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Abstract In this paper, we use wavelet neural networks

in order to model a mean-reverting Ornstein–Uhlenbeck

temperature process, with seasonality in the level and

volatility and time-varying speed of mean reversion. We

forecast up to 2 months ahead out of sample daily tem-

peratures, and we simulate the corresponding Cumulative

Average Temperature and Heating Degree Day indices.

The proposed model is validated in 8 European and 5 USA

cities all traded in the Chicago Mercantile Exchange. Our

results suggest that the proposed method outperforms

alternative pricing methods, proposed in prior studies, in

most cases. We find that wavelet networks can model the

temperature process very well and consequently they

constitute an accurate and efficient tool for weather

derivatives pricing. Finally, we provide the pricing equa-

tions for temperature futures on Cooling and Heating

Degree Day indices.

Keywords Weather derivatives � Pricing � Forecasting �
Wavelet networks

1 Introduction

Neural networks (NNs) have been used with success in a

broad range of applications. NNs have the ability to

approximate any deterministic nonlinear process, with little

knowledge and no assumptions regarding the nature of the

process. Typically, the initial values of the NNs’ weights

are randomly chosen. However, random weights initiali-

zation is generally accompanied with extended training

times. In addition, when the transfer function is of a

sigmoidal type, there is always a significant chance that the

training algorithm will converge to local minima. Finally,

there is no theoretical link between the specific parame-

terization of a sigmoidal activation function and the opti-

mal network architecture, i.e. model complexity (the

opposite holds true for wavelet neural networks).

Wavelet analysis (WA) is often regarded as a ‘‘micro-

scope’’ in mathematics [1], and it is a powerful tool for

representing nonlinearities [2]. WA has proved to be a

valuable tool for analyzing a wide range of time-series and

has already been used with success in image processing,

signal denoising, density estimation, signal and image

compression and time-scale decomposition, [3–7]. How-

ever, WA is limited to applications of small input dimen-

sions, since the construction of a wavelet basis, when the

dimensionality of the input vector is relatively high, is

computationally expensive [8].

In [9], it has been demonstrated that it is possible to

construct a theoretical formulation of a feedforward NN in

terms of wavelet decompositions. Wavelet Networks

(WNs) were proposed by [10] as an alternative to feed-

forward NNs, which would alleviate the aforementioned

weaknesses associated with each method. The WNs are a

generalization of radial basis function networks (RBF).

WNs are one hidden-layer networks that use a wavelet as

an activation function, instead of the classic sigmoidal

family. It is important to mention here that multidimen-

sional wavelets preserve the ‘‘universal approximation’’

property that characterizes NNs. The nodes (or wavelons)

of WNs are the wavelet coefficients of the function
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expansion that have a significant value. In [11], various

reasons were presented in why wavelets should be used

instead of other transfer functions. In particular, first,

wavelets have high compression abilities, and secondly,

computing the value at a single point or updating the

function estimate from a new local measure involves only a

small subset of coefficients.

WNs have been used in a variety of applications so far,

i.e., in short term load forecasting [12–16], in time-series

prediction [1, 17, 18], signal classification and compression

[19–21], signal denoising [22], static, dynamic [9, 10, 23–26]

and nonlinear modeling [27], nonlinear static function

approximation [28–30], to mention the most important. In

[31] WNs were even proposed as a multivariate calibration

method for simultaneous determination of test samples of

copper, iron, and aluminum.

In contrast to classical ‘‘sigmoid NNs’’, WNs allow for

constructive procedures that efficiently initialize the

parameters of the network. Using wavelet decomposition, a

‘‘wavelet library’’ can be constructed. In turn, each wav-

elon can be constructed using the best wavelet of the

wavelet library. The main characteristics of these proce-

dures are (1) convergence to the global minimum of the

cost function, (2) initial weight vector into close proximity

of the global minimum, and as a consequence drastically

reduced training times [8, 10, 25]. Finally, WNs provide

information on the relative participation of each wavelon to

the function approximation and the estimated dynamics of

the generating process.

As it was already mentioned, WNs are a generalization

of RBF networks. Since support vector machines (SVMs)

are theoretically better than RBFs, it would be extremely

interesting to compare the two approaches. In contrast to

NNs, SVMs have very good properties and advantages

against the classical NNs [32]. First, SVMs do not suffer

from local minima since the solution to an SVM is global

and unique. In addition, SVMs have a simple geometric

interpretation and give a sparse solution [33]. The reason

that SVMs often outperform ANNs in practice is that are

less prone to overfitting [33].

SVMs perform very well in classification problems and

usually outperform RBF [34, 35]. SVMs can also be

applied in regression problems. In [36], SVMs are com-

pared to classical NNs and RBF networks in predicting

financial time-series. Their results indicate that SVMs

perform significantly than classical networks. On the other

hand, the performance between SVMs and RBFs is similar.

On the other hand, SVMs have a series of drawbacks. In

[33], a series of limitations are presented. First, there is

little theory about choosing the Kernel functions and its

parameters. Secondly, SVMs encounter problems with

discrete data. Thirdly, in SVMs very large training times

are needed and extensive memory for solving the quadratic

programming is required. When the number of data points

is large (say over 2,000), the quadratic programming

problem becomes extremely difficult to solve [37]. In this

study, 11 years of detrended and deseasonalized daily

average temperature resulting to 4,015 training patterns are

used. Hence, our large data set restricts the use of SVMs.

Hence, in this study the WNs will be compared against two

methods widely used by market participants and often cited

in the literature.

In this paper, we use a WN in the context of temperature

modeling and weather derivative pricing. Relatively,

recently a new class of financial instruments, known as

‘‘weather derivatives’’, has been introduced. Weather

derivatives are financial instruments that can be used by

organizations or individuals as part of a risk management

strategy to reduce risk associated with adverse or unex-

pected weather conditions. Just as traditional contingent

claims, whose payoffs depend upon the price of some

fundamental, a weather derivative has an underlying

measure such as: rainfall, temperature, humidity, or

snowfall. The difference from other derivatives is that the

underlying asset has no value and it cannot be stored or

traded while at the same time the weather should be

quantified in order to be introduced in the weather deriv-

ative. To do so, temperature, rainfall, precipitation, or

snowfall indices are introduced as underlying assets.

However, in the majority of the weather derivatives, the

underlying asset is a temperature index.

Today, weather derivatives are being used for hedging

purposes by companies and industries, whose profits can be

adversely affected by unseasonal weather, or for specula-

tive purposes by hedge funds and others interested in

capitalizing on those volatile markets. Hence, a model that

describes accurate the temperature dynamics, the evolution

of temperature, and which can be used to derive closed

form solutions for the pricing of temperature derivatives is

essential.

