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ABSTRACT

This paper proposes a genetic
programming (GP) framework for two
major data mining tasks, namely
classification and generalized rule
induction. The framework emphasizes
the integration between a GP algorithm
and relational database systems. In
particular, the fitness of individuals is
computed by submitting SQL queriesto
a (paralld) database server. Some
advantages of this integration from a
data mining viewpoint are scalability,
data-privacy control and automatic
parallelization. The paper also proposes
some genetic operators tailored for the
two above data mining tasks.

1. Introduction

Data Mining (DM) consists of the extraction of irgsting,
novel knowledge from real-world databases [Fayyadile
96]. DM is an interdisciplinary subject, whose ctes at the

submitting SQL queries to a database server, si@\dnh a
tight integration between GP and relational dateba3he
ability of GP to search many parts of the prograagbase
query) space in parallel and the robustness of €&aBer the
DM system more autonomous, minimizing the need for
domain knowledge to guide the search. Finally,cifficy
can be significantly improved by using a parall€@LSserver
to evaluate the fitness of an individual. Note ttet use of
this kind of database server does not require agjifioation
in the GP framework - i.e. the SQL queries generatethe
GP are automatically parallelized by the SQL server.
There are several kinds of DM tasks [Fayyad eBé],
depending mainly on the application domain and uker
interest. Some of the major DM tasks frequentlyulsed in
the literature are listed in Figure 1,where theksasre
roughly ordered according to their amount of indwect
inference and computational complexity. Deviati@tedtion
(i.e. detection of unexpected values) and summniéwizare
in general the simplest kinds of DM task, sinceah®unt of
inductive inference is usually very limited and rihdés no
prediction of unknown attribute values (the emphasion
description, rather than on prediction). On theepixtreme,
clustering is in general the most complex kind dfl Bask,
since it involves a kind of “many-to-many” predami of
attribute values, i.e. any attribute can be useddt@rmine
clusters of tuples and to predict the values oéodttributes.
This paper proposes a GP framework for the DM taxtks
classification and generalized rule induction. Taemer is

intersection of machine learning and databases.r Foyhe most studied task in the literature, and theerdds a

desirable characteristics of a DM system are: (i¢ t
discovery of comprehensible knowledge, typicallpessed
by high-level rules; (2) integration with databafidan et al.
96], [Imielinski et al. 96]; (3) a high degree afitanomy,
necessary to discover knowledge previously unknbwithe
user [Zytkow 93]; (4) the efficiency of the knowtgsl
discovery process, necessary to cope with large databases.

This paper proposes a genetic programming (GP)

framework for DM that addresses, to some extehtfdahese
four issues. GP individuals encode database quéhias
correspond to high-level rules, used to predicthkie of
some attribute. The fitness of GP individuals ismpated by

natural generalization of the former. Finally, thigper also
proposes some genetic operators tailored for tkkstaf
classification and generalized rule induction.

complex
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Figurel SomeDM tasksordered by complexity.



This paper is organized as follows. Section 2 dises
related work. Section 3 discusses the phenotypeGBf
individuals in our framework. Sections 4 and 5 d&t
genotype-related issues for the tasks of classificaand
generalized rule induction, respectively. Sectioméntions
some advantages of the integration between GPedatibnal
databases. Section 7 presents a discussion and summary.

2. Related Work

PLEASE [Knight & Sen 95] is a Genetic Algorithm (GA
where each individual encodes a set of class ymst and

the learned prototypes are then used for clastdita i.e. a

tuple is assigned the class of the nearest pragpgpcording

to a given distance metric. GIL uses several
generalization/specialization ~ operators  proposed
[Michalski 83] to extend the genetic operators of

conventional GA, creating a knowledge-intensive &k
classification tasks [Janikow 93].

REGAL learns first-order-logic (FOL) class desdopt
[Neri & Giordana 95]. However, it assumes that trser
provides a kind of template of the logical formu be
learned. This reduces the autonomy of the systérithwis a
serious drawback in the context of DM. SIAO1 alsarhs
FOL class descriptions, but it does not need a-gigecified
formula template [Augier et al. 95]. Instead, itapts the
technique of generalizing a seed example [Micha®3i to
learn FOL classification rules. From a DM viewpgitthe
main drawback of SIAO1 is that this kind of genzation
technique is quite computationally expensive, mgkih
difficult to apply SIAO1 to large databases.

