the predicate.

One problem with the linear inequality representation, however, is that ar-
bitrarily large sets of inequalities can arise as the analysis proceeds. This can
impede termination. Widening is therefore employed to constrict the growth of
the sets and enforce convergence of the iterates to those inequalities that are
common to all iterations. To be precise, Iz = I, 7 I3’ where

L'={(rst)ER*|r=0As=1}0
{I+rs,1+)ERP|O<rAr<IAt=r+s}
(rs,)ER? |r=0As=1t}T

(r,s,t)E]RS |[1<rAr<2At=r+s}
(rs,)ERP|O<rAr<2At=r+s}

The widening I 57 I3 basically derives those inequalities that are common to

both I» and I3’. More precisely, it selects those inequalities of I that hold for
I3,

Each iteration will generate a space that is described by the set of inequalities.
Until the widening 1s initiated, successive iterations will typically yield a space
that both includes and extends the previous space. Intuitively, the invariant
condition will be an expression of those spatial boundaries that are common
between iterations. Those inequalities that are excluded, by widening, will be
those that relate to variables whose size increases with each iteration and, in this
case, represents the unconstrained growth of an argument that is a list. Once
widening commences, termination follows since the set of inequalities at each
iteration cannot grow any further. For this iteration, Is = Iz 7 I = {(r,s,t) €
R® | 0 < r At =r+s}. Similarly, it can be shown that I; = {(r,s,1) €IR*| 0 <
7 At =r+ s}, and hence the iteration sequence converges.

3 Preliminaries

3.1 Concrete Semantics

To express the widening and explain the implementation it is helpful to clarify
the semantics. The semantics of the abstract program (and the concrete pro-
gram) can be expressed in an s-style semantics for constraint logic programs [5].
The semantics is parameterised over an algebraic structure, C', of constraints.
We write ¢ = ¢ iff ¢ entails ¢/ and ¢ = ¢/ iff ¢ = ¢/ and ¢’ |= ¢. The interpreta-
tion base B¢ for the language defined by a program P is the set of unit clauses
of the form p(x) — ¢ quotiented by equivalence. Equivalence, ~, is defined by:
p(x) —c ~ p(x') = iff ¢ I var(x) = (A (x = %)) | var(x’) where | denotes
projection. When C' corresponds to the Herbrand universe Herb, for example,
~ 1s variance. The fixpoint semantics F¢ 1s defined, as usual, in terms of an
immediate consequences operator like so: Fo[P] = Ifp(Tp).

Definition1 fixpoint s-semantics for CLP. The immediate consequences
operator Tp : Bc — B¢ is defined by:

weP Aw=p(t) — e pi(t1),...,on(tn)

[wi]N el ANw; = pi(Xi) — ¢
Te(I) = < [p(x) «] |Viwar(w) Nvar(w;) = 0

Vi # jovar(w;) Nvar(w;) =0

=N (X =t Ae) A (x =

> > > >

t)Ac

3.2 Abstract Semantics

Ordering A preorder is a preordered set L (C) where the relation C is reflexive
and transitive. A poset is a preorder L (E) where C is also antisymmetric. A
cpo is a complete poset, that is, ant IN-termed increasing chain z; € L has a
least upper bound U;—x; € L.

Polyhedral Domains Let Lin denote the set of finite sets of implicitly conjoined
non-strict inequalities. Lin (|=) is a preorder but lifts to a cpo Lin/= () with
quotienting. Let Poly”™ denote the set of (closed) polyhedral convex sets in R".
Poly™(C) is also a cpo. Given a finite, ordered set of variables X = {x1,..., 2,1},
there is a natural mapping from Lin/= to Poly” that is polyx([c]=) = {x €
R™ | (AL, o = o) b= o).

The preordering on inequalities lifts to interpretations to define a preorder
@(Brin) (C) where I C I' iff V[p(x) «— €]~ € I . Ap(x) —] € I' .c E .
The preorder defines an equivalence relation: I ~ I’ iff I C I’ and I' C I which,
in turn, defines the poset p(Brin)/~ (C) where [I]x C [I']x iff I C I'. In fact
9(Brin)/~ (C) is a cpo. Tp lifts to p(Brin)/~ (C) by Tp([Ilx) = [Tr(I)]~ and
is continuous.

Abstract Interpretation Rather than adopt the Galois connection approach to
abstract interpretation [8] we require widening to obtain stability of our fixpoint
calculation, because the domain does not satisfy the ascending chain property.

Definition2 widening. A widening 7 on the preorder L (C) is an operator
V:LxL—Lsuchthat:Ve,ye L .2 C zyyandVe,ye L .y C 2y

and for all increasing chains g C x; C ..., the increasing chain defined by
Yo = T0y -y Yitl = Yi V Tig1, ... 18 not strictly increasing, that is, yi401 C
for some (. ad

To improve precision we adapt the widening strategy of [8] and only apply the
operator after a bounded number of iterations.