According to [38, 39], nearly $1 trillion of the US

economy is directly exposed to weather risk. Just as tra-

ditional contingent claims, whose payoffs depend upon the

price of some fundamental, a weather derivative has an

underlying measure such as: rainfall, temperature, humid-

ity, or snowfall. Weather derivatives are used to hedge

volume risk, rather than price risk.

According to the annual survey by the Weather Risk

Management Association (WRMA), the estimated notional

value of weather derivatives—OTC and exchange-traded—

traded in 2008/2009 was $15 billion, compared to $32

billion the previous year, itself down from the all-time

record year of 2005–2006 with $45 billion. However, it

was significantly up from 2005s $8.4 billion, and 2004s

$2.2 billion [40]. According to Chicago Mercantile

Exchange (CME), the recent decline reflected a shift from

788 Neural Comput & Applic (2011) 20:787–801

123

Author's personal copy



seasonal to monthly contracts. However, it is anticipated

that the weather market will continue to develop, broadening

its scope in terms of geography, client base, and inter-

relationship with other financial and insurance markets. In

order to fully exploit all the advantages that this market

offers, an adequate pricing approach is required [41].

The list of traded contracts in the weather derivatives

market is extensive and constantly evolving. However,

over 90% of the contracts are written on temperature

Heating Degree Days (HDD), Cooling Degree Days (CDD)

and Cumulative Average Temperature (CAT) indices. In

Europe, CME weather contracts for the summer months are

based on an index of CAT. The CAT index is the sum of

the daily average temperatures over the contract period.

The average temperature is measured as the simple average

of the minimum and maximum temperature over 1 day.

The value of a CAT index for the time interval [s1, s2] is

given by the following expression:

Zs2

s1

TðsÞds ð1Þ

where the temperature is measured in degrees of Celsius. In

USA, CME weather derivatives are based on HDD or CDD

index. A HDD is the number of degrees by which daily

temperature is below a base temperature, while a CDD is

the number of degrees by which the daily temperature is

above the base temperature,

i:e:;DailyHDD¼maxð0; basetemperature�dailyaverageÞ;
DailyCDD¼maxð0;basetemperature�basetemperatureÞ:

The base temperature is 65� Fahrenheit in the US and 18�
Celsius in Europe. HDDs and CDDs are usually

accumulated over a month or over a season. At the end of

2008, at CME were traded weather derivatives for 24 US

cities,1 10 European cities,2 2 Japanese cities3 and 6

Canadian cities.4

Weather risk is unique in that it is highly localized, and

despite great advances in meteorological science, it still

cannot be predicted precisely and consistently. Weather

derivatives are also different than other financial deriva-

tives in that the underlying weather indexes, like HDD,

CDD, CAT, etc., cannot be traded. Furthermore, the

corresponding market is relatively illiquid. Consequently,

since weather derivatives cannot be cost-efficiently repli-

cated with other weather derivatives, arbitrage pricing

cannot be directly applied to them. Since the underlying

weather variables are not tradable, the weather derivatives

market is a classic incomplete market.

The first and simplest method that has been used in

weather derivative pricing is historical Burn analysis

(HBA). HBA is just a simple calculation of how a weather

derivative would perform in the past years. By taking the

average of these values, an estimate of the price of the

derivative is obtained. HBA is very easy in calculation

since there is no need to fit the distribution of the tem-

perature or to solve any stochastic differential equation.

Moreover, HBA is based on very few assumptions. First,

we have to assume that the temperature time-series is sta-

tionary. Next, we have to assume that the data for different

years are independent and identically distributed. For a

detailed explanation of HBA, the reader can refer to [42].

A closer inspection of a temperature time-series shows

that none of these assumptions are correct. It is clear that

the temperature time-series is not stationary since it con-

tains seasonalities, jumps and trends [43, 44]. Also, the

independence of the temperature data for different years is

under question. In [42], it is shown that these assumptions

can be used if the data can be cleaned and detrended.

However, their results show that pricing still remains

inaccurate. Other methods as index and daily modeling are

more accurate but still HBA is usually a good first

approximation of the derivative’s price.

In contrast to the previous methods, a dynamic model

that directly simulates the future behavior of temperature

can be used. Using models for daily temperatures can, in

principle, lead to more accurate pricing than modeling

temperature indices. Using models for daily temperatures

can, in principle, lead to more accurate pricing than mod-

eling temperature indices. Daily models very often show

greater potential accuracy than the HBA [42], since daily

modeling makes a complete use of the available historical

data. In the contrary, calculating the temperature index,

such as HDDs, as a normal or lognormal process, a lot of

information both in common and in extreme events is lost

(e.g., HDD is bounded by zero). It is clear that using index

modeling a different model must be estimated for each

index. On the other hand, using daily modeling only one

model is fitted to the data and can be used for all available

contracts on the market on the same location. Also, using a

daily model an accurate representation of all indices and

their distribution can be obtained. Finally, in contrast to

index modeling and HBA, it is easy to incorporate mete-

orological forecasts.

On the other hand, deriving an accurate model for the

daily temperature is not a straightforward process. Observed

1 Atlanta, Detroit, New York, Baltimore, Houston, Philadelphia,

Boston, Jacksonville, Portland, Chicago, Kansas City, Raleigh,

Cincinnati, Las Vegas, Sacramento, Colorado Spring, Little Rock,

Salt Lake City, Dallas, Los Angeles, Tucson, Des Moines,

Minneapolis-St. Paul, Washington, D.C.
2 Amsterdam, Barcelona, Berlin, Essen, London, Madrid, Paris,

Rome, Stockholm, Oslo.
3 Tokyo, Osaka.
4 Calgary, Montreal, Vancouver, Edmonton, Toronto, Winnipeg.
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temperatures show seasonality in all of the mean, variance,

distribution, and autocorrelations and long memory in the

autocorrelations. The risk with daily modeling is that small

misspecifications in the models can lead to large mispricing

in the contracts.

The continuous processes used for modeling daily

temperatures usually take a mean-reverting form, which

has to be discretized in order to estimate its various

parameters. The most common approach is to model the

temperature dynamics with a mean-reverting Ornstein–

Uhlenbeck process where the noise part is driven by a

Brownian motion [43–49]. The Ornstein–Uhlenbeck

process can capture the following characteristics of tem-

perature. Temperature follows a predicted cycle: it moves

around a seasonal mean; it is affected by global warming

and urban effects; it appears to have autoregressive

changes; and its volatility is higher in the winter than in

summer [50–53]. Alternatively, instead of the classical

Brownian Motion, the use of a fractional Brownian Motion

is proposed in [49, 54]; however, [55] suggests that frac-

tionality is not justified, if all seasonal components are

removed from temperature. In [46], a Levy process as the

driving noise process is suggested since the normality

hypothesis is often rejected [47, 48]. On the other hand, a

Levy process does not allow for closed form derivation of

the pricing formula.

