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Abstract
Efficiency and scalability are crucial issues in
Knowledge Discovery in Databases (KDD). Our
approach to these challenging issues is to dewseigc,
set-based KDD primitives which are insensitive be t

massively-parallel version of the RL algorithm isually
faster than its sequential version when the numifer
tuples is greater than 10,000.

It should be emphasized that, no matter how fast a
sequential KDD algorithm is, its time complexity &

order in which data elements are processed. Such leastQ(N), where N is the number of tuples. Parallel

primitives facilitate the exploitation of parallsin.
Furthermore, these primitives are generic in thhey
support a wide selection of rule-induction and amste-
based learning KDD algorithms. We present the ftssof
running the primitives on two commercially-availabl
parallel database platforms. We show that scalable
parallel performance is possible on large databases.

1. Introduction.

Knowledge Discovery in Databases (KDD), or Data
Mining, consists of extracting interesting, useful
knowledge from real-world databases [8]. Despite th
great demand for KDD in large databases, “convaatio
KDD algorithms have been applied mainly to reldsive
small samples of data (typically less than 5,008lets)
and do not have any integration at all with Relsio
DBMSs. Next-generation KDD systems will face the
challenge of coping with huge amounts of data stane
data warehouses and of being tightly integratech wit
database systems in a corporate-wide scale.

However, the application of KDD algorithms to large
databases faces serious scalability problems,cpéatly
in respect of problem of excessive processing tiFw.
instance, Cohen [7] remarks that the processing tifn
the rule-pruning method of C4.5, a well-known diggis
tree-based KDD algorithm, scales roughly as thescnfb
the number of tuples. As a result, Cohen estinthtgshis
method would take 79 years on a 150-MHz processor i

processing offers the possibility of reducing thasver
bound toQ(N/p), where p is the number of processors.
Hence, parallelism seems to be the great hopeale sp
next-generation KDD systems.

Our approach to improved efficiency (shorter
processing time) in KDD consists of exploiting data
parallelism in KDD via carefully-designed primitiseln
this paper we propose generic, set-oriented prigstito
support the data-intensive operations of algorithms
belonging to two major KDD paradigms, namely Rule
Induction (RI) and Instance-Based Learning (IBL). A
discussion of the pros and cons of these paradigrtie
context of KDD is beyond the scope of this papesreH
we briefly remark that these two paradigms have
complementary strengths and weaknesses, so thatoéac
them tends to achieve good results in domains wtiere
other might not do very well [18]. Indeed, the griation
of Rl and IBL is an emergent trend in KDD [24], [T]he
scope of this paper is restricted to relational databases.

This paper is organized as follows. Section 2
introduces our set-oriented, primitive-based fraomdw
for KDD. Section 3 proposes a primitive for the &ul
Induction paradigm, while Section 4 proposes a ki
for the Instance-Based Learning paradigm. Bothi&est
also report results of experiments evaluating ffieiency
in the exploitation of data parallelism on paratlatabase
servers. Finally, Section 5 presents the conclusions.

2. A Set-Oriented, Primitive-Based
Framework for Knowledge Discovery in

order to process 500,000 tuples. As another example Databases

Provost & Aronis [20] report that a sequential v@nsof
the RL algorithm is impractical (i.e. takes toodaio run)

on data sets of more than 70,000 tuples, and that a

A central theme of this paper is the development of
generic, well-defined, context-free primitives tltatpture



the core operations underlying a number of KDD
algorithms, as it will be shown later. We stressitth
developinggenericKDD primitives is important because
no single algorithm can be expected to perform well
across all domains [18], [23].

We assume that the database system has a cligat-ser
architecture - adopted by most current systemaurgid
illustrates the main differences between
“conventional” framework for KDD and our set-oriedt
architectural framework. In this Figure the relatsize of
the squares, circles and triangles (representing
respectively data, KDD algorithm and discovered
knowledge) roughly indicate the size of the coroegfing
object.