Proposition 3 adapted from [8]. If L (C,U) is a cpo, F' : L — L is contin-
uous, L € L is such that L C F(Ll), v € L x L. — L is a widening, then the
upward iteration sequence with widening x; where ¢,k € IN 1s defined thus:

rog = 1
Tit1l = &y if F(l‘z) E g
iy = F(x;) else if 1 < k
Tip1 = ;7 Fag) else if ¢ > k
will converge and its limit A is such that {fp(F) E A and F(A) C A. O

3.3 Argument Size Analysis

A concretisation mapping is used to clarify the relationship between a concrete
and abstract program in terms of a norm |¢| that measures the size of a term {.

Definition4 y. Concretisation y(I) : p(Brin) — ©(Bmers) is defined by:
el

— — A" r, =t [])(X) - C]N A
) = {[P(X) Niz1 (i = i)~ (N wi =t e }
O

A program P over Herb is safely abstracted by abstract program P4 over Lin
iff Frrers [P] C 7(Frin[PA]).

4 Convex Hull Calculation

Previous approaches [9, 15, 16, 22, 32] to computing the convex hull of polyhedra
rely on the frame representation. Specifically, the polyhedra are represented as
a system of generators, that is, two finite sets, V and R, of vertices and rays:

P = Z/\i'vi—i—zﬂj'rj /\iZO/\ﬂjZO/\Z/\izl
v, EV r;ER 7

The convex hull P of two polyhedra P; and Ps, respectively represented by
(Vi, Ry) and (Va, Ra), is then given by (V, R) where V = ViUVa and R = RiUR»

Erample 1. Consider the point P; and the line P;. The convex hull of P, and
P is the space Po. Both the constraint and frame representations of P, P, and
Pc are given below followed by two graphs that depict the polyhedra.

r<0A

0<zA 0

1<y

O 4 N 1

po=d oy emely LT VCI{[?]’[g]}RCI{H}

Y Y
P, y=ax+1
y=z y=z
Pc
Py
(0,1) (0,1)
x x

O

Usually the constraints and frame are represented together and the Chernikova
algorithm is used to convert between them. For example to compute an over
approximation of the convex hull, Vo and R are computed and then the

Chernikova algorithm is used to generate Pc. Both representations are used
simultaneously as “experience shows that this redundant representation is much
less expensive than the frequent use of conversions” [9]. Tt is interesting to note
that it is the closure of the convex hull that is returned by both methods, that
is the smallest polyhedral convex set that includes the convex hull.

By using a different approach to computing the convex hull, it is possible to
use a single representation, namely a set of linear inequalities. CLP(R) provides
the projection and solver machinery for manipulating sets of inequalities and
thus allows us to implement the convex hull in an efficient but relatively simple
way. The naive approach to the calculating the convex hull in CLP(R) can
lead to floundering. Floundering occurs because non-linear constraints may be
indefinitely postponed. Suppose that two arbitrary polyhedra, P, and P», are
represented in standard form, that is,

Plz{XEIRn|A1X§B1}, PZI{XE]RH|A2X§B2}
The convex hull of P; U Ps, P, is then defined by:

XIO'1X1—|—O'2X2/\O'1—|—0'221/\
Po = XeR? A1 Xy SBI A A X5 SBZ/\
—0'1§0 A _U'QSO

The equation 01X + 02X, = 1, however, 1s non-linear and in a constraint
language that delays non-linear constraints the worst case can result in an infinite
loop [17]. Following [10], however, equations can be reformulated by putting
Y, =01X; and Y5 = 05X so that

X=Y1+Y,, A4Y;<oiB;, AY,;< 03B,
so that Pc is also defined by:
XIY1—|—Y2/\ 0'1—|—0'2:1 A
Po = XeR? AlYlSUlBl/\AZYZSUZBz/\
—01 S 0 A —09 S 0
FEzample 2. To illustrate the method, we refer to our earlier example. Substitut-

ing for the matrices Ajand As, and the vectors By and Bs, the above system of
equations 1s as follows:

XIY1+Y2 A 0'1—|—0'2:1 A
R g -1 0
PCI XE]R” 0 1 Y1§0'1 1 A -1 1 YQSO'Q 0 A
0—1 1 -1 0 0
—0'1§0 A _U'QSO

Note that X = (z!, 2?) and Y; = (y}, v?),

el=yl +yi N o1 toa=1A

2=yl g2 A —01 <0A
1

_ 2| ¥ L0 A -0 <0 A

Pes el A w-g<on

vi<or A-yrtys <OA

—yi<-on A -y <0
and hence P can be derived through projection. a

In terms of implementation, the chief technicality is in constructing the equa-
tions A;Y; < 0;B; from A;X; < B;. In fact each A;Y; < 0;B; can be generated
by a single recursive pass over the ground representation of A;X; < B; which
basically collects and then scales the numeric constants. Once the equations are
setup, a projection onto X then gives Pc encoded in a ground representation.

