
A Genetic Programming Framework for Two Data Mining Tasks:
Classification and Generalized Rule Induction.

Alex A. Freitas
University of Essex

Dept. of Computer Science
Colchester, CO4 3SQ, UK

freial@essex.ac.uk

ABSTRACT

This paper proposes a genetic
programming (GP) framework for two
major data mining tasks, namely
classification and generalized rule
induction. The framework emphasizes
the integration between a GP algorithm
and relational database systems. In
particular, the fitness of individuals is
computed by submitting SQL queries to
a (parallel) database server. Some
advantages of this integration from a
data mining viewpoint are scalability,
data-privacy control and automatic
parallelization. The paper also proposes
some genetic operators tailored for the
two above data mining tasks.

1. Introduction
Data Mining (DM) consists of the extraction of interesting,
novel knowledge from real-world databases [Fayyad et al.
96]. DM is an interdisciplinary subject, whose core lies at the
intersection of machine learning and databases. Four
desirable characteristics of a DM system are: (1) the
discovery of comprehensible knowledge, typically expressed
by high-level rules; (2) integration with databases [Han et al.
96], [Imielinski et al. 96]; (3) a high degree of autonomy,
necessary to discover knowledge previously unknown by the
user [Zytkow 93]; (4) the efficiency of the knowledge
discovery process, necessary to cope with large databases.

This paper proposes a genetic programming (GP)
framework for DM that addresses, to some extent, all of these
four issues. GP individuals encode database queries that
correspond to high-level rules, used to predict the value of
some attribute. The fitness of GP individuals is computed by

submitting SQL queries to a database server, so achieving a
tight integration between GP and relational databases. The
ability of GP to search many parts of the program (database
query) space in parallel and the robustness of GP render the
DM system more autonomous, minimizing the need for
domain knowledge to guide the search. Finally, efficiency
can be significantly improved by using a parallel SQL server
to evaluate the fitness of an individual. Note that the use of
this kind of database server does not require any modification
in the GP framework - i.e. the SQL queries generated by the
GP are automatically parallelized by the SQL server.

There are several kinds of DM tasks [Fayyad et al. 96],
depending mainly on the application domain and the user
interest. Some of the major DM tasks frequently discussed in
the literature are listed in Figure 1,where the tasks are
roughly ordered according to their amount of inductive
inference and computational complexity. Deviation detection
(i.e. detection of unexpected values) and summarization are
in general the simplest kinds of DM task, since the amount of
inductive inference is usually very limited and there is no
prediction of unknown attribute values (the emphasis is on
description, rather than on prediction). On the other extreme,
clustering is in general the most complex kind of DM task,
since it involves a kind of “many-to-many” prediction of
attribute values, i.e. any attribute can be used to determine
clusters of tuples and to predict the values of other attributes.
This paper proposes a GP framework for the DM tasks of
classification and generalized rule induction. The former is
the most studied task in the literature, and the latter is a
natural generalization of the former. Finally, this paper also
proposes some genetic operators tailored for the tasks of
classification and generalized rule induction.

complex
 clustering
 generalized rule induction
 classification
 summarization
 deviation detection

 simple

Figure 1 Some DM tasks ordered by complexity.

This paper is organized as follows. Section 2 discusses
related work. Section 3 discusses the phenotype of GP
individuals in our framework. Sections 4 and 5 discuss
genotype-related issues for the tasks of classification and
generalized rule induction, respectively. Section 6 mentions
some advantages of the integration between GP and relational
databases. Section 7 presents a discussion and summary.

2. Related Work
PLEASE [Knight & Sen 95] is a Genetic Algorithm (GA)
where each individual encodes a set of class prototypes, and
the learned prototypes are then used for classification - i.e. a
tuple is assigned the class of the nearest prototype, according
to a given distance metric. GIL uses several
generalization/specialization operators proposed by
[Michalski 83] to extend the genetic operators of
conventional GA, creating a knowledge-intensive GA for
classification tasks [Janikow 93].