Masson is a Genetic Programming system designed for

new kind of knowledge discovery task, here refertecas
commonality description [Ryu & Eick 96]. This tas&nsists
of searching for a database query that describes
commonalities (e.g. common attribute values) of seru
specified tuple set. From the viewpoint of induetiearning,
this task is significantly simpler than the taskg
classification and generalized rule induction - the tasks
addressed in this paper. (With respect to Figure

commonality description would be somewhere betwee

summarization and classification.) The reason iat tim
commonality description the system knows a priohiolk
tuples the description to be discovered should rcarel
which it should not, and it has access to all tet&vant
tuples. There is no separate test set, where gtersyhas to
predict the class of unseen tuples, which is thénate
challenge of classification and generalized rulduation.
However, Masson was an important inspiration foe th
framework proposed in this paper.

GP-Knn is a hybrid Genetic-Programming/K-nearest

neighbors algorithm, where the GP searches foroa get of
attribute weights for the K-nn [Raymer et al. 9&ach
individual in the GP population is represented bytrees,
where m is the number of attributes. Hence, eael tr
encodes a function for the weight of a given atitiéb Once
attribute weights are determined by the GP, thesifiaation

0 shown

task itself (the core of the DM process) is perfednby the
K-nn. Hence, there is no discovery of explicit, Higvel
classification rules. This is a disadvantage in ¢batext of
DM, where the comprehensibility of the discovered
knowledge is crucial [Fayyad et al. 96].

To summarize, several GAs have been proposed for
classification tasks, including PLEASE, GIL, REGAdnd
SIAO1. However, these systems are mainly machiaenieg
ones, ignoring the important DM issue of integnatiwith
databases. Two GPs proposed for DM are GP-Knn and
Masson. The former was designed for classificat@sks.
However, from a DM viewpoint, it has important lstions
concerning discovered-knowledge comprehensibilityd a
integration with databases. Masson was designedthfer

b ommonality description task in object-oriented afhaises.

he framework described in this paper is inspiredlasson,
but it addresses the more challenging (from an dtide
learning viewpoint) DM tasks of classification and
generalized rule induction, in relational (rathkart object-
oriented) database systems.

3. ThePhenotype of Genetic

Programming Individualsfor DM

In this Section we discuss the phenotype of indiald (i.e.
the meaning of the genetic material for the usar)our
Genetic Programming (GP) framework for DM. This
phenotype is the same for both the classificatiod the
generalized rule induction tasks. However, the ggre of
the GP individuals are somewhat different in thege tasks.
Actually, the genotype of individuals in the gerized rule
induction task is an extension of the genotype lie t
classification task. Hence, the discussion of throtype of
individuals in our framework will be done in thexnawo

trBections, which discuss each of these tasks separately.

Turning to phenotype issues, in our framework thHe G
individuals encode SQL queries following the quenyplate
in Figure 2. To simplify our discussion, the
specification of that query assumes, without losk o

enerality, that the data to be mined is stored igingle
elation - called the Mine relation.

Each query (individual) generated by the GP is watald
against the database, in order to compute the kihd
contingency table shown in Figure 3. This is a & matrix
extended with totals of rows and columns, wheres rihe
number of values of the goal attribute (or clasBeshe case
of the classification task). Each of the cellshia first row of
this matrix, denoted { - j=1,...,n (where C stands for a
Count value) - contains the number of tuples satigfthe
Tuple-Set Descriptor (TSD) and having goal-attrébualue

'G;. On the other hand, each of the cells in the s&cow of

this matrix, denoted £- j=1,...,n - contains the number of
tuplesnot satisfying the TSD and having the goal-attribute
value G. The row and column totals are denoted respegtivel
by C., i=1,2, and G, j=1,...,n. The total number of tuples
being mined is denoted by, C



These Count values are used to compute the fitoleas
GP individual, by taking into account the numbercofrect
and incorrect predictions made by a rule. Note timafitness
of an individual can also consider other factons¢hs as
measures of syntactic rule simplicity and rule kinity.
However, these extra factors do not require actesthe
database, and their computational cost is dominhjethe
time to compute the Count values shown in Figurégr
goal in designing the query of Figure 2 was to pautate all

Sel ect Goal -Attribute, Count(*)
From M ne-Rel ation

Where Tupl e- Set - Descri ptor
Goup By Goal-Attribute

Figure2 SQL query underlying
the phenotype of GP individuals.