In the “conventional” framework for KDD - Figure
1(a) - the square representing data is small aactiticle
representing the KDD algorithm (running only on the
client) is big. In other words, a small data samde
downloaded from the Server to the Client, aaib the
procedures of the KDD algorithm are executed on the
Client.

In contrast, in our framework - Figure 1(b) - thetalis
kept on a Parallel Database Server. Hence, theresqua
representing data is big, indicating that a lard@tabase
can be mined, and the circle representing the KDD

the

algorithm is now split into two circles, the large$ them
representing set-oriented primitives running on Sleever
(performing the most time-consuming operations) ted
smallest of them representing KDD supervisory
procedures running on the Client. Finally, the rgile
representing the discovered knowledge is the sarbeth
Figures 1(a) and 1(b), since a data-parallel vargiba
KDD algorithm discovers the same knowledge as its
sequential counterpart.

Note that in our framework the KDD algorithm does
not have direct access to the data. That algorgimply
sends database queries to the Parallel DatabaserSer
which uses automatic parallel-query-optimizatiorthhods
to efficiently access the data and returns theyqresults
to the Client. The database queries submitted éytrent
are actually requests for the execution of setrbeid
primitives. We map these primitives into SQL. Déspis
limitations, SQL is the industry-standard querygaage
of Relational DBMS. Furthermore, it is a declarativ
interface, effectively decoupling applications
programmers from low-level computational and
architectural details. The result is an efficiexdsy-to-use
framework for KDD that takes advantage of high-
performance parallel database servers.

Client

Database Server

pwledge

data samj

(a) The “conventional” KDD framework.

Parallel Database Server Client
database guery knpwledge
data kdd i
query reSLI=ts

(b) Our framework for KDD.

Figure 1. The “conventional” KDD framework vs. our set-oriented framework.



For the sake the efficiency, as a pre-processeyyfstr
the KDD algorithm we execute a query which seledst
of the whole database - the task-relevant data.eetthe
subset of tuples and attributes to be accesseldebi(DD
algorithm. The result of this query is stored asmev
relation, called the Mine relation. Hence, we avibiel use
of computationally-expensive join operations duriihg
KDD algorithm. The Mine relation can be stored as a
snapshot, as a new base relation or as a matedaligw.
We stress that this approach is compatible with the
concept of the data warehouse. Actually, a datzhiarse
can be seen as a materialized view over multiple,
autonomous data sources [30].

To summarize, in our framework a KDD primitive
should satisfy four requirements, as mentionedviaelthe
next two Sections propose primitives satisfying sthe
requirements
(1) Well-defined specification Its input, output and
processing should be precisely defined.

(2) Generality -1t should find use in a number of KDD
algorithms;

(3) Computational significance 4n a given KDD
algorithm it should occur frequently and/or take a
significant part of the total processing time ofeth
algorithm

(4) Set-oriented naturelt should process many-tuples-at-
a-time, independently of the order of the tuples.

3. A Primitive for
Algorithms.

Rule Induction (RI)

A rule is a knowledge-representation structurehef t
form: “if P then Q”, where P is a conjunction ofrédute-
value conditions and Q is a goal-attribute-valuér pa
indicating the class predicted by the rule. In fRele
Induction (RI) paradigm the KDD algorithm can bestca
as a heuristic search in the space of candidate (ARSs).
In essence, a RI algorithm can be viewed as thatite
process of selecting the “best” CR according toRx C
evaluation function, expanding it (generating neRsL
and evaluating the just-generated CRs. The expario
the selected CR involves the application of spetbn
and/or generalization operations to the CR. (Inegana
conjunctive CR is specialized by adding conditiémst,
and it is generalized by removing conditions framThis
process is repeated until a satisfactory set of ERsund
[15].

As discussed above, in our KDD framework the Mine
relation (i.e. the subset of tuples and attribui@sbe
accessed by the KDD algorithm) is stored on a Rdral
Database Server. The Client selects the next CReto
expanded, and then expands it. However, in ordeatry
out CR-evaluation operations, the Client sends SQL
queries to the server. This is the kind of operatior

which the primitive proposed in this Section ha®rbe
developed.