In order to rectify the rejection of the normality hypoth-

esis, in more recent papers, [56] and [44] replaced the simple

AR(1) model by more complex ones. They used Autore-

gressive Moving Average, ARMA(3,1), Autoregressive

Fractionally Integrated Moving Average, ARFIMA, and

ARFIMA-FIGARCH (Fractionally Integrated Autoregres-

sive Conditional Heteroskedasticity) models. Their results

from the DAT in Paris indicate that as the model gets more

complex, the noise part draws away from the normal dis-

tribution. They conclude that although the AR(1) model

probably is not the best model for describing temperature

anomalies, increasing the model complexity and thus the

complexity of theoretical derivations in the context of

weather derivative pricing does not seem to be justified.

Next, [44] model nonparametrically the seasonal residual

variance with NNs. The improvement regarding the distri-

butional properties of the original model is significant. The

examination of the corresponding Q-Q plot reveals that the

distribution is quite close to Gaussian, while the Jarque–

Bera statistic of the original model is almost halved. The NN

approach gives a good fit for the autocorrelation function

and an improved and reasonable fit for the residuals.

In [43], three different decades of daily average tem-

peratures in Paris are examined using the mean-reverting

O-U process proposed by Benth and Saltyte-Benth [47].

The seasonality and the seasonal variance were modeled

using WA. Previous studies assume that the parameter of

the speed of mean reversion, j, is constant. However, the

findings of [43] indicate some degree of time dependency

in j(t). Since j(t) is important for the correct and accurate

pricing of temperature derivatives a significant degree of

time dependency in j(t) can be quite important, [45].

A novel approach to estimate nonparametrically a nonlin-

ear time depended j(t) with a NN was presented. Daily

values of the speed of the mean reversion were computed.

In contrast to averaging techniques, in a yearly or monthly

basis, which run the danger of filtering out too much var-

iation, it is expected that daily values will provide more

information about the driving dynamics of the temperature

process. Results from [43] indicate that the daily variation

of the value of the speed of mean reversion is quite high.

Intuitively, it is expected j(t) not to be constant. If the

temperature today is far from the seasonal average (a cold

day in summer), then it is expected that the mean reversion

speed will be high, i.e. the difference between today’s

temperature and tomorrow’s temperature is expected to be

high. In contrast, if the temperature today is close to the

seasonal variance, we expect the temperature to revert to its

seasonal average slowly. In [43], j(t) is studied. Their data

from Paris indicate that j(t) has a bimodal distribution with

an upper threshold, which is rarely exceeded. Also it was

examined whether j(t) is a stochastic process itself. Both

an Augmented Dickey-Fuller (ADF) and Kwiatkowski-

Phillips-Schmidt-Shin (KPSS) tests were used. Both tests

conclude that j(t) is stationary. Finally, using a constant

speed of mean reversion parameter, the normality

hypothesis was rejected in all three cases while in the case

of the NN the normality hypothesis was accepted in all

three different samples.

This study extends in various ways the framework pre-

sented in [43]. In [43], WA was used in order to identify

the trend and the seasonal part of the temperature signal

and then a NN was used for modeling the detrended and

deseasonalized series. Deducting the form of the seasonal

mean and variance was based on observing the wavelet

decomposition. In this paper, first, we combine these two

steps using WNs. It is expected that the waveform of the

activation function and the wavelet decomposition that is

performed in the hidden layer of the WN will provide a

better fit to the temperature. In particular, a WN is con-

structed in order to fit the daily average temperature in 13

cities and to forecast the daily average temperature up to

2 months. Second, we compare our model with a similar

linear model and the improvement using a nonconstant

speed of mean reversion is measured. Third, our approach

is evaluated out-of-sample with two methods widely used

by researchers and market participants. More precisely, the

proposed methodology is compared against HBA and the

Benth and Benth’s model [47], in forecasting CAT and

HDD indices. Finally, we provide the pricing equations on

790 Neural Comput & Applic (2011) 20:787–801
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temperature futures written on CDDs and HDDs indices.

The pricing equations for the future CAT contracts when

the speed of mean reversion is not constant can be found in

[43]. For a concise treatment of wavelet analysis, the reader

can refer to [3, 4, 57], while for wavelet networks the

reader can refer to [10, 24, 58].

The rest of the paper is organized as follows. In Sect. 2,

the wavelet network used to model the detrended and

deseasonalized daily average temperature is presented. In

Sect. 3, we describe our data and the process used to model

the daily average temperature. Next, our model is used to

forecast out-of-sample daily average temperatures, and our

results are compared against other models previously pro-

posed in literature. In Sect. 4, we discuss pricing of tem-

perature derivatives written on CAT, CDDs, and HDDs

indices. Finally, in Sect. 5 we conclude.

2 Wavelet neural networks for multivariate process

modeling

In this section, the WN used for modeling the detrended

and deseasonalized series is described, with the emphasis

being on the theory and mathematics of wavelet neural

networks. Until today, various structures of a WN have

been proposed [10, 24, 25]. In this study, we implement a

multidimensional WN with a linear connection between the

wavelons and the output. Moreover, in order for the model

to perform well in the presence of linearity, we use direct

connections from the input layer to the output layer. Hence,

a network with zero hidden units (HUs) is reduced to the

linear model.

The structure of a single hidden-layer feedforward

wavelet network is given in Fig. 1. WNs usually have the

form of a three layer network. The lower layer represents

the input layer, the middle layer is the hidden layer, and the

upper layer is the output layer. In the input layer, the

explanatory variables are introduced to the WN. The hid-

den layer consists of the HUs. The HUs are often referred

as wavelons, similar to neurons in the classical sigmoid

NNs. In the hidden layer, the input variables are trans-

formed to dilated and translated version of the mother

wavelet. Finally, in the output layer the approximation of

the target values is estimated. The network output is given

by the following expression:

ŷðxÞ ¼ w
½2�
kþ1 þ

Xk

j¼1

w
½2�
j �WjðxÞ þ

Xm

i¼1

w
½0�
i � xi: ð2Þ

In that expression, Wj(x) is a multidimensional wavelet

which is constructed by the product of m scalar wavelets,

x is the input vector, m is the number of network inputs, k
is the number of hidden units, and w stands for a network

weight. Following [8] we use as a ‘‘mother wavelet’’ the

second derivative of the Gaussian function, the so-called

‘‘Mexican Hat’’. The multidimensional wavelets are com-

puted as follows:

