
Communications software performance predictionGill Waters, Peter Linington, David Akehurst and Andrew SymesComputing LaboratoryUniversity of Kent at CanterburyCT2 7NF, UKe-mail: A.G.Waters@ukc.ac.ukAbstractSoftware development can be costly and it is important that con�dence in a softwaresystem be established as early as possible in the design process. Where the software supportscommunication services, it is essential that the resultant system will operate within certainperformance constraints (e.g. response time).This paper gives an overview of work in progress on a collaborative project sponsoredby BT which aims to o�er performance predictions at an early stage in the software designprocess. The Permabase architecture enables object-oriented software designs to be combinedwith descriptions of the network con�guration and workload as a basis for the input to asimulationmodel which can predict aspects of the performance of the system. The prototypeimplementation of the architecture uses a combination of linked design and simulation tools.1 IntroductionSoftware development and maintenance costs have for some years far outweighed those for hard-ware. The more complex the system, the greater the investment in its design and maintenance.Contributing to this are some of the intangible properties of software: it is hard to prove thatit will work correctly until put in to practice and is subject to problems of poor or incompletedesign or incorrect or incomplete implementation. For companies relying heavily on software,good design practice is essential.Most software design procedures will include looking brie
y at performance requirementsand making estimates of the likely time to achieve results. Where a software system is designedto run on a single computing platform and the software does not require answers in real time,e.g. for payroll or invoice processing, it is a reasonably simple matter to estimate performance.This may be based on the number of lines of code or on measurements of an existing systembefore enhancement. Predicted problems may have a reasonably obvious solution, for exampleto invest in a faster processor.Where the software supports distributed applications which communicate across networksthere is frequently a requirement for it to satisfy real-time constraints - in many cases these willbe soft real-time requirements such as the time taken to respond to customer requests to anon-line server or a database query. In others, deadlines must be met, especially where safety isinvolved, for example in control of aircraft or in railway signalling.Software for distributed applications which is otherwise well-designed but does not meetsuch performance requirements is of limited use. The aim of the Permabase project is to enableperformance predictions to take place early in the life cycle of communications applicationsoftware design, so that over-ambitious plans can be modi�ed or suitable decisions can be madeabout equipment or network provisioning. In other words, by putting performance predictionat an early stage, the design team should have increased con�dence that investing e�ort in theimplementation will be rewarded. Ideally as such tools become available, they would become anintegral part of the development process. 38/1



The project, which is not constrained to looking at speci�c computing platforms or networksor at a speci�c application, has de�ned a generalised architecture through which applicationsdesigners can ask \What if?" questions about their software designs.The Permabase project is a collaborative project which started in late 1995 and is led andfunded by BT. The majority of the work is being carried out at BT Laboratories and the Uni-versity of Kent. ERA Technology have also been involved, bringing their simulation experienceto the project. The goals of the project are to produce a proof of concept pre-production imple-mentation of a performance predictor, which would be suitable for reasonably wide applicationin organisations such as BT, for whom software is a major part of their business.The rest of the paper gives more details on progress to date. In the following section a briefoverview of related work is given. Section 3 elaborates on the requirements which have fed in tothe the Permabase design. At this stage in the project, we have arrived at an initial prototypefor Permabase, section 4 describes the concepts and architecture of this phase and discusses ourexperience of implementing and testing the prototype.In producing the prototype, we have inevitably made simplifying decisions and taken someshort cuts. In the next phase of the project we shall learn from these experiences and develop anew version which will more nearly satisfy the diverse requirements discussed in Section 3. The�nal section of the paper looks brie
y at what we need to do to achieve this.2 Related workAlthough there are many models for communication systems and their components and somefor analysing software performance, we are not aware of any which integrate all aspects ofthe system and performance to the extent that we do in this project. An Esprit project onan Integrated Modelling Support Environment (IMSE) completed in 1991 aimed to integratemodelling tools together and to automate the modelling process; the French company Simulogo�ered commercial versions of some of the IMSE tools. An object-oriented tool (PROTAB) forthe modelling and prototyping of distributed systems was discussed in [1].An industry perspective on the integration of performance prediction by members of the BTPermabase team [9] describes current practice and outlines a set of requirements for performancetools for the future. Our concepts of the integration of software performance with softwareanalysis and design are also advocated in [10]. Further ideas on this, based on �nding pathwaysthrough the logic represented by means of Object-Oriented constructs are described in [8]. Theobject-oriented design approaches described by Booch [3] is key to our representation of theapplication and the the treatment of use-case scenarios discussed in [5] has also been helpful.3 Requirements for the performance prediction toolIn order to discuss the requirements, we �rst look at some example applications which willillustrate the potentially diverse situations to which such predictions can be applied. These areabstract examples for the purposes of discussion. In the project we shall be applying our ideasto software development projects within BT as case studies but these are not reported in thispaper.Our examples are an interactive video library retrieval system, a voice-conferencing systemand information retrieval where the service is provided by a distributed server and cache arrange-ment. In general, the requirements will be to model applications which are highly distributed,interactive and may involve multimedia.A video library system would potentially have a large number of customers each equippedwith a set-top box. A high bandwidth network would be needed to deliver the video in realtime, though the system may rely on some smoothing bu�ering at the receivers. Users wouldexpect to be able to search for videos and retrieve them within an acceptable response time andwould expect more rapid response to play, pause or rewind the video. The requirement for thePermabase system would be to capture the distributed software design both in the customer's38/2