3.1 Count by Group: a Primitive for Candidate
Rule (CR) Evaluation.

This Section introduces Count by Group, a generic
primitive to support Candidate Rule (CR) evaluation
operations, which constitute the principal datasive,
time-consuming activity of Rule Induction algoritem
This primitive was developed to process categorical
attributes - i.e. attributes whose domain condist small
set of discrete values, or categories. Continutinbates
would be discretized in a pre-processing phase.[B8e
for a modification of this primitive developed tope with
continuous attributes and for a discussion of thes @and
cons of discretization in the context of KDD.

Firstly we specify the primitive in terms of itspat
parameters, its output and its processing, as visllo
Count by Group has three input parameters, namely:

(@) A tuple-set descriptor a logical conjunction of
attribute-value pairs describing the tuples covdrgdhe
current CR.

(b) A candidate attribute the attribute whose values will
be used to expand the current CR if the candidaibuwte

is selected as the “best” one by a given evaluation
function;

(c) A goal attribute- the attribute whose value must be
predicted. This attribute is fixed during the ex@mu of

the KDD algorithm.

The output of Count by Group is shown in Figure)2(a
This is an m x n matrix extended with totals of soand
columns. m is the number of distinct candidatekaite
values and n is the number of distinct goal-attebralues
(or classes). Each cell (i,j) - i=1,...,m and j=1n.- of this
matrix contains the number of tuples satisfying tilygle-
set descriptor with candidate-attribute valueaAd goal-
attribute value ¢

Figure 2(b) shows a simple example of the output of
Count by Group, based on two attributes of a coryipan
database: Training and Job-status. It is assunetdthie
goal attributeTraining can take on two values - whether
or not a given employee has had some training @ th
company - and the candidate attribdtd-statuscan also
take on two values - employee has part-time ortfioée
job. In this example, 100 employees were countéd.-
100 tuples satisfied the tuple-set descriptor. ifintly,
Figure 2(b) says that Job-status - in particular part-
time value of Job-status - is relevant to discraten
among employees with and without training. Henody-J
status values (or at least its part-time value)lctdae
selected (depending on the goodness of other catedid
attributes) to compose the antecedent of clasdita
rules which have the Training attribute as its consequent.



The processing of Count by Group essentially cesisis
of counting the number of tuples in each partitigroup
of tuples with the same value for tBgoup byattributes)
formed by a relationalGroup by statement. This
processing is implemented in a declarative styl®bery
1, followed by a trivial computation of rows andiuons
totals.

G ... . G, Total
At | Ga G| G
Am le [ Q‘]n Cm+
T0t8.| G-]_ “ e e o Cn C++

(a) General structure of the output
of the Count by Group primitive.

Note that Count by Group is computationally
significant, since the construction of the matrdown in
Figure 2(a) is the bottleneck of KDD algorithms lgmming
very large DBMSs. Hence, it is crucial to speedtip
execution of this primitive. Moreover, Count by @Gpo
has a set-oriented semantics, since it operatemamy
tuples at a time in an order-independent fashion.

some no
training fraining Total

paft-time 0 30 30
full-time 60 10 70
Totgl 60 40 100

(b) An example of the output of
the Count by Group primitive.

Figure 2. Structure of the output of the Count by Group primitive.

SELECT Candidate_attribute, Goal_attribute, COUNT(*)

FROM Mine_Relation

WHERE Tuple-Set_Descriptor
GROUP BY Candidate_attribute, Goal_attribute

Query 1. SQL query underlying the Count by Group primitive.

Table 1. List of some CR-evaluation measures, as well as KDD algorithms
computing them, that are supported by the primitive Count by Group.