WjðxÞ ¼
Ym
i¼1

wðzijÞ ð3Þ

where w is the Mexican Hat mother wavelet given by

Fig. 1 A feedforward wavelet

network
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wðzijÞ ¼ 1� z2
ij

� �
e�

1
2
z2

ij ð4Þ

and

zij ¼
xi � w

½1�
ðnÞij

w
½1�
ðfÞij

: ð5Þ

In the above expression, i = 1,…, m, j = 1, …, k ? 1,

and the weights w correspond to the ‘‘translation’’ w
½1�
ðnÞij

� �

and the ‘‘dilation’’ w
½1�
ðfÞij

� �
factors of the wavelet

decomposition. The complete vector of the network

parameters comprises:

w ¼ w
½0�
i ;w

½1�
ðnÞij;w

½1�
ðfÞij;w

½2�
j ;w

½2�
kþ1

� �
: ð6Þ

In WNs, in contrast to NNs that use sigmoid functions,

selecting initial values of the dilation and translation

parameters randomly may not be suitable [25]. A wavelet

is a waveform of effectively limited duration that has an

average value of zero and localized properties; hence, a

random initialization may lead to wavelons with a value of

zero. Also, random initialization affects the speed of

training and may lead to a local minimum [26]. In

literature, more complex initialization methods have been

proposed [8, 24, 59]. All methods can be summed in the

following three steps.

1. Construct a library W of wavelets.

2. Remove the wavelets that their support does not

contain any sample points of the training data.

3. Rank the remaining wavelets and select the best

regressors.

The wavelet library can be constructed either by an

orthogonal wavelet or a wavelet frame. However, orthog-

onal wavelets cannot be expressed in closed form. It can be

shown that a family of compactly supported nonorthogonal

wavelets is more appropriate for function approximation

[14]. However, constructing a WN using wavelet frames is

not a straightforward process. The wavelet library may

contain a large number of wavelets since only the input

data were considered in the construction of the wavelet

frame. In order to construct a WN, the ‘‘best’’ wavelets

must be selected. However, arbitrary truncations may lead

to large errors [60]. In the second step, [61] proposes to

remove the wavelets that have very few training patterns in

their support. Alternatively, in [62], magnitude-based

methods were used to eliminate wavelets with small

coefficients. In this study, we follow the first approach.

In the third step, the remaining wavelets are ranked and

the wavelets with the highest rank are used for the con-

struction of the WN. In [8], three alternative methods were

proposed in order to reduce and rank the wavelet in the

wavelet library: Residual-Based Selection (RBS), Stepwise

Selection by Orthogonalization (SSO), and Backward

Elimination (BE). In this study, we use the BE initialization

method, since results from previous studies indicates that it

outperforms the other two [8, 58]. The BE algorithm starts

by building a WN with all the wavelets in the wavelet

library W. Then, the wavelet that contributes the least in the

fitting of the training data is repeatedly eliminated. The BE

is used only for the initialization of the dilation and

translation parameters.

It is clear that additional computational burden is added

in order to initialize efficiently the parameters of the WN.

However, the efficient initialization significantly reduces

the training phase; hence, the total amount of computations

is significantly smaller than in a network with random

initialization.

After the initialization stage, the weights of the WN are

further adjusted. The WN is further trained in order to

obtain the vector of the parameters w = w0, which mini-

mizes the cost function. There are several approaches to

train a WN. In our implementation, the ordinary back-

propagation (BP) was used. BP is probably the most pop-

ular algorithm used for training WNs [2, 8, 10, 22, 24–26,

28]. Ordinary BP is less fast but also less prone to sensi-

tivity to initial conditions than higher order alternatives

[63]. The basic idea of BP is to find the percentage of

contribution of each weight to the error.

The architecture of the WN is selected by minimizing

the prediction risk [63]. The prediction risk is estimated by

applying the m-fold cross-validation. The algorithm of the

m-fold cross-validation is analytically described in the next

section.

The weights wi
[0], wj

[2] and parameters w
½1�
ðnÞij and w

½1�
ðfÞij are

trained for approximating the target function. Under the

assumption that the architecture of the WN and the number

of wavelets were selected by minimizing the prediction risk

the training is stopped when one of the following criteria is

met—the cost function reaches a fixed lower bound or the

variations of the gradient or the variations of the parame-

ters reaches a lower bound or the number of iterations

reaches a fixed maximum, whichever is satisfied first. In

our implementation, the fixed lower bound of the cost

function, of the variations of the gradient, and of the

variations of the parameters was set to 10-5.

3 Modeling the temperature process and forecasting

CAT and HDD indices

Many different models have been proposed in order to

describe the dynamics of a temperature process. Early

models were using AR(1) processes or continuous
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equivalents [45, 50, 64]. Others like [65] and [66] have

suggested versions of a more general ARMA(p,q) model.

In [67], it has been shown, however, that all these models

fail to capture the slow time decay of the autocorrelations

of temperature and hence lead to significant underpricing

of weather options. Thus, more complex models were

proposed. The most common approach is to model the

temperature dynamics with a mean-reverting Ornstein–

Uhlenbeck process where the noise is driven by a

Brownian motion, [43–49]. An Ornstein–Uhlenbeck pro-

cess is given by:

dTðtÞ ¼ dSðtÞ � jðTðtÞ � SðtÞÞdt þ rðtÞdBðtÞ ð7Þ

where, T(t) is the daily average temperature, B(t) is a

standard Brownian motion, S(t) is a deterministic function

modeling the trend and seasonality of the average

temperature, while r(t) is the daily volatility of

temperature variations and j is the speed of mean

reversion. In [47], both S(t) and r2(t) were modeled as

truncated Fourier series:

SðtÞ ¼ aþ bt þ
XI1

i¼1

ai sinð2ipðt � fiÞ=365Þ

þ
XJ1

j¼1

bj cosð2jpðt � gjÞ=365Þ ð8Þ

r2ðtÞ ¼ cþ
XI2

i¼1

ci sinð2ipt=365Þ þ
XJ2

j¼1

dj cosð2jpt=365Þ

ð9Þ

while in [43] and [44], the form of (8) and (9) were

determined by WA.

From the Ito formula, an explicit solution for (7) can be

derived:

TðtÞ ¼ sðtÞ þ ðTðt � 1Þ � sðt � 1ÞÞe�jt

þ
Z t

t�1

rðuÞe�jðt�uÞdBðuÞ: ð10Þ

According to this representation, T(t) is normally

distributed at t and it is reverting to a mean defined by

S(t). A discrete approximation to the Ito formula, (10),

which is the solution to the mean-reverting Ornstein–

Uhlenbeck process (7), is

Tðt þ 1Þ � TðtÞ ¼ Sðt þ 1Þ � SðtÞ � ð1
� e�jÞ TðtÞ � SðtÞð Þ
þ r tð Þ Bðt þ 1Þ � BðtÞð Þ ð11Þ

which can be written as

~Tðt þ 1Þ ¼ a ~TðtÞ þ ~rðtÞeðtÞ ð12Þ

where e(t) * i.i.d. and follow the normal N(0,1) distribution

and

~TðtÞ ¼ TðtÞ � SðtÞ ð13Þ
a ¼ e�j ð14Þ

and e-j is the Euler’s number.