The query shown in Figure 2 corresponds to a riilkthe
form:
if (Tuple-Set Descriptor) then (Goal-Attribute )V
where the TSD is a logical formula containing atite
values and comparison operators (see Section diefails)

the time-consuming fithess-computation procedueegsiiring
access to the database into a single database, qeetiiat
this query can be optimized by a high-performanatalihse
server. In particular, this query can be speededbyp
automatically exploiting data parallelism on pahISQL
servers. (For empirical evidence that parallel S€gitvers
can be effectively used to speed up queries like dhe
shown in Figure 2, the reader is referred to [Beei&
Lavington 96].)

Gy G, | Total

satisfy TISOC,; .G | Gs
not satisfy TSOC,; . G| G
Total Cai... .G Cs

Figure3 Contingency table produced
by evaluating the query of Figure 2.

This feature of our framework can be regarded &Bra
of lazy learning, where the actual generation effthl rule is
delayed untilmore information is availabléo produce a
better rulé. In passing we remark that the basic idea of lazy
learning has been applied to other (nongeneticel)abi/

and V, is a value belonging to the domain of the goalparadigms as well - see e.g. [Friedman et al. 96].

attribute. To give a simple example, consider a pamy's
database with three attributes, namely Age, JotuStand
Training, where the latter is the goal attributess@dme that
Training can take on two values, “yes” or “no”, aassume
that the TSD is: (Age < 25 and Job-Status = faflej. Then
a rule predicting that an employee needs training would be:

if (Age < 25 and Job-Status = “full-time”)

then (Training = “yes”).

As discussed above, the TSD of the query shown
Figure 2 corresponds to the antecedent of a rdedsd by a
GP individual. However, we still have to decide efhivalue
of the goal attribute should be predicted by theseguent of
the rule (since all the values of the goal attbappear in the
table of Figure 3). We choose the goal attributievavith
the largest Count value in the first row of theléabf Figure
3, i.e. we choose the goal attribute value whosen€walue
CmaxiS given by

n

Cax= maxCy; .
=1

It is interesting to note that in our framework thapping
between an individual's genotype and its ultimatenmotype
(a rule) occurs in two phases. First, the indivitugenotype
(described in Section 4) is mapped into an SQL yoéthe
form shown in Figure 2. However, the actual mappin
between the generated SQL query and the rule amyre in
a second phase, where the SQL query is evaluatedsaghe
database and the value of the goal attribute torbeicted by
the consequent of the rule is determined.

Moreover, this approach also leads to gains in
computational efficiency, since by evaluating a gkn
database query we can efficiently compute the dine
associated with several possible rules. Hence, weéd ahe
repeated client/server communication overhead &ssdc

with the separate evaluation of those possible rules.

irfl' Genetic Programming for the Task

of Classification

The classification task consists of predicting tadue of a
user-specified goal attribute given the values dfiep
attributes, called predicting attributes. The gattibute’s
domain consists of a small set of discrete valusdled
classes.

Note that the goal attribute is fixed during thee@xtion
of the DM algorithm. Hence, the genotype of a Gdividual
consists only of the tree representing the Tuplke-Se
Descriptor (TSD) of the query shown in Figure 2.té&also
that, although the goal attribute does not needbé&
represented in the genotype of an individual, itstl
specified as part of the query submitted to thelukzde, to
compute an individual’s fitness. The terminal smtthe tree
encoding a TSD consists of the names of the piiadict
attributes and of the values in their correspondingrains.
%he function set consists of the logical connestifjAND,
OR, NOT} and the comparison operators £,<, <, =, #}.

1 “Delay is preferable to error.” - Thomas Jefferson (1743-1826).



Since this encoding follows the conventional GPagdam
[Koza 92], a conventional crossover operator can be used.

generation’s population an unaltered copy of thestbe
individual for each class. Regarding the set ofividdials

To give a simple example of the encoding of a TSDwith the same predicted class as a niche, thisnsehis

consider the following TSD:

((A, > V) AND (A, = V,)) QR (A <A),
where A, i=1,...,4, denotes the i-th attribute angd ahd \,
denote values of the domain of the attributes ahd A

respectively. This TSD would be encoded as the query tree:

(OR(AND (> A, V) (A =V)) (<A A)) .