Candidate-Rule evaluation measure

KDD algorithm or system

Information Gain
Information Gain Ratio
Reduction of Gini Diversity Index
Orthogonality between class vectors
J-measure
Resubstitution Error
Chi-squared
Cramer’s Coefficient
Tau measure of association
Category Utility

ICET [26]
C4.5[21]
CART [5]
O-BTree [9]
CUPID [17]
SWAP-1 [27]
49er [31]
regularity-based clustering [25]
KDW [19]
COBWERB [10]




Count by Group is generic, in the sense that itlman
used to measure the quality of a Candidate Rulg (€R
number of KDD algorithms. To show this generalitye
list in Table 1 ten major quality measures of CRast tan
be computed via this primitive. For each CR’s gyali
measure we mention one KDD algorithm or system
computing that measure. Due to space limitatiores,de
not discuss these measures here - see Table éfemeés.
For a discussion about how the Count values shawn i
Figure 2(a) are used to implement each of the CR-
evaluation measures listed in Table 1, see [11].

3.2. Computational Results.

In order to evaluate the efficiency in the expliita
of data parallelism when running Count by Group, we
have done several experiments. We first descrilee th
experiments running the primitive Count by Groupna,
regardless of any KDD algorithm. Later in this Smtiwe
mention results of applying Count by Group to & KibD
algorithm.

To evaluate the exploitation of data parallelism in
Count by Group alone, this primitive was run ontbgtic
databases, which were randomly generated accotdiag
uniform probability distribution. The number of tap in
the Mine relation varied from 100k tuples to 500kles.
The number of attributes was fixed at ten (inclgdthe
goal attribute). In all the experiments the canttida
attribute had domain cardinality of 10 and the goal
attribute had domain cardinality of 2 (common valie
practice), so that the output of Count by Group was
matrix with 20 cells.

—&— 2 nodes
—— 3 nodes

— —4nodes

0 100 200 300 400 500
tuples (k)

(a) 0 conditions on thhereclause.

The experiments were done on an IBM SP2 running
DB2 Parallel Edition [4]. Each SP2 node runs atuabo
250 Mflops and has 256 Mbytes of memory. We varied
both the number of SP2 processor nodes used t@gsoc
the primitive and the number of conditions in Wwhere
clause of Query 1. The results are shown in FigBraad
4, where the horizontal axis shows the number wipkes
in the Mine relation and the vertical axis showe th
processing time (measured in seconds). Figure Ssho
the time taken by Count by Group on the SP2 vartlieg
number of processor nodes (2, 3 and 4 nodes). More
precisely, Figure 3(a) shows the results for 0 @@ in
theWhereclause of Query 1 - i.e. th¥hereclause is void
and all tuples of the Mine relation are counted tbyg
primitive. Figure 3(b) shows the corresponding lssior
2 conditions in theWhere clause of Query 1. In both
graphs the processing time scales linearly withnilmaber
of tuples.

Figure 4 shows the running time of Count by Gronp o
the SP2 for a fixed number of processor nodes edes
in Figure 4(a) and 4 nodes in Figure 4(b) - varyihg
number of conditions in thé/hereclause of Query 1. The
running times in the case of 2 and 4 conditionsatmest
co-linear, and they are significantly shorter thtre
running time in the case of 0 conditions. Thisug do the
fact that in the case of 2 and 4 conditions the remof
tuplescountedby the primitive is much smaller than the
number of tuples in the Mine relation. In generle
larger the number of conditions in th&hereclause of
Query 1, the smaller the number of counted tupage
that clause is a conjunction of conditions.

—&— 2 nodes
—— 3 nodes

— —4nodes

0 100 200 300 400

tuples (k)

500

(b) 2 conditions okihereclause.

Figure 3. Time on SP2, for a fixed number of conditions onWigereclause.
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(a) 2 processor nodes.
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(b) 4 processor nodes.

Figure4. Time on SP2, for a fixed number of processor nodes.