5 Widening Operation

Widening is required to enforce the convergence of the iterates. Essentially it
trades precision for finiteness by weakening inequality constraints to obtain
stability of the iterates. Since Tp is continuous on the cpo p(Brin)/ =~ (C),
1 C Tp(L) where L = [(}]5, by Proposition 3 it only remains to define a suit-
able 57 operator for p(Br;,)/~ and to select an appropriate k. The widening
[I]~V[I']~ is basically an adaption of the widening of [9] lifted to interpretations.
Since I and I’ both contain at most one set of inequalities for each predicate
symbol, the widening lifts in a straightforward way.

Definition 5.
[N~ v [e = {p(x) —ev ¢l |p(x) = e TAp(x) =], € I' }]x

Wherech/:{iEc|c":i}

O

The widening ¢ 57 ¢’ relaxes the constraint ¢ by selecting those inequalities i of
¢ which are entailed by ¢’. Since ¢, ¢’ are encoded in the ground representation,
the test for entailment amounts to scanning the list of constraints representing ¢
and then testing each 7 in the list against ¢/ with entailment. Termination follows
since the widening stops the set (list) representing ¢ including new inequalities.
(Interestingly, we have found that the naive widening ¢y ¢’ = ¢N¢’ can work well
if the constraints always appear in the same syntactic form.) The main subtlety
in widening is choosing a useful k, that is, deciding when to widen. Sections 5.1,
5.2 and 5.3 explain how k affects the precision for different classes of predicate.

5.1 Widening with Uniform Increments

Consider the Ap™/3 program of Section 2 listed below.

ApA(O, s, s).
ApA(i +r, s, 1+1t)<- ApA(r, s, t).

Each iteration of the analysis generates an atom ApA(x,y, z) «— ¢ where the
variables # and z are both incremented by 1 relative to the previous iterate.
To be more precise, the i'* iteration of the analysis, [I;]x, takes the form I; =
{[ap?(#,y, 2) < ¢;]~} where each ¢; defines a polyhedral convex set in R® by
poly(e y -1 (¢;) = p;. For example

p1:{<$ayaz>|$:0ayzz}a p2:{<$ayaz>|0§$a$§1azz$+y}

More generally Ap*/3 defines p;11 = p; U{(142,y, 1+2)|{x,y,2) € p;} so that
the space p;y1 extends and includes that of p;. Each p; 41 can be obtained from p;
in a predictable way since p;y1 differs from p; by uniform increments in the first
and third dimensions. Although inter-argument relationships 0 < z,z =z + y
are implicit in p1, they are not explicit until p» and the ensuing p;. Widening can
therefore be performed to obtain the third iterate, that is & = 2, without loss of
significant information. The invariant condition is then confirmed in the third
iteration to obtain ps = {(z,y, 2) | 0 < #, z = #+y}. Widening prematurely looses
information. We conjecture that for a directly recursive predicate with uniform
increment, all of the common invariants can be found within three iterations.

5.2 Widening within a Hierarchy

Consider the @s* program of section A. The program consists of a hierarchy of
several predicates, where the top level predicate QSA/Q has calls in its body to
other predicates, the auxiliaries Pt /4 and Ap” /3. Each I; therefore will consist
of possibly many [p(x) < ¢]~, at most one for each predicate symbol p. I;;; can
only include [@s*(x) — c]~, however, provided I; includes [Pt#(x) « c]. and
[Ap*(x) « c]~. Pt* and Ap* are directly recursive with uniform increment and
therefore can be widened with & = 2. In general, however, precision can be lost if
a predicate is widened before its auxiliaries are widened and thus stable. By in-
specting the clauses of a program, the call graph and its SCCs can be computed.
The SCCs of the Qs* program, for example, are the clause sets {{Ap*/3/1},
{ap?/3/2}, {PtA/4/1}, {Pt*/4/2 Pt*/4/3}, {Qs*/2/1}, {Qs*/2/2}} where the
p/n/m notation abbreviates the m!”* clause defining the predicate p/n. SCCs
can be used to compute the fixpoint in a bottom-up fashion by considering the
SCCs in (reverse) topological order. See Figure 1. Analysis begins with the base
cases of the deepest predicates, and progressing upwards to derive fixpoints for
Pt# and Ap#, before moving on to @s*. A complete analysis for @s# is given in
the table.