In order to estimate model (12), we need first to remove

the trend and seasonality components from the daily

average temperature series. The trend and the seasonality

of daily average temperatures is modeled and removed as

in [47]. Next, a WN is used to model and forecast daily

detrended and deseasonalized temperatures. Hence, (12)

reduces to:

TðtÞ ¼ u Tðt � 1Þð Þ þ et ð15Þ

where u(•) is estimated nonparametrically by a WN and et

are the residuals of the network. As it is shown later, strong

autocorrelation is observed in et. Hence, a is not constant

but a time-varying function. Once we have the estimator of

the underlying function u, then we can compute the daily

values of a as follows:

a ¼ d eT ðt þ 1Þ=d eT ðtÞ ¼ du=d eT : ð16Þ

The analytic expression for the WN derivative du=d eT
can be found in [58]. For analytic details on the estimation of

parameters in (8), (9), (12), and (14), we refer to [43, 47].

In this section, real weather data will be used in order to

validate our model and compare it against models proposed

in previous studies. Our model is validated in data consisting

of 2 months, January and February, of daily average tem-

peratures (2005–2006) corresponding to 59 values. Note

that meteorological forecasts over 10 days are not con-

sidered accurate. The data set consists of 4,015 values,

corresponding to the average daily temperatures of

11 years (1995–2005) in Paris, Stockholm, Rome, Madrid,

Barcelona, Amsterdam, London and Oslo in Europe and

New York, Atlanta, Chicago, Portland and Philadelphia

in USA. The data were collected by the University of

Dayton.5 Temperature derivatives on the above cities are

traded in CME. In order for each year to have equal obser-

vations, the 29th of February was removed from the data.

Table 1 shows the descriptive statistics of the daily

average temperature in each city for the past 11 years,

1995–2005. The mean CAT and mean HDD represent the

mean of the HDD and CAT index for the past 11 years for

a period of 2 months, January and February. For consis-

tency, all values are presented in degrees Fahrenheit. It is

clear that the HDD index exhibits large variability. Similar

the difference between the maximum and minimum is

close to 70� Fahrenheit in average, for all cities, while the

standard deviation of temperature is close to 15� Fahren-

heit. Also, for all cities there is kurtosis significant smaller

5 http://www.engr.udayton.edu/weather/.
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than 3 and, with the exceptions of Barcelona, Madrid, and

London, there is negative skewness.

First, the linear trend and the mean seasonal part in the

daily average temperature in each city are quantified. We

simplify (8) and (9) by setting I1 = 1, J1 = 0, I2 = 1 and

J2 = 1 and as in [47]. The estimated parameters of the

seasonal part S(t) can be found in Table 2. Parameter

b indicates that Rome, Stockholm, Amsterdam, Barcelona,

London, Oslo, Chicago, Portland, and Philadelphia have an

upward trend while a downward trend is clear in the

remaining cities. Parameter b ranges from -0.000569 to

0.00064. This means that the in the last 11 years there is a

decrease in temperature of -2.1�F in Madrid and an

increase in temperature of 2.1�F in Amsterdam. The

amplitude a1 indicates that the difference between the daily

winter and daily summer temperature is around 24�F in

London and 49�F in Chicago. All parameters are statisti-

cally significant with p values smaller than 0.05. In Fig. 2,

the seasonal fit of the daily average temperature in

Barcelona can be found. For simplicity, we refer only to

Barcelona; the results from the remaining cities are similar.

Then, the function u(•) was estimated nonparametri-

cally by a WN. Table 3 shows the necessary number of

HUs needed for each network and the estimated prediction

risk. The correct topology of each network is selected using

the v-fold cross-validation criterion, where v = 20. The

data set is split in 20 equal sets. Each data set contained 5%

of the original data, randomly selected without replacement

from the initial time-series. Starting with zero HUs, one

data set, Di, where i = 1,…, 20, is left out of the training

sample Then, the trained network is validated on Di and the

Mean Square Error (MSE) is estimated. Then, Di is put

back into the training sample while Di?1 is left out. A new

network is trained and a new MSE is calculated. When

i = v, the average MSE, which represents the prediction

risk, is calculated. Then, one more HU is added to the

network and the whole procedure is repeated. The algo-

rithm stops when the number of HUs reaches the maximum

allowed number (we chose a relative large maximum

number of HUs, that is 10). Finally, the WN with the

number of HUs that correspond to the smallest prediction

risk is selected. As expected, only a few HUs were needed

Table 1 Descriptive statistics of temperature in each city

Mean SD Max Min Skewness Kurtosis Mean HDD Mean CAT

Paris 54.38 12.10 89.90 13.80 -0.04 2.50 1368.40 2466.60

Rome 60.20 11.37 85.80 31.10 -0.04 1.96 1075.00 2759.99

Stockholm 45.51 14.96 79.20 -5.00 -0.09 2.33 2114.36 1720.64

Amsterdam 51.00 11.00 79.90 12.20 -0.18 2.54 1512.07 2322.93

Barcelona 61.56 10.59 85.70 32.60 0.09 2.03 899.23 2935.79

Madrid 58.61 13.84 89.80 24.90 0.17 1.94 1262.56 2572.44

New York 55.61 16.93 93.70 8.50 -0.15 2.08 1783.44 2051.56

London 52.87 10.03 83.00 26.70 0.02 2.36 1307.11 2527.89

Oslo 41.47 15.65 74.60 -8.70 -0.31 2.50 2404.53 1430.47

Atlanta 62.18 14.52 89.60 13.70 -0.45 2.25 1130.75 2704.78

Chicago 50.61 19.40 91.40 -12.90 -0.25 2.17 2221.33 1613.67

Portland 46.80 17.36 83.20 -3.70 -0.22 2.22 2382.04 1452.96

Philadelphia 56.02 17.13 90.50 9.50 -0.19 2.03 1766.98 2068.02

Descriptive statistics of the daily average temperature for the period 1995–2005

Mean HDD mean of the HDD index for the past 11 years for a period of January–February, Mean CAT mean of the CAT index for the past