We have also done some experiments to evaluate thek nearest, where k is a user-specified parametigole(s)

efficiency in the exploitation of data parallelisim the
context of a full TDIDT (Top-Down Induction of
Decision-Tree) algorithm. The results of these
experiments are described in detail in [13]. Ovetta¢
results of these experiments were consistent with t
results reported above for the primitive Count by
alone. In particular the speed up (Sp) achievethbyuse

of parallelism varied significantly across both thember

of tuples in the Mine relation and properties dfedient
versions of the TDIDT algorithm, but in generaloaighly
linear Sp was achieved. As expected, the Sp inedeas
with the number of tuples, since the Client/Server
communication overhead becomes proportionally small
in this case.

4. A Primitive for Instance-Based Learning
(IBL) Algorithms.

In the Instance-Based Learning (IBL) paradigm the
KDD algorithm does not induce an explicit classifion
model. It simply stores the data set, or a subkét and
uses the data rather than an induced model toifglasw
tuples (instances) [2].

Note that although conventional algorithms of tBé& |
paradigm do not induce any explicit model, they
provides an explanation about how the classificatib a
new tuple is done, which is important in the contek
KDD. When a new tuple is classified, the system can
show the user the classifying tuple, i.e. the nsstilar
stored tuple (the “nearest neighbor”) retrieved thg
system. (Furthermore, IBL can also be used to gdimer
from individual tuples, e.g. by producing hypereeales
in the instance space that are easily interpretaflea
human user [22], or to extract highly summarized
information in the form of prototypes [29].)

In essence, when a new tuple has to be classdied,
IBL algorithm compares that tuple with all stored
instances and retrieves the “nearest” (most sijnilar the

to the new one, as determined by a distance méthien
the class of the retrieved tuple, or the prevatdass in
the k retrieved tuples, is assigned to the newetuL is
also known as the “(k-)Nearest-Neighbor” algorittim
Statistics.

4.1. Compute Tuple Distances. a Primitive to
Compute Distance Metrics.

This Section introduces Compute Tuple Distances, a
generic primitive to support the computation ofistahce
metric between a new tuple (to be classified) ald a
stored tuples. This is the primary data-intensitne-
consuming operation of IBL algorithms.

Let Dist(X,Y) be the distance between a storedeufl
and a new tuple Y. Let;Xand Y be the value of the i-th
attribute of the corresponding tuple, i=1...M, w1 is
the number of attributes. In essence, the primitive
computes the core of the distance metric Dist(3¥¢d
by most IBL algorithms, as expressed by the fornflija
where W, denotes the weight of the stored tuple X, W
denotes the weight of the i-th attribute, and;XsfY;)
denotes the distance between the valugard Y (see
below). The tuple weight Wusually indicates the quality
of the stored tuple X as a classifying tuple - sap [29]
or [1]. The attribute weights Wi=1...M, indicate the
relevance of each attribute for predicting the la$ a
tuple [28]. The exponent Exp in formula (1) is usua
small integer, typically set to 1 or 2. When Exdl =we
have the Manhattan (“city-block”) distance, and witep
= 2 we have the Euclidean distance.

M
Dist(X,Y) = Wk (Z W, dist(X;,Y)FP)'=® (1)
i=1

for continuous attributes:
dist(X;,Y;) = abs(X-Y;)) (2)



for categorical attributes:
diSti(Xi,Yi) =0if Xi=Y;; or dlSt(X,,Y,) =1if Xi2Y; (3)

Now we specify the primitive in terms of its input,
output and processing. The primitive Compute Tuple
Distances has four input parameters, namely:

(a) The attribute values of the new tuple - i.g.,Y
i=1...M;

(b) The exponent Exp in formula (1).

(c) The attribute weights Wi=1...M.

(d) The tuples weights Wfor each tuple X stored in
the Mine relation.

The above parameters (c) and (d) are optional, i.e.
they are not used by several IBL algorithms. Howgve
parameters (a) and (b) are essential in any IBbrilgn
supported by the primitive. The output of Computgple
Distances is simply the set of distance values éetwthe
new tuple Y and each stored tuple X.