equipment and in the video store and search machines. The expected user behaviour wouldneed to be identi�ed and modelled (e.g. frequency of scanning to �nd a new video, frequency ofpauses and restarts etc.). The network and computing platforms would also have to be identi�edand modelled. Questions which designers may wish to ask include: \Given a systems with �xedparameters, what would be the average and maxim um response times?" \What is the lowestrate customer link which would satisfy video delivery and customer requests?" \How would anupgrade in the network a�ect the number of users or the response time?"For the voice-conferencing system, similar information on software design and partitioning,network and workload would be needed. Here, typical speech Quality of Service characteristicswould be needed, regular bit-rate and low delays to eliminate echos, low variability of delay etc.Performance prediction would relate to these QoS characteristics and questions might include:\In this situation, is one conference server su�cient?", \What is the maximum number of userswithin the QoS constraints?" etc.For the cache/server example the nature of the system design would need to be captured atuser, cache and server together with the interactions between them. Questions such as \What isthe average response time for a certain size of cache?", \For what increase in population shoulda new cache be added?"From these three examples, it can be seen that to o�er a satisfactory prediction, a numberof aspects of the design must be known in detail. Each example then has its own requirementsfor performance answers but the aspects which must be captured have common elements, e.g.descriptions of network topology and computing platform type and speed and a way of describingthe load on the system. From these the system would combine the information and input it intoa performance model which would then return the required results.The types of questions which might be asked are likely to be re�ned during the life-cycle.Simple assumptions early on could lead to approximate results which would ensure su�cientcon�dence to carry on to a more detailed design to be evaluated by more in-depth performancemodels which might lead to re�nement of the design.To enable the system to be used for a wide variety of applications, the performance predictionenvironment must be acceptable to system developers who are not Performance Engineeringexperts. It should hide from them the complexity of the interlinked model components and ofthe performance models and yet should be 
exible to use. To this end, we have tried to relateit to established design methods, notations and rules. Another key requirement is that resultsshould be made available as quickly as possible. Of course this may not be very easy to achievewith a large simulation model. The procedure must be understandable by o�ering the users aview of the models in which the results are explicable to them.In order to support these diverse applications it is necessary to o�er an environment whichis modular and reusable, e.g. to have component models for say PC or workstations which canbe plugged in to the execution environment. The more modular the system, the easier it is toreuse models for di�erent applications.Our system must also support the abstract design and the progression of that design into the elaboration of its components, so that it can focus on di�erent aspects of the design atdi�erent stages. Since an Object-Oriented approach is the most useful one for modern distributedsystems design, this is what we have chosen as a basis for the design representation in our system.Hierarchical design techniques also allow us to introduce increasing detail.In the next section, we describe how the initial architecture has been designed in responseto these requirements and a �rst version implemented.4 Permabase architecture and initial prototypeFrom the previous sections, we can see that in order to model distributed software applicationswe need to capture the characteristics of the system in three domains: the application logic, theexecution environment (consisting of both computing platforms and network topology) and theexpected workload which will drive the systems as shown in Figure 1.38/3



Figure 1:
Application
Modelling

Tool

Environment
Definition Tool

Execution

Specification
Facility

Workload

Kernel
(CMDS)