11 years for a period of January–February, SD standard deviation

Table 2 Estimated parameters of the seasonal part S(t)

a b a1 f1

Paris 54.85 -0.000234 -14.56 18.54

Rome 60.15 0.000023 -14.83 26.77

Stockholm 44.64 0.000437 -18.94 20.69

Amsterdam 49.94 0.000527 -13.26 21.57

Barcelona 61.46 0.000046 -13.74 27.02

Madrid 59.75 -0.000569 -17.90 19.40

New York 55.72 -0.000052 -21.82 -339.68

London 52.56 0.000154 -12.09 23.34

Oslo 40.18 0.000640 -19.67 18.16

Atlanta 62.45 -0.000136 -17.91 16.41

Chicago 49.90 0.000353 24.56 -526.63

Portland 46.75 0.000027 -22.46 -340.57

Philadelphia 55.87 0.000074 22.00 -160.75

The parameter a is the coefficient of the linear trend while b is the

slope. The parameter a1 is the amplitude of the sinusoid of the sea-

sonal variance and f1 is the angle that referrers to the maximum and

minimum of the temperature in the year. All parameters are statistical

significant with p values \ 0.05
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to fit the detrended and deseasonalized daily average

temperature in model (15). In Barcelona, the hidden layer

of the WN consists of 4 HUs while in New York and

Philadelphia of 3 HUs. Similarly, in Portland only 2 HUs

were needed while for the remaining cities a WN with only

one HU was used.

The fitting of the WN to the data is very good and can be

found on Fig. 3. The adjusted R2 in Barcelona is 68.88%

and the Mean Square Error (MSE) is 5.5 while the Mean

Absolute Error (MAE) is 1.73. The results from the

remaining cities are similar.

The residuals of model (15) exhibit strong seasonal

variance given by (9), [43, 44, 47, 48]. In Table 4, the

estimated parameters of the seasonal variance r2(t) are

presented. Again, all parameters are statistical significant

with p values smaller than 0.1. Comparing the autocorre-

lation function of the squared residuals in Figs. 4 and 5, it

is clear that the seasonal variance were successfully

removed from the residuals.

Next, the trained WNs were used to forecast 2 months

ahead, 59 days, out-of-sample forecasts for the CAT and

cumulative HDD indices. Our method is validated and

compared against two methods proposed in prior studies

that are widely used by market participants. The historical

burn analysis (HBA) and the Benth’s and Saltyte-Benth’s

(B–B) model, presented in [47], which is the starting point

for our methodology for the detrended and deseasonalized

Barcelona daily average temperature.

In Table 5, the absolute relative (percentage) errors for

the CAT index of each approach are presented while in

Table 6 the relative (percentage) errors for the HDD index

are shown. It is clear that the proposed WN approach

outperforms both HBA and B–B. More precisely, The WN

approach is characterized by smaller out-of-sample errors

(in 9 out of 13 times) and clearly outperforms B–B (in 11

out of 13 times). Our findings indicate that the WN

approach can provide better accuracy in temperature

forecasts for European cities, and it is associated with

significant smaller errors in comparison with the alternative

approaches. Only for Oslo and Amsterdam the WN

approach underperforms HBA, but still produces more

accurate forecasts when compared with B–B. For the cities

in USA, the WN approach gives the smallest out-of-sample

error in three cases, while HBA and B–B in one and two

cases, Atlanta and Chicago, respectively.

However, by examining the fit of the WNs in Atlanta

and Chicago, we observe that �R2 is 52.39 and 55%,

respectively (the lowest values for all locations). This is

most probably the reason why the B–B model outperforms

WNs in these two cases. Furthermore, when the tempera-

ture indices are very close to their historical mean, it

is expected HBA to be most accurate. Hence, the out-

of-sample values of the indices are compared against their

Fig. 2 Seasonal fit of the daily average temperature in Barcelona

Fig. 3 The WN fit of the deseasonalized and detrended data

Table 3 Network topology and prediction risk, i.e., out-of-sample

absolute relative (percentage) error

HU Prediction risk (%)

Paris 1 2.03

Rome 1 2.76

Stockholm 1 2.02

Amsterdam 1 1.84

Barcelona 4 1.42

Madrid 1 2.73

New York 3 2.77

London 1 3.31

Oslo 1 2.20

Atlanta 1 2.60

Chicago 1 2.25

Portland 2 3.25

Philadelphia 3 2.64
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mean. In order to do so, a two-sided t test for small samples

is performed.6 In Table 7, the real and the mean values of

the CAT indices are presented as well as the t values and

the p values of the t test. Observing the p values, we

conclude that the out-of-sample values of the CAT index

are not statistically different than the mean value with level

of significance a = 5% for the following three cities:

Barcelona, Oslo, and Atlanta. As a result, HBA performs

better in these cases with the exception of Barcelona. The

p-values for the HDDs index are the same.

On the other hand, for Barcelona and Madrid, where the
�R2 is over 68%, the forecasting error of the proposed

method is quite small especially when compared with HBA

and B–B (0.03 and 0.74% respectively). Furthermore, by

comparing the mean CAT (form Table 1) and the real CAT

observed in the out-of-sample period, we can conclude that

when the corresponding index deviates from its average

historical value, then HBA produces large estimation errors

which subsequently lead to large pricing errors. On the

other hand, the WN approach gives significant smaller

errors even in cases where the temperature deviates sig-

nificantly from its historical mean. In Table 6, we can see

the absolute relative (percentage) errors for the HDD index

of each method. The results are similar.

Finally, we examine the fitted residuals in model (12).

Note that the B–B model is based on the hypothesis that the

Table 4 Estimated parameters seasonal variance rt
2

c c1 c2 c3 c4 d1 d2 d3 d4

Paris 23.01 1.77 -1.14 -0.07 0.62 4.24 5.43 -0.10 -0.04

Rome 13.06 0.43 -0.88 -0.33 -0.48 8.83 2.16 0.06 0.24

Stockholm 27.05 4.40 -1.14 3.01 1.34 14.07 7.62 2.63 0.09

Amsterdam 16.87 2.13 -2.43 0.13 0.21 4.88 3.91 0.41 -0.81

Barcelona 8.08 0.02 -0.59 -0.16 0.29 4.60 1.68 0.33 -0.13

Madrid 15.61 1.28 -1.02 -0.19 0.60 2.41 3.75 0.90 0.26

New York 58.99 15.83 -1.35 3.94 -0.61 26.70 5.48 1.46 3.49

London 19.01 0.97 -2.02 -0.53 0.06 7.25 3.63 0.35 -0.60

Oslo 30.46 4.28 2.07 4.84 0.36 22.98 10.74 2.86 -1.05

Atlanta 41.26 15.08 2.21 -0.50 1.62 32.22 1.45 -1.70 -1.14

Chicago 67.95 18.23 -6.52 0.80 3.28 36.44 1.25 1.74 1.15

Portland 79.14 10.61 6.80 14.31 3.38 47.00 13.37 -3.00 -0.23

Philadelphia 53.60 16.89 -2.51 -0.99 -0.77 28.30 1.61 0.59 3.24

The estimated parameters of the seasonal variance. The seasonal variance consists of 4 sinusoids and 4 cosines. c0 is the coefficient, c1–c4 are the

amplitudes of the sinusoids and d1–d4 are the coefficients of the cosines. All parameters are statistical significant with p values \ 0.1