The processing of this primitive consists of conmgit
formula (1). To compute di€X;Y;) we consider two
cases. If the i-th attribute is continuous (ordinale use
formula (2) where abs(x) denotes the absolute guesi)
value of x. We assume that continuous attributes ar
normalized to avoid an attribute having a weightcmu
larger than others in the distance metric just beeats
absolute values happen to be much larger. We use th
well-known  linear  normalization  method, i.e.
><i = |X| - Xminl / (Xmax - Xmin)’ where Xnin and Xnax are
respectively the minimum and the maximum values of
attribute X's domain.

If the i-th attribute is categorical (non-ordinalje use
the overlap distance metric, which essentially ¢®uhe
number of distinct attribute values, as given bynfala
(3). However, the mapping of formula (3) into SQLniot
trivial, since we cannot specify a conditional coama (f)
within an SQL query. Our solution is as follows.

We assume, without loss of generality, that the
attribute values are stored in the database ad sregjer
numbers, i.e. alphanumeric values such as “low” and
“high” are converted to numerical codes such asd 2
as a pre-processing step. Then we computg>Xidt;) as
follows: dist(X;,Y;) = ceiling(abs(X - Y;)/c), where c is
any constant equal to or greater than the cardynafithe
i-th attribute’s domain (for practical purposes,y sa
¢ = 100). The function ceiling(x) returns the sresil
integer number which is equal to or greater thahlote
that whenever X Y; the function call ceiling(abs(x
Yi)/c) will return the value of its parameter roundgulto
1. Both ceiling() and abs() functions are availdahlenajor
DBMSs such as Oracle 7.X.

Query 2 shows the general structure of a set-a@tknt
IBL algorithm implemented via the primitive Compute
Tuple Distances. Conceptually speaking, Query 2lmn
divided into two sequential steps. First, the SEIEC
within the WHERE...IN clause is executed to sekbet
nearest stored tuple to the new tuple. Then, thesabf the
selected tuple is retrieved by the outer SELECT. A
detailed example of the application of Compute €upl
Distances to support an IBL algorithm (without tipl
weighting nor attribute weights) is shown in Qué&tyln
this example the Mine relation has two predicting
attributes: the first one categorical and the sdcone
continuous. The Manhattan distance is used.

SELECT
FROM
WHERE
(SELECT

Query 2. The general structure of a set-oriented IBL
algorithm mapped into SQL.

class

Mine_relation

Dist(X,Y) IN

MIN(Dist(X,Y)) FROM Mine_relation)

SELECT
FROM
WHERE
(SELECT

class

Mine_relation

ceiling(abs(X- Y)/k) + abs(% - Y,) IN
MIN(ceiling(abs(X- Y1)/k) +

abs(X- Y,)) FROM Mine_relation)

Query 3. Example of a set-oriented IBL algorithm
mapped into SQL.

Note that the primitive Compute Tuple Distances is
very computationally significant, since it accesaishe
attributes and all the tuples of the Mine relatitm.this
sense, it has an ideal potential for data parsiteli
Moreover, it obviously has a set-oriented semansicee
it operates on many tuples at a time in an order-
independent fashion.

To show the generality of Compute Tuple Distances,
we list in Table 2 some IBL or hybrid IBL/RI algtrms
whose data-intensive, distance-metric computatisn i
supported by this primitive. Due to space limitapfor
each algorithm we only mention whether or not iesus
attribute weights or tuple weights in the distanwoetric -
the optional input parameters of the primitive. &eb the
original references for details of these algorithfsnore
detailed discussion about how Compute Tuple Digtganc
supports these algorithms can be found in [11]. [Hsé
two systems in Table 2 are actually general metlogyiks
for integrating RI and IBL algorithms, so that the
underlying IBL algorithm can use or ignore attribut
weights or tuple weights in their distance metric.



Table 2. List of some IBL algorithms supported by the primitive Compute Tuple Distances.