REGAL learns first-order-logic (FOL) class descriptions
[Neri & Giordana 95]. However, it assumes that the user
provides a kind of template of the logical formula to be
learned. This reduces the autonomy of the system, which is a
serious drawback in the context of DM. SIAO1 also learns
FOL class descriptions, but it does not need a user-specified
formula template [Augier et al. 95]. Instead, it adapts the
technique of generalizing a seed example [Michalski 83] to
learn FOL classification rules. From a DM viewpoint, the
main drawback of SIAO1 is that this kind of generalization
technique is quite computationally expensive, making it
difficult to apply SIAO1 to large databases.

Masson is a Genetic Programming system designed for a
new kind of knowledge discovery task, here referred to as
commonality description [Ryu & Eick 96]. This task consists
of searching for a database query that describes the
commonalities (e.g. common attribute values) of a user-
specified tuple set. From the viewpoint of inductive learning,
this task is significantly simpler than the tasks of
classification and generalized rule induction - the two tasks
addressed in this paper. (With respect to Figure 1,
commonality description would be somewhere between
summarization and classification.) The reason is that in
commonality description the system knows a priori which
tuples the description to be discovered should cover and
which it should not, and it has access to all task-relevant
tuples. There is no separate test set, where the system has to
predict the class of unseen tuples, which is the ultimate
challenge of classification and generalized rule induction.
However, Masson was an important inspiration for the
framework proposed in this paper.

GP-Knn is a hybrid Genetic-Programming/K-nearest-
neighbors algorithm, where the GP searches for a good set of
attribute weights for the K-nn [Raymer et al. 96]. Each
individual in the GP population is represented by m trees,
where m is the number of attributes. Hence, each tree
encodes a function for the weight of a given attribute. Once
attribute weights are determined by the GP, the classification

task itself (the core of the DM process) is performed by the
K-nn. Hence, there is no discovery of explicit, high-level
classification rules. This is a disadvantage in the context of
DM, where the comprehensibility of the discovered
knowledge is crucial [Fayyad et al. 96].

To summarize, several GAs have been proposed for
classification tasks, including PLEASE, GIL, REGAL and
SIAO1. However, these systems are mainly machine learning
ones, ignoring the important DM issue of integration with
databases. Two GPs proposed for DM are GP-Knn and
Masson. The former was designed for classification tasks.
However, from a DM viewpoint, it has important limitations
concerning discovered-knowledge comprehensibility and
integration with databases. Masson was designed for the
commonality description task in object-oriented databases.
The framework described in this paper is inspired in Masson,
but it addresses the more challenging (from an inductive
learning viewpoint) DM tasks of classification and
generalized rule induction, in relational (rather than object-
oriented) database systems.

3. The Phenotype of Genetic
Programming Individuals for DM
In this Section we discuss the phenotype of individuals (i.e.
the meaning of the genetic material for the user) in our
Genetic Programming (GP) framework for DM. This
phenotype is the same for both the classification and the
generalized rule induction tasks. However, the genotype of
the GP individuals are somewhat different in these two tasks.
Actually, the genotype of individuals in the generalized rule
induction task is an extension of the genotype in the
classification task. Hence, the discussion of the genotype of
individuals in our framework will be done in the next two
Sections, which discuss each of these tasks separately.

Turning to phenotype issues, in our framework the GP
individuals encode SQL queries following the query template
shown in Figure 2. To simplify our discussion, the
specification of that query assumes, without loss of
generality, that the data to be mined is stored in a single
relation - called the Mine relation.

Each query (individual) generated by the GP is evaluated
against the database, in order to compute the kind of
contingency table shown in Figure 3. This is a 2 x n matrix
extended with totals of rows and columns, where n is the
number of values of the goal attribute (or classes, in the case
of the classification task). Each of the cells in the first row of
this matrix, denoted C1j - j=1,...,n (where C stands for a
Count value) - contains the number of tuples satisfying the
Tuple-Set Descriptor (TSD) and having goal-attribute value
Gj. On the other hand, each of the cells in the second row of
this matrix, denoted C2j - j=1,...,n - contains the number of
tuples not satisfying the TSD and having the goal-attribute
value Gj. The row and column totals are denoted respectively
by Ci+, i=1,2, and C+j, j=1,...,n. The total number of tuples
being mined is denoted by C++.