Analytic
Engine

Simulation
Engine

Figure 2: High level architecture38/4



Our high level architecture (Figure 2) shows how the various components are linked togetherby a kernel which we call the Composite Modelling Data Structure (CMDS). The CMDS is arepository for all the relevant information from the models from the application modelling tool,the execution environment de�nition tool and workload speci�cation tool and acts as a sourceof procedures, constraints and parameters for the performance model which may be carried outby simulation or analytical techniques.
Figure 3: Expanded architectureFigure 3 shows the choice of tools in the architecture. Tools have been chosen both for their
exibility and potential acceptability by software developers within BT. Object-oriented designis captured by the Rational Rose design tool [4]. Where necessary ROSE diagrams are annotatedto o�er su�cient modelling information. The key classes and objects are then translated in tothe form in which they are stored in the CMDS. The execution and workload are both capturedusing BT's own Con�gurator tool [6] which we again extended to o�er su�cient modellinginformation to be downloaded into the CMDS.The information in the CMDS is then input to the SES Workbench simulation package [7]The simulation model has a number of simplifying assumptions, but allows simple applicationsdescribed using the input tools to be analysed. Results are returned to the CMDS and can thenbe viewed by the user.Ideally, the design process should proceed iteratively so that the results of an early perfor-mance evaluation captured from the component models can be fed through to modify or re�nethe system. These modi�cations can then be incorporated in the performance model to predictthe likely e�ect of the changes. See Figure 4.4.1 System prototypeAn initial prototype was produced to test that complete performance models could be produced.The prototype was tested on two example systems. The �rst, elaborated below, was the client-cache-server model discussed in Section 3. The second was based on a network monitoringproject and is not discussed further here. An independent performance model was devised foreach of the target systems in order to validate the results.For the cache-server model, the basic scenario modelled was a page request from a client toa server with distributed caching. The performance question asked was the end-to-end responsetime for user transactions.The high level class diagram for the cache server model (not shown) represents three classes:one each for the client, cache and server. To provide the necessary events for our models, wecan start by identifying use-cases which relate to the application. Typical examples for thisapplication are request-page, replace-page etc. Taking the request-page use-case as an example,38/5



Figure 4: Iterative analysis and design processthe user's request may result in di�erent interactions between system components depending onwhether the page exists in the cache and how fresh it is.
client_object : 

client
cache_object 

: cache

server_object 
: server

1: request (page_address)

2: request (page_address)Figure 5: Scenario for requesting an uncached pageFigure 5 shows a ROSE Scenario diagram for \request page" where the page is not yetcached. The objects in the diagram are instances of the client, cache and server classes. Therequest for a page is sent to the cache object as a synchronous message. (The client waits fora reply.) The cache in turn sends a message to the server object to get the page. The server'sreply contains the page which can then be returned by the cache to the client.The messages need to be annotated with the length of the parameters passed, so that theperformance model can quantify the time taken to cross any networks. Such annotation isavailable as standard in the Rose tool. Method calls on an object must also be annotated withthe time they will take to invoke (as a number of work units) on the computing platform. Thisis added as extra textual information to the scenario diagram.Figure 6 shows a Scenario diagram for a request for a fresh page. In this case, the response38/6



client_object : 
client

cache_object 
: cache

server_object 
: server

1: request (page_address)

Figure 6: Scenario for requesting a fresh pagewill be quicker as the cache object does not need to communicate with the server object. Furtherscenarios would deal with the cache checking the age of a page and sending a message to theserver if necessary to ensure that it has the latest version.
PROCESSOR_SPEED=90000000

NUM_OF_INSTANCES=10

NAME=pc

NETWORK

SPEED=19375000

PROPOGATION_DELAY=0.1

NAME=WAN
PROCESSOR_SPEED=150000000

NUM_OF_INSTANCES=1

NAME=power server

PROCESSOR_SPEED=90000000

NUM_OF_INSTANCES=10

NAME=pc

SPEED=1250000

PROPOGATION_DELAY=0

NAME=LAN

SPEED=19375000

PROPOGATION_DELAY=0.1

NAME=WAN
PROCESSOR_SPEED=150000000

NUM_OF_INSTANCES=1

NAME=power server

NETWORK

SPEED=1250000

PROPOGATION_DELAY=0

NAME=LAN

PROCESSOR_SPEED=200000000

NUM_OF_INSTANCES=1

NAME=local server

PROCESSOR_SPEED=200000000

NUM_OF_INSTANCES=1

NAME=local server Figure 7: Execution environmentFigure 7 shows the execution environment for the cache-server application. Here, ten PCsare attached to a single LAN which also has a server. The LAN is in turn connected to a WANleading to a power server. Again, textual annotations capture the relevant parameters aboutthe PCs, the servers and the network.Figure 8 shows the workload model. Two types of users are modelled, distinguished byinstances of the name attached to the client class. The distribution of their request operationsare quanti�ed at this stage. Now that the system has input from the three main modellingcomponents, the information needs to be \fused" together to specify how model components aremapped to each other. In the example shown, the workload Power User would be instantiatedas an object class Client on one of the PCs. There is no workload on the local server whichis instantiated as an object class Cache on the local server, because all of its work is done inresponse to messages resulting from the client object's load.The information in the CMDS about the fused model must now be translated into a SESworkbench simulation model. This is done in two stages. The �rst produces an intermediate�le format which reorganises the design into a format suitable for the development of a DiscreteEvent Simulation model. This is then processed into SES/query language which provides the low-38/7