Algorithm or system. weighted tuples? weighted attributgs?
IB1, IB2, IB3 [2] no no
GA-WKNN [16] no yes
TIBL [29] yes no
CoRCase [1] yes yes
Integrated rule/case base [24] possibly possibly
Integrated decision-tree/CBR [3] possibly possibly

4.2. Computational Results.

Experiments were performed with three databases.
Two of them were obtained from the LIACC at the
University of Porto and were used in the Espritjgeb
Statlog [18], viz. the Shuttle and the Letter dsgds. In
the former the predicting attributes concern thsitpgn of
radiators in a NASA space shuttle and the classeshe
appropriate actions to be taken during a spacetlshut
flight, whereas in the latter the goal is to redagra letter
as one of the 26 letters of the alphabet. The thittdbase
used in our experiments was obtained from the Labou
Force Survey (LFS) data, produced by the UK'’s
Department of Employment. The goal attribute is
Managerial Status, which can take on two values (or
classes), namely manager/supervisor or employee. Th
number of [tuples; attributes] in the Mine relatimn each
of these databases is respectively [43,500; 9]0[iF 16]
and [113,432; 11]. Although these data sets arehnge,
they are large enough for testing purposes and dney
one order of magnitude larger than the data seisrted
in the majority of the IBL literature (typically $8 than
5,000 tuples).

We did experiments comparing a MIMD machine,
namely the White Cross WX9010 parallel databaseeser
against an Ingres 6.4 DBMS running on a 25-MHz, 24-
MBytes-RAM Sun IPC. In all experiments, our results
refer to main memory databases (i.e. disk activity
excluded). The White Cross WX9010 (release 3.2.1.2)
has 12 T425 transputers, each with 16 Mbytes RAddhe
rated at about 12 MIPS and 25 MHz [6]. Note thathea
transputer belongs to the same technology gengratid
has roughly the same MIP rate as the Sun IPC
workstation. Ten out of the 12 transputers are aligtu
used to process the query in parallel. The WX9Gl@ i
main-memory shared-nothing machine. It is a baak-en
SQL server attached to an Ethernet LAN. Althougis th

Table 3. Speed up for

machine is a relatively small, entry-level systeitnjs
interesting for our experiments for two reasongstfiit
has a very high rate of scanning tuples: 3 million
tuples/sec. Second, it was specifically designed fo
Decision Support Systems applications (includingD§D
rather than for OLTP applications.

In all the experiments we used the Manhattan
Distance. The results are shown in Tables 3 aficdle 3
presents speed up results for a simple IBL algorith
(called IBL-1), which classifies test tuples acdngdto
Query 2. Table 4 presents speed up results for @ mo
elaborate IBL algorithm (called IBL-2), which clégss
test tuples according to Query 2 extended to censid
attribute weights. In both Tables the columns héwe
following meaning. The first column indicates the
database. The second and third columns show thragese
time (in seconds) taken by the corresponding SQengu
in Sun/ingres and on the WX9010, respectively.
Unfortunately, the current version of the WX9018teyn
does not allow the direct execution of Query 2 agle
guery. Hence, we estimated the time that Query @ldvo
take (if it was implemented as a single query) ba t
WX9010 by executing simpler queries on this machine
The fourth column shows the speed up (Sp) of the
WX9010 over Sun/Ingres.

We are aware that it is common for papers on
experiments with parallelization to show the bebawf
the algorithm on a range of processor numbers. Meryve
in our case the WX9010 is a commercially-available
parallel database server to whose firmware we ddaee
access, so that we cannot control the number aiegsnrs
used by the machine. Hence, our experiments imgadsti
the behaviour of the speed up for different databaghis
is important because it allows us to study the tienaf
the speed up for different numbers of categoricad a
continuous attributes and different number of tuples.

(unweighted) IBL-1.

Database Sun (s) WX (s) Sp
Letter 45.1 7.1 6.3
Shuttle 59.8 6.4 9.3
LFS 5194 27.4 19.9




Table 4. Speed up for (weighted) IBL-2.