These Count values are used to compute the fitness of a
GP individual, by taking into account the number of correct
and incorrect predictions made by a rule. Note that the fitness
of an individual can also consider other factors, such as
measures of syntactic rule simplicity and rule similarity.
However, these extra factors do not require access to the
database, and their computational cost is dominated by the
time to compute the Count values shown in Figure 3. Our
goal in designing the query of Figure 2 was to encapsulate all

the time-consuming fitness-computation procedures requiring
access to the database into a single database query, so that
this query can be optimized by a high-performance database
server. In particular, this query can be speeded up by
automatically exploiting data parallelism on parallel SQL
servers. (For empirical evidence that parallel SQL servers
can be effectively used to speed up queries like the one
shown in Figure 2, the reader is referred to [Freitas &
Lavington 96].)

 G1 G n Total

 satisfy TSD C11 C1n C1+
Select Goal-Attribute, Count(*)
From Mine-Relation not satisfy TSD C21 C2n C2+
Where Tuple-Set-Descriptor
Group By Goal-Attribute Total C+1 C+n C++

Figure 2 SQL query underlying Figure 3 Contingency table produced
the phenotype of GP individuals. by evaluating the query of Figure 2.

The query shown in Figure 2 corresponds to a rule of the
form:

if (Tuple-Set Descriptor) then (Goal-Attribute = Vg) ,
where the TSD is a logical formula containing attribute
values and comparison operators (see Section 4 for details)
and Vg is a value belonging to the domain of the goal
attribute. To give a simple example, consider a company’s
database with three attributes, namely Age, Job-Status and
Training, where the latter is the goal attribute. Assume that
Training can take on two values, “yes” or “no”, and assume
that the TSD is: (Age < 25 and Job-Status = full-time). Then
a rule predicting that an employee needs training would be:

if (Age < 25 and Job-Status = “full-time”)
 then (Training = “yes”).

As discussed above, the TSD of the query shown in
Figure 2 corresponds to the antecedent of a rule encoded by a
GP individual. However, we still have to decide which value
of the goal attribute should be predicted by the consequent of
the rule (since all the values of the goal attribute appear in the
table of Figure 3). We choose the goal attribute value with
the largest Count value in the first row of the table of Figure
3, i.e. we choose the goal attribute value whose Count value
Cmax is given by

 n

Cmax = max C1j .
 j=1

It is interesting to note that in our framework the mapping
between an individual’s genotype and its ultimate phenotype
(a rule) occurs in two phases. First, the individual’s genotype
(described in Section 4) is mapped into an SQL query of the
form shown in Figure 2. However, the actual mapping
between the generated SQL query and the rule only occurs in
a second phase, where the SQL query is evaluated against the
database and the value of the goal attribute to be predicted by
the consequent of the rule is determined.

This feature of our framework can be regarded as a form
of lazy learning, where the actual generation of the full rule is
delayed until more information is available to produce a
better rule1. In passing we remark that the basic idea of lazy
learning has been applied to other (nongenetic-based) DM
paradigms as well - see e.g. [Friedman et al. 96].

Moreover, this approach also leads to gains in
computational efficiency, since by evaluating a single
database query we can efficiently compute the fitness
associated with several possible rules. Hence, we avoid the
repeated client/server communication overhead associated
with the separate evaluation of those possible rules.

4. Genetic Programming for the Task
of Classification
The classification task consists of predicting the value of a
user-specified goal attribute given the values of other
attributes, called predicting attributes. The goal attribute’s
domain consists of a small set of discrete values, called
classes.

Note that the goal attribute is fixed during the execution
of the DM algorithm. Hence, the genotype of a GP individual
consists only of the tree representing the Tuple-Set-
Descriptor (TSD) of the query shown in Figure 2. Note also
that, although the goal attribute does not need to be
represented in the genotype of an individual, it is still
specified as part of the query submitted to the database, to
compute an individual’s fitness. The terminal set for the tree
encoding a TSD consists of the names of the predicting
attributes and of the values in their corresponding domains.
The function set consists of the logical connectives {AND,
OR, NOT} and the comparison operators {>, ≥, <, ≤, =, ≠}.