Fig. 4 Autocorrelation function of squared residuals of the WN

model

Fig. 5 Autocorrelation function of squared residuals of the WN

model after removing the seasonal variance

6 The t test assumes that the population is normally distributed. This

assumption for the two indices is justified in many papers, in [68] for

example.
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remaining residuals follow the normal distribution. It is

clear from Table 8 that only for Paris the normality

hypothesis can be marginally accepted. The Jarque–Bera

statistic is slightly higher than 0.05. In every other case,

the normality hypothesis is rejected. More precisely, the

Jarque–Bera statistics are very large and the p values are

close to zero, indicating that both the kurtosis and the

skewness of the residuals are significantly different than 0

and 3, respectively.

The previous extensive analysis indicates that our results

are very promising. Modeling the DAT using WA and WNs

enhanced the fitting and the predictive accuracy of the

temperature process. Modeling the DAT assuming a time-

varying speed of mean reversion resulted in a model with

better out-of-sample predictive accuracy. The additional

accuracy of our model has an impact on the accurate pricing

of temperature derivatives.

4 Temperature derivative pricing

So far, we modeled the temperature using an Ornstein–

Uhlenbeck process. We have shown in [43] that the mean

reversion parameter a in model (12) is characterized by

significant daily variation. Recall that parameter a is con-

nected to our initial model as a = e-j, where j is the speed

of mean reversion. It follows that the assumption of a con-

stant mean reversion parameter introduces significant error

in the pricing of weather derivatives. In this section, the

pricing formulae for a future contract written on the HDD or

the CDD index that incorporate the time dependency of the

Table 8 Normality test for the B–B residuals

Jarque–Bera p Value

Paris 5.78 0.0549

Rome 170.12 0.0000

Stockholm 60.36 0.0000

Amsterdam 44.64 0.0000

Barcelona 685.84 0.0000

Madrid 69.52 0.0000

New York 53.92 0.0000

London 11.67 0.0039

Oslo 37.27 0.0000

Atlanta 403.06 0.0000

Chicago 44.33 0.0000

Portland 21.92 0.0000

Philadelphia 89.55 0.0000

Table 5 Absolute relative errors for the three forecasting models.

CAT index

Errors Real CAT HBA (%) B–B (%) WN (%)

Paris 2229.50 10.63 8.34 7.12

Rome 2641.40 4.49 4.39 3.93

Stockholm 1559.40 10.34 9.47 9.29

Amsterdam 2162.90 7.40 8.60 8.55

Barcelona 2893.40 1.46 0.19 0.03

Madrid 2400.20 7.18 2.10 0.74

New York 2295.70 10.63 9.02 8.76

London 2340.80 7.99 6.07 5.75

Oslo 1390.50 2.87 5.62 4.53

Atlanta 2765.30 2.21 1.83 2.58

Chicago 1910.90 15.55 10.22 10.90

Portland 1689.90 14.02 8.87 8.32

Philadelphia 2258.90 8.45 5.95 5.92

Table 6 Absolute relative errors for the three forecasting models

(HDD index)

Real CAT HBA (%) B–B (%) WNN (%)

Paris 1605.50 14.77 11.58 9.88

Rome 1193.60 9.94 9.71 8.70

Stockholm 2275.60 7.09 6.49 6.37

Amsterdam 1672.10 9.57 11.13 11.06

Barcelona 941.60 4.50 0.57 0.10

Madrid 1434.80 12.00 3.51 1.24

New York 1539.30 15.86 13.45 13.07

London 1494.20 12.52 9.51 9.01

Oslo 2444.50 1.64 3.20 2.58

Atlanta 1069.70 5.71 4.74 6.67

Chicago 1924.10 15.45 10.15 10.82

Portland 2145.10 11.05 6.99 6.56

Philadelphia 1576.10 12.11 8.53 8.49

Table 7 Test for equality of mean of the CAT index

Mean CAT Real CAT t Value p Value

Paris 2466.60 2229.50 5.83 0.0002

Rome 2759.99 2641.40 3.24 0.0089

Stockholm 1720.64 1559.40 2.70 0.0223

Amsterdam 2322.94 2162.90 2.81 0.0186

Barcelona 2935.79 2893.40 1.37 0.2014

Madrid 2572.44 2400.20 4.44 0.0012

New York 2051.56 2295.70 -3.91 0.0029

London 2527.89 2340.80 6.28 0.0001

Oslo 1430.46 1390.50 0.56 0.5870

Atlanta 2704.78 2765.30 -1.66 0.1287

Chicago 1613.67 1910.90 -4.65 0.0009

Portland 1452.95 1689.90 -4.08 0.0022

Philadelphia 2068.02 2258.90 -2.99 0.0135
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speed of the mean reversion parameter is derived. The cor-

responding equations for the CAT index have already been

presented in [43].

The CDD, HDD indices over a period [s1, s2] are given

by

HDD ¼
Zs2

s1

max c� TðsÞ; 0ð Þds ð17Þ

CDD ¼
Zs2

s1

max TðsÞ � c; 0ð Þds: ð18Þ

Hence, the pricing equations are similar for both indices.

The CDD, HDD, and CAT futures prices are linked by the

following relation:

FHDDðt; s1; s2Þ ¼ c s2 � s1ð Þ � FCATðt; s1; s2Þ
þ FCDDðt; s1; s2Þ: ð19Þ

Hence, if we derive the futures price of the CDDs price,

then the price of a futures contract written on the HDDs can

also be easily estimated. First, we rewrite (7) where

parameter j, now is a function of time t, j(t).

dTðtÞ ¼ dSðtÞ þ jðtÞ TðtÞ � SðtÞð Þ þ rðtÞdBðtÞ: ð20Þ

From the Ito formula, an explicit solution can be

derived:

TðtÞ ¼ SðtÞ þ e

R t

0
jðuÞdu

Tð0Þ � Sð0Þð Þ

þ e

R t

0
jðuÞdu

Z t

0

rðsÞe�
R s

0
jðuÞdu

dBðsÞ: ð21Þ

Note that j(t) is bounded away from zero [43].