Database Sun (s) WX (s) Sp
Letter 56.3 19.0 3.0
Shuttle 79.9 24.8 3.2
LFS 506.3 50.8 9.9
20 1 HIBL-1
_ 151 HIBL-2
T 10 -
(3]
o
0 L L 1
Letter Shuttle LFS
Database

Figure5. Speed up of IBL-1 and IBL-2

In both Tables 3 and 4, as expected the Sp is emall
in the case of the Letter database. Due to thel sizal of
this database, the communication overhead between t
client and the WX9010 server represents a sigmifipart
of the total query processing time, so reducing $pe
However, the Sp is larger in the Shuttle databask is
particularly large in the LFS database, the lardeshbase
used in the experiments.

In general attribute weighting turned out
significantly increase query processing time, patérly
for the WX9010. This can be seen in Figure 5, which
compares the Sp associated with the two IBL aliyorst -

i.e. it compares the Sp shown in the last columnadfle 3
against the Sp shown in the last column of Tabléod,
each database. The Sp is significantly smallehéndase
of the attribute-weighting algorithm IBL-2 (for athe
three databases). The large drop in the Sp (e #.3
for IBL-1 to 3.2 for IBL-2 in the case of the SHatt
database) is somewhat surprising. The reason ferSih
drop seems to be that the SQL query of IBL-2 isenor
complex, since each term dig Equation (1) must be
multiplied by the corresponding weight;\ih theory, this
should not significantly reduce the Sp, since the
introduction of attribute weights in Equation (19e$ not
reduce its potential for the exploitation of data
parallelism. However, the WX9010, unlike Ingresyésy
sensitive to the arithmetic complexity of Equati¢h).
Hence, although the Data-in-Memory techniques &f th
WX9010 are very effective forrelational selection
operations, they seem not to be so effective forijglex”
arithmetic operations.

to

5. Conclusions.

We have proposed generic, set-oriented primitioes f
two important KDD paradigms, namely Rule Induction
(RI) and Instance-Based Learning (IBL). This hasvetd
us to create a set-oriented, data-parallel framievior
KDD which improves the scalability of KDD algorittsm
and uses Parallel Database Servers to significaatyce
the processing time of KDD algorithms. We have
demonstrated the generality of the proposed prigsti
and evaluated the efficiency in the exploitation dafta
parallelism. Note that due to their generalityjgnificant
speed up in the execution of the proposed prinstiisy
exploiting parallelism) will lead to a significaspeed up
in a number of different KDD algorithms.

To measure the efficiency in the exploitation ofada
parallelism we did several experiments. The prangss
time results reported in this paper can be summdras
follows. The running time of the RI primitive on #BM
SP2 scales linearly with the number of tupleseast for a
small number of processor nodes (Figures 3 and 1.
is consistent with the results reported in [13] far
decision-tree-building algorithm.

When running a simple IBL algorithm (without
attribute weighting), the 12-node WX9010 achieves a
speed up of about one order of magnitude over tire S
uniprocessor (Table 3). When running a more eldbora
IBL algorithm (with attribute weighting) the speeg is
reduced by a factor of about two (Table 4 and Fdhly,
indicating that the WX9010 is quite sensitive tce th
complexity of the arithmetic expression used to pota
the distance metric.



Several directions for future work are possible. It
would be interesting to extend these experimentstiter
databases, other Parallel Database Servers (PD$) an
other KDD algorithms, to generalize the resultsorégd
above. In addition, so far we have focused on agen
framework to integrate KDD algorithms, relational
databases and parallel processing. Our studies duail
extended to a deeper investigation about how tomiye
the database queries underlying the proposed prasit
(e.g. what is the best data partitioning strategyinimize
inter-processor communication costs). Note
conclusions stemming from this kind of investigatiend
to be dependent on a specific PDS architecture. In
practice, however, since a given organization Ugues
just one or a couple of different PDS, it would malense
for that organization to make a deeper study oérint
processor communication costs when executing the
proposed primitives on its particular PDS. Finaltije
proposed set-oriented, primitive-based frameworkghtni
be extended for other KDD paradigms, such as geneti
algorithms and neural networks. A preliminary watlout
a set-oriented, generic primitive for the genetic
programming paradigm is discussed in [12].

that
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