1 “Delay is preferable to error.” - Thomas Jefferson (1743-1826).

Since this encoding follows the conventional GP paradigm
[Koza 92], a conventional crossover operator can be used.

To give a simple example of the encoding of a TSD,
consider the following TSD:

((A1 > V1) AND (A2 = V2)) OR (A3 < A4) ,
where Ai, i=1,...,4, denotes the i-th attribute and V1 and V2

denote values of the domain of the attributes A1 and A2

respectively. This TSD would be encoded as the query tree:
(OR (AND (> A1 V1) (A2 = V2)) (< A3 A4)) .

4.1. Two-Class versus Multiple-Class
Classification Problems
We now consider separately two types of classification
problems, namely two-class problems and multiple-class
ones. In our framework this distinction is important for two
reasons. First, after running the GP, the result designation
method is somewhat different for two-class and multiple-
class problems. Second, the multiple-class problem suggests
the use of some kind of niching method. These issues are
discussed in the following.

In the case of two-class problems, which are more
common than multiple-class ones [Weiss & Kulikowski 91],
it is enough to designate the best individual as the result - i.e.
the classification rule that will be returned to the user. The
reason is simple. The selected individual predicts a given
class, say class-1, to all tuples satisfying its TSD tree. Hence,
all tuples that do not satisfy the individual’s TSD tree are
implicitly classified as belonging to the other class, say class-
2 (called the default class). There is no need to discover an
explicit rule for predicting the default class.

In the case of multiple-class problems, where the number
of classes is greater than two, we now need to select NC - 1
(where NC is the number of classes) individuals as the result,
where each individual predicts a different class for its
corresponding TSD tree. (Note that this reduces to select 1
class in the case of the two-class problem.) The class for
which no individual is selected becomes the default class.

Since we are interested in selecting several individuals as
the result, it might be useful to use some niching method
[Mahfoud 95], [Miller & Shaw 95] to incentivate the
evolution of individuals with different predicted classes. Note
that niching is not necessary in the two-class problem, where
a single best individual is selected.

One of the difficulties in designing a niching method is
that typically this kind of method is used in the context of
multimodal function optimization, where we do not know a
priori the number and location of peaks (niches) in the fitness
landscape. However, in our data mining problem we know, a
priori, the number of niches that should be formed, which is
simply the number of classes. This allows us to use a better
informed niching method, which takes this information into
account. For instance, it is desirable to guarantee that, for all
the classes, there will be at least one individual predicting
that class. This can be done by enforcing this condition when
creating the initial population and then by using a niching-
oriented elitist reproduction scheme that passes to the next

generation’s population an unaltered copy of the best
individual for each class. Regarding the set of individuals
with the same predicted class as a niche, this scheme is
equivalent to an elitist reproduction within each niche.

5. Genetic Programming for the Task
of Generalized Rule Induction
In the generalized rule induction task, similarly to
classification, the goal is to discover rules that predict the
value of a goal attribute, given the value of other attributes.
However, unlike classification, the goal attribute can be any
attribute not occurring in the antecedent of the rule. Hence, a
GP individual in our framework consists of two parts: (a) a
query tree encoding the Tuple-Set Descriptor (TSD) of the
query shown in Figure 2; and (b) a gene encoding the goal
attribute. The function and terminal sets for the TSD tree are
similar to the ones specified for the classification task. A
slight difference is that there is no goal attribute specified in
advance. Hence, the terminal set includes all attributes and
their values, while in the classification task the terminal set
included only the predicting attributes and their values.

The extra gene encoding the goal attribute (unnecessary
in the case of the classification task) introduces an
opportunity for a mutation operator. We propose a mutation
operator that replaces the goal attribute allele with another
attribute, taken from the set of attributes not occurring in the
TSD tree. Let this set be denoted by PGA (standing for
“possible goal attributes”). The new attribute can be chosen
in at least three ways.