Our aim is to give a mathematical expression for the

CDD future price. The weather derivatives market is an

incomplete market, since cumulative average temperature

contracts are written on a temperature index, which is not a

tradable or storable asset. In order to derive the pricing

formula, first we must find a risk-neutral probability mea-

sure Q * P, where all assets are martingales after dis-

counting. In the case of weather derivatives, any equivalent

measure Q is a risk-neutral probability. If Q is the risk-

neutral probability and r is the constant compounding

interest rate, then the arbitrage-free future price of a CDD

contract at time t� s1� s2 is given by:

e�rðs2�tÞEQ

Zs2

s1

max 0; TðsÞ � cð Þds� FCDDðt; s1; s2ÞjFt

2
4

3
5

¼ 0 ð22Þ

and since FCDD is Fi adapted, we derive the price of a CDD

futures to be

FCDDðt; s1; s2Þ ¼ EQ

Zs2

s1

max 0; TðsÞ � cð ÞdsjFt

2
4

3
5: ð23Þ

Using the Girsanov’s Theorem, under the equivalent

measure Q, we have that

dWðtÞ ¼ dBðtÞ � hðtÞdt ð24Þ

and note that r(t) is bounded away from zero. Hence, by

combining (20) and (24) the stochastic process of the

temperature in the risk-neutral probability Q is

dTðtÞ ¼ dSðtÞ þ jðtÞ TðtÞ � sðtÞð Þ þ rðtÞhðtÞð Þdt
þ rðtÞdWðtÞ ð25Þ

where h(t) is a real-valued measurable and bounded

function denoting the market price of risk. The market

price of risk can be calculated by historical data. More

specifically h(t) can be calculated by looking the market

price of contracts. The value that makes the price of the

model fits the market price is the market price of risk.

Using Ito formula, the solution of (25) is

TðtÞ ¼SðtÞ þ e

R t

0
jðuÞdu

Tð0Þ � Sð0Þð Þ

þ e

R t

0
jðuÞdu

Z t

0

rðsÞhðsÞe�
R s

0
jðuÞdu

ds:

þ e

R t

0
jðuÞdu

Z t

0

rðsÞe�
R s

0
jðuÞdu

dBðsÞ ð26Þ

By replacing this expression to (23), we find the price of

future contract on CDD index at time t where

0� t� s1� s2: Following the notation of [48], we have

the following proposition.

Proposition 1 The CDD future price for 0� t� s1� s2 is

given by

FCDDðt; s1; s2Þ ¼ EQ

Zs2

s1

max TðsÞ � cð ÞdsjFt

2
4

3
5

¼
Zs2

s1

vðt; sÞW mðt; sÞ
vðt; sÞ

� �
ds ð27Þ

where,

mðt; sÞ ¼ SðsÞ þ e
R s

t
jðzÞdz eT ðtÞ

þ e

R s

t
jðzÞdz

Z t

t

rðuÞhðuÞe�
R u

t
jðzÞdz

du� c ð28Þ

v2ðt; s; xÞ ¼ e
2
R s

t
jðzÞdz

Z t

t

r2ðuÞhðuÞe�2
R u

t
jðzÞdz

du ð29Þ
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and WðxÞ ¼ xUðxÞ þ U0ðxÞ where U is the cumulative

standard normal distribution function.

Proof From (23) and (26) we have that

FCDDðt; s1; s2Þ ¼ EQ

Zs2

s1

max TðsÞ � cð ÞdsjFt

2
4

3
5

and using Ito’s Isometry we can interchange the

expectation and the integral

EQ

Zs2

s1

max TðsÞ � cð ÞjFt

2
4

3
5 ¼

Zs2

s1

EQ max TðsÞ � cð ÞjFt½ �ds

T(s) is normally distributed under the probability measure

Q with mean and variance given by

EQ TðsÞjFt½ � ¼ SðsÞ þ e
R s

t
jðzÞdz eT ðtÞ

þ e

R s

t
jðzÞdz

Zs

t

rðuÞhðuÞe�
R u

t
jðzÞdz

du

VarQ TðsÞjFt½ � ¼ e
2
R s

t
jðzÞdz

Zs

t

r2ðuÞhðuÞe�2
R u

t
jðzÞdz

du:

Hence, T(S) - c is normally distributed with mean given

by m(t, s) and variance given by v2(t, s) and the proposition

follows by standard calculations using the properties of the

normal distribution.

5 Conclusions

This paper proposes and implements a modeling and

forecasting approach for temperature based weather

derivatives, which is an extension of [43] and [44]. Here,

the speed of mean reversion parameter is considered time

varying and it is modeled by a WN. WNs combine WA and

NNs in one step. The basic contributions of this paper can

be summarized as follows:

First, our results show that the waveform of the acti-

vation function and the wavelet decomposition that is

performed in the hidden layer of the WN provide a better fit

to the temperature data. The WNs were constructed and

applied in order to fit the daily average temperature in 13

cities. In [44], a linear model was used to model the tem-

perature in Paris while in [43] a NN were applied to fit the

temperature in the same location.

Secondly, we compared our model with a similar linear

model, and the improvement using a nonconstant speed of

mean reversion was measured. In [44], a NN was used in

order to model the seasonal mean and variance while in [43]

WA was also used in order to capture the seasonalities in the

mean and variance.

Thirdly, our approach, in contrast to [43, 44], was val-

idated in a 2-month (ahead) out-of-sample forecast period.

The proposed method was compared against two methods,

often cited in the literature and widely used by market

practitioners, in forecasting CAT and cumulative HDDs

indices. The absolute relative errors produced by the WN

are compared against the original B–B model and HBA.

Our results indicate that the WN approach significantly

outperforms the other methods. More precisely, the WN

forecasting ability is better than B–B and HBA in 11 times

out of 13. Our results indicate that HBA is accurate only

when the value of the index is close to the historical mean

while when the value of the index deviates from its average

historical value, then HBA produces large estimation errors

that subsequently lead to large pricing errors. On the other

hand, the WN approach gives significant smaller errors

even in cases where the temperature deviates significantly

from its historical mean. Moreover, testing the fitted

residuals of B–B we observe that the normality hypothesis

can be (almost always) rejected. Hence, B–B may induce

large errors in both forecasts and pricing.

Finally, we provide the pricing equations for tempera-

ture futures on cumulative CDDs and HDDs indices, when

the speed of mean reversion is time depended while in [43]

the pricing equations of the CAT index were presented.

In our model, the number of sinusoids in (8) and (9)

(representing the seasonal part of the temperature and the

variance of residuals) are chosen according to [47]. Further

research in alternative approaches may improve the fitting

of the original data and enhance forecasting accuracy.

Another important aspect of all approaches is the length

of the forecasting horizon. Currently, meteorological

forecasts more than 10 days ahead are considered inaccu-

rate. Hence, it is quite important to develop models than

can accurately predict daily average temperatures for larger

horizons. Concluding, it would be extremely interesting to

compare our approach that utilizes WNs with SMVs.
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