EVENT

OPERATION=request

NAME=event

MEAN/MIN=0.05

DISTRIBUTION=poisson

USAGE_MODEL

NAME=Power_User

CLASS=client

OPERATION=request

NAME=event

MEAN/MIN=0.05

DISTRIBUTION=poisson

NAME=Power_User

CLASS=client

NAME=Casual_Browser

CLASS=client

OPERATION=request

NAME=event

MEAN/MIN=1.2

DISTRIBUTION=uniform

EVENT

OPERATION=request

NAME=event

MEAN/MIN=1.2

DISTRIBUTION=uniform

USAGE_MODEL

NAME=Casual_Browser

CLASS=client Figure 8: Workloadlevel functionality required to build an SES model. The model comprises workload, applicationand execution environment elements which are arranged for suitable hierarchical decomposition.For example, a class submodel will make reference to the execution environment as a clientrequest event occurs at a client object. The execution environment will then make referenceto other submodels related to the computer platform and the network. The SES model is thusbuilt up in a modular fashion to form a complete model representing the designed system.4.2 TestingAll stages of the above process were checked as part of the test procedures. The results producedby the system were then checked against an independently generated model for the same systemusing the same parameters. For the case shown, these results were in agreement within anacceptable margin of error.5 Experience with the prototypeOur experience in putting together the initial prototype demonstrated, �rst, that it is possibleto link the various aspects of applications design with the environment in which the systemis expected to run and to produce useful performance evaluation models. This was achieveddespite the obvious complexity of gathering information from a variety of tools to feed intoanother quite di�erent tool in the form of the simulation package.There were also a number of limitations with the prototype. First, the time taken to gothrough the various stages was several minutes even for the simple case being modelled. Secondly,because the prototype was deliberately kept simple, it was capable of working on a very limitedset of applications.None of the tools used contained all the facilities we would have wished for; this is to beexpected as we were using general purpose tools. In particular, in order to get an accurateview of state information in the application, we had to de�ne conventions for use of the Rose38/8



tool which included the user providing state diagrams at the design stage. We shall continueto minimise restrictions on the approach taken by the systems designer within the constraint ofgetting a valid model for the performance evaluation. The new Uni�ed Modelling Language [2]is likely to help us with this when comprehensive tools become available.Work is now progressing to the next phase of the project which will address these and otherissues. Our vision was of an environment which could o�er combinations of simulation andanalytical techniques where each was available and appropriate. It is certainly our intention tokeep the actual performance modelling as modular as possible so that this can be done. Otherobjectives are better checking for consistency across the models and an improved user interface,which more closely matches our requirement for answers to \What if" questions.We shall also be augmenting the models so that they are capable of modelling high speednetworks such as ATM so that the package will be suitable for the wide variety of applicationswhich are likely to be designed for these networks in the near future. Such models will notnecessarily be at cell level. Another addition will be the provision of stream models as thereal-time delivery component of multimedia applications.6 AcknowledgementsWe would like to thank BT for funding the project and the members of the project team fortheir input: Peter Utton, Gino Martin and Brian Hill of BT and Adrian Johnson and GeraldMoran of ERA. We would also like to thank SES for supplying the Workbench licence.References[1] M. Baldassari, G. Bruno, and A Castella. Protob: an object-oriented case tool for modellingand prototyping distributed systems. Software Practice and Experience, pages 823{844,August 1991.[2] G. Booch, I. Jacobsen, and J. Rumbaugh. The Uni�ed Modeling Language for Object-Oriented Development, Document set version 1.0. http://www.rational.com/uml, 1997.[3] Gradie Booch. Object-oriented analysis and design with applications. Benjamin Cummings,1994.[4] Rational Software Corporation. Rational Rose Application Notes, Software Release 3.01.[5] I. Jacobsen et. al. Object-Oriented Software Engineering - a Use Case driven approach, 4thedition. Addison Wesley.[6] Ian Pennock. Con�gurator - User Guide, Issue 1. N&S, AA&T, 1996.[7] Scienti�c and Engineering Software Inc. SES/Workbench release 3.1.[8] Connie Smith. Performance engineering of Software Systems. Addison Wesley, 1990.[9] Peter Utton and Brian Hill. Performance prediction: an industry perspective. In Perfor-mance Tools 97, the 9th International Conference on Modelling Techniques an Tools forComputer Performance Evaluation. Springer, Lecture Notes in Computer Science 1245,1997.[10] L. Williams and C.U. Smith. Information requirements for software performance engineer-ing. In Quantitative Evaluation of Computing and Communication Systems, pages 86{101.Springer, Lecture Notes in Computer Science 977, 1995.38/9