First, we can randomly select an attribute from PGA, with
a uniform probability distribution. Formally, the probability
of selecting a given attribute Ai, i=1,...,m, where m is the
cardinality of PGA, is Prob(Ai) = 1/m. We call this random
mutation. The main advantage of this form of mutation is that
its computation is very cheap, taking O(1).

Second, we can select an attribute from PGA with a
probability inversely proportional to the occurrence of that
attribute in the goal-attribute gene of other individuals of the
current population. Let NI denote the number of individuals
in the current population; and let ni, i=1,...,m, denote the
number of individuals of the current population whose goal-
attribute gene encodes the attribute Ai. Thus, the probability
of selecting a given attribute Ai is given by the formulae
Prob(Ai) = (NI - ni)/NI. The motivation for this operator is to
increase the diversity of the goal attribute gene in the
population. We call this diversity-oriented mutation. The
computation of this operator is also relatively cheap, taking
O(NI), since all the Prob(Ai), i=1,...,NI, can be computed by
a single pass through the current population. Note that in
real-world databases NI << N, where N is the number of
tuples being mined, so that the cost to implement the
diversity-oriented mutation operator tends to be much smaller
than the cost to evaluate the fitness of individuals.

As a third form of mutation, we can select the “best”
attribute in PGA, i.e. the attribute that maximizes the fitness

of the individual. We call this fitness-oriented mutation. This
operator can significantly improve the fitness of an
individual, but it has one drawback. Its computation is very
computationally expensive. For each attribute in PGA a
database query must be executed, to evaluate the individual’s
fitness when that attribute replaces the previous goal-attribute
allele. This takes O(q*m), where q is the number of tuples
selected by a query and m is the cardinality of PGA (i.e. the
number of possible goal attributes).

As a final remark, our GP framework for generalized rule
induction presents a problem that does not occur in the case
of classification. A GP individual may represent an invalid
rule, if the goal attribute specified in the rule occurs in the
TSD tree. Although it is trivial to avoid this when generating
the initial population, this situation can occur as a result of
crossover in the TSD tree. The traditional approach to cope
with this problem is to ignore the crossover when this
situation happens. As an alternative solution, we suggest to
use our previously-proposed mutation operator (in any of its
three suggested forms) as a repair operator, since it
effectively replaces the current goal attribute allele with an
attribute that does not occur in the TSD tree. This avoids the
need for a special repair operator and contributes for the
simplicity and uniformity of our framework.

6. Advantages of the Integration
Between DM and Relational DBMS
From a DM viewpoint, the tight integration between the DM
algorithm (the GP, in this paper) and a Relational Database
Management System (RDBMS) achieved in our framework
has several advantages - see [Freitas 97] for details.

(a) Improved scalability - Our framework capitalizes on
database and data warehouse technology, allowing DM
systems to scale up to very large databases.

(b) Data re-use and minimization of data redundancy
- In our framework the data being mined is kept stored in the
RDBMS during all the DM process. Thus, we get the benefits
of data re-use and minimization of data redundancy, which
are crucial in large-scale DM applications [Brown et al. 95].

(c) Improved security and data-privacy control - Our
integrated framework allows the DM system to benefit from
the usual security and concurrency control mechanisms
offered by RDBMSs. This is important due to the fact that
DM applications, by their very nature, are cause for concern
about security and data privacy [O’Leare 95]. Moreover, note
that in our framework the GP algorithm analyzes only
statistics or aggregated data (the Count values of Figure 3)
retrieved from the database server, rather than the original
data. Hence, our approach has the benefit of anonymization,
i.e. it avoids the risk of re-identifying individual cases
[Klosgen 95].

(d) Automatic Exploitation of Data Parallelism on
Parallel SQL Servers - Despite its limitations, SQL is a
declarative-style RDBMS query language. Hence, the SQL
database queries (requests for fitness evaluation) generated in

our framework can be efficiently executed by having all
processors of a Parallel SQL Server accessing the data in
parallel [Hasan et al. 96]. This parallelization is
automatically done by the Parallel SQL Server, i.e. it is
entirely transparent for the GP. We stress that the vast
majority of large data warehouses are implemented on
Parallel SQL Servers [Hedberg 95], [IBC 95].

(e) Portability Across a Wide Range of (Parallel)
RDBMS - Once the database queries produced by our
framework are expressed in standard SQL, they can be
executed in a wide range of commercially-available RDBMS.
Furthermore, virtually all commercially-available Parallel
SQL Servers offer an SQL interface [IBC 95]. This extends
the benefit of portability to a wide range of parallel computer
architectures, including both shared-memory and distributed-
memory systems.

7. Discussion and Summary
We proposed a genetic programming (GP) framework for
two major data mining tasks, namely classification and
generalized rule induction. The framework specifies a GP
phenotype and a GP genotype for these two tasks. The
phenotype is based on relational algebraic operations,
expressed by an SQL query. This leads to a tight integration
between the data mining algorithm (the GP) and relational
database systems.

Concerning data mining issues, this integration leads to
minimization of data redundancy and improved scalability,
data-privacy control and portability (see the previous
Section). Furthermore, this integration can be used to
significantly speed up the execution of the GP, since the
evaluation of the fitness of an individual can be done by
submitting SQL queries to a parallel SQL server. This is
important, since the vast majority of current data warehouses
are implemented on parallel SQL servers.

Turning to GP issues, our phenotype involves a form of
lazy learning, where the actual generation of a full rule is
delayed until more information is available to produce a
better rule. Moreover, we discussed some GP-search issues
separately for the tasks of classification and generalized rule
induction.

In the case of the classification task we discussed the
influence of the type of classification (two-class versus
multiple-class problems) on the GP search. In particular, we
discussed the need for a niching scheme in the case of
multiple-class problems and pointed out an important
difference between niching in multimodal function
optimization and niching in multiple-class classification
problems. As a simple example of how to exploit this
difference to improve the GP, we suggested a niching-
oriented elitist reproduction scheme.

In the case of the task of generalized rule induction, we
proposed three forms of mutation to modify the allele of the
goal attribute gene, namely random mutation, diversity-
oriented mutation (aiming at increasing the diversity of the
goal attribute gene in the population) and fitness-oriented

mutation (aiming at maximizing the fitness of an individual).
We also analyzed the computational complexity of each of
these forms of mutation. Finally, we also suggested to use our
mutation operators as repair operators, to transform invalid
(lethal) offspring produced by crossover into valid offspring.

We believe that the proposed framework is a promising
approach for highly autonomous data mining, particularly
concerning the task of generalized rule induction. This task
tends to have a huge search space associated with it, making
it difficult to use conventional rule induction methods.
However, there is a caveat, not only for GP but also for other
data mining paradigms. The task of generalized rule
induction usually requires some constraints to limit the
search, otherwise many trivial relationships among attributes
can be discovered. This issue is left for future work.

In addition, future work will involve the evaluation of
algorithms developed under the proposed framework on real-
world databases.

Acknowledgments
The author was financially supported by the Brazilian
Government’s CNPq, grant number 200384/93-7.

Bibliography
[Augier et al. 95] S. Augier, G. Venturini and Y. Kodratoff.

Learning first order logic rules with a genetic algorithm.
Proc. 1st Int. Conf. Knowledge Discovery & Data
Mining, 21-26. AAAI Press, 1995.

[Brown et al. 95] M. Brown, I. Watson and N. Filer.
Separating the cases from the data: towards more flexible
case-based reasoning. Proc. 1st Int. Conf. On Case-Based
Reasoning (ICCBR-95). LNAI 1010, 157-168. 1995.

[Fayyad et al. 96] U.M. Fayyad, G. Piatetsky-Shapiro and P.
Smyth. From data mining to knowledge discovery: an
overview. In: U.M. Fayyad, et al. (Eds.) Advances in
Knowledge Discovery and Data Mining, 1-34.
AAAI/MIT Press. 1996.

[Freitas 97] A.A. Freitas. Generic, set-oriented primitives to
support data-parallel knowledge discovery in relational
database systems. Ph.D. Thesis. University of Essex, UK.
1997.

[Freitas & Lavington 96] A.A. Freitas and S.H. Lavington.
Using SQL primitives and parallel DB servers to speed
up knowledge discovery in large relational databases. R.
Trappl. (Ed.) Cybernetics and Systems’96: Proc. 13th
European Meeting on Cybernetics and Systems Research,
955-960. Vienna, 1996.

[Friedman et al. 96] J.H. Friedman, R. Kohavi and Y. Yun.
Lazy decision trees. Proc. 1996 Nat. Conf. AAAI, 1996.

[Han et al. 96] J. Han, Y. Fu, W. Wang, J. Chiang, W. Gong,
K. Koperski, D. Li, Y. Lu, A. Rajan, N. Stefanovic, B.
Xia and O.R. Zaiane. DBMiner: A system for mining
knowledge in large relational databases. Proc. 2nd Int.
Conf. Knowledge Discovery & Data Mining, 250-255.
AAAI Press, 1996.

[Hasan et al. 96] W. Hasan, D. Florescu and P. Valduriez.
Open issues in parallel query optimization. SIGMOD
Record 25(3), Sep 1996.

[Hedberg 95] S.R. Hedberg. Parallelism speeds data mining.
(Industrial Spotlight) IEEE Parallel & Distributed
Technology, Winter 1995, 3-6.

[IBC 95] IBC Ltd. Proc. Conf. Commercial Parallel
Processing. London, Nov./95. (IBC Technical Services
Ltd., 57-61 Mortimer St., London, W1N 7TD.)

[Imielinski et al. 96] T. Imielinski, A. Virmani and A.
Abdulghani. DataMine: application programming
interface and query language for database mining. Proc.
2nd Int. Conf. Knowledge Discovery & Data Mining,
256-261. AAAI Press, 1996.

[Janikow 93] C.Z. Janikow. A knowledge-intensive genetic
algorithm for supervised learning. Machine Learning, 13,
1993, 189-228.

[Klosgen 95] W. Klosgen. Anonymization techniques for
knowledge discovery in databases. Proc. 1st Int. Conf.
Knowledge Discovery & Data Mining, 186-191. AAAI
Press, 1995.

[Knight & Sen 95] L. Knight and S. Sen. PLEASE: a
prototype learning system using genetic algorithms. Proc.
6th Int. Conf. Genetic Algorithms, 429-435. 1995.

[Koza 92] J.R. Koza. Genetic Programming: on the
programming of computers by means of natural
selection. MIT, 1992.

[Mahfoud 95] S.W. Mahfoud. A comparison of parallel and
sequential niching methods. Proc. 6th Int. Conf. Genetic
Algorithms, 136-143. 1995.

[Michalski 83] R.W. Michalski. A theory and methodology
of inductive learning. Artif. Intellig. 20, 1983, 111-161.

[Miller & Shaw 95] B.L. Miller and M.J. Shaw. Genetic
algorithms with dynamic niche sharing for multimodal
function optimization. IlliGAL Report No. 95010. 1995.

[Neri & Giordana 95] F. Neri and A. Giordana. A parallel
genetic algorithm for concept learning. Proc. 6th Int.
Conf. Genetic Algorithms, 436-443. 1995.

[O’Leary 95] D.E. O’Leary. Some privacy issues in
knowledge discovery: the OECD Personal Privacy
Guidelines. IEEE Expert, 10(2), Apr 1995, 48-52.

[Raymer et al. 96] M.L. Raymer, W.F. Punch, E.D. Goodman
and L.A. Kuhn. Genetic programming for improved data
mining -- application to the biochemistry of protein
interactions. Genetic Programming 1996: Proc. 1st
Annual Conf., 375-380. July 1996.

[Ryu & Eick 96] T.-W. Ryu and C.F. Eick. Deriving queries
from results using genetic programming. Proc. 2nd Int.
Conf. Knowledge Discovery & Data Mining, 303-306.
AAAI Press, 1996.

[Weiss & Kulikowski 91] S.M. Weiss and C.A. Kulikowski.
Computer Systems that Learn. Morgan Kaufmann, 1991.

[Zytkow 93] J.M. Zytkow. Cognitive autonomy in machine
discovery. Machine Learning, 12(1-3), Aug 1993, 7-16.