4.1. Two-Classversus Multiple-Class

Classification Problems

We now consider separately two types of classifioat
problems, namely two-class problems and multipés<l
ones. In our framework this distinction is impottdor two

reasons. First, after running the GP, the resutigation

method is somewhat different for two-class and ipiel

class problems. Second, the multiple-class proldeggests
the use of some kind of niching method. These sare
discussed in the following.

In the case of two-class problems, which are mor

common than multiple-class ones [Weiss & KulikowSki,

it is enough to designate the best individual asrésult - i.e.
the classification rule that will be returned te thser. The
reason is simple. The selected individual predatgiven
class, say class-1, to all tuples satisfying itPTf&e. Hence,
all tuples that do not satisfy the individual's TSi2e are
implicitly classified as belonging to the othersdasay class
2 (called the default class). There is no needidooder an
explicit rule for predicting the default class.

In the case of multiple-class problems, where ti@lver
of classes is greater than two, we now need tatshl€ - 1
(where NC is the number of classes) individualthasresult,
where each individual predicts a different class fts
corresponding TSD tree. (Note that this reduceselect 1
class in the case of the two-class problem.) Tlescifor
which no individual is selected becomes the default class.

Since we are interested in selecting several iddals as
the result, it might be useful to use some nichingthod
[Mahfoud 95], [Miller & Shaw 95] to incentivate the
evolution of individuals with different predictethsses. Note
that niching is not necessary in the two-class lgrmbwhere
a single best individual is selected.

One of the difficulties in designing a niching methis
that typically this kind of method is used in thentext of
multimodal function optimization, where we do natokv a
priori the number and location of peaks (nicheghmfitness
landscape. However, in our data mining problem nevk a
priori, the number of niches that should be formelich is
simply the number of classes. This allows us to aitetter
informed niching method, which takes this inforratiinto
account. For instance, it is desirable to guaratitet for all
the classes, there will be at least one individua&dicting
that class. This can be done by enforcing this itimmdwhen
creating the initial population and then by usingiehing-
oriented elitist reproduction scheme that passetheaonext

equivalent to an elitist reproduction within each niche.

5. Genetic Programming for the Task

of Generalized Rule Induction

In the generalized rule induction task, similarlyp t
classification, the goal is to discover rules tpatdict the
value of a goal attribute, given the value of oth#tributes.
However, unlike classification, the goal attributEn be any
attribute not occurring in the antecedent of the.rblence, a
GP individual in our framework consists of two garta) a
query tree encoding the Tuple-Set Descriptor (T8Djhe
query shown in Figure 2; and (b) a gene encodieggthal
attribute. The function and terminal sets for tl&DTtree are
similar to the ones specified for the classificatimsk. A
slight difference is that there is no goal attrébapecified in
advance. Hence, the terminal set includes allbaites and
their values, while in the classification task teeminal set

S§ncluded only the predicting attributes and their values.

The extra gene encoding the goal attribute (unsaces
in the case of the classification task) introducas
opportunity for a mutation operator. We propose wation
operator that replaces the goal attribute allelth v@inother
attribute, taken from the set of attributes notusdag in the
TSD tree. Let this set be denoted by PGA (standorg
“possible goal attributes”). The new attribute danchosen
in at least three ways.

First, we can randomly select an attribute from P@ith
a uniform probability distribution. Formally, thegbability
of selecting a given attribute; Ai=1,...,m, where m is the
cardinality of PGA, is Prob(= 1/m. We call this random
mutation. The main advantage of this form of mortais that
its computation is very cheap, taking O(1).

Second, we can select an attribute from PGA with a

probability inversely proportional to the occurrenof that
attribute in the goal-attribute gene of other indinals of the
current population. Let NI denote the number ofivittlals
in the current population; and let, ni=1,...,m, denote the
number of individuals of the current population waayoal-
attribute gene encodes the attribute Fhus, the probability
of selecting a given attribute; As given by the formulae
Prob(A) = (NI - n)/NI. The motivation for this operator is to
increase the diversity of the goal attribute genetlie
population. We call this diversity-oriented mutatioThe
computation of this operator is also relatively ajnetaking
O(NI), since all the Prob@# i=1,...,NI, can be computed by
a single pass through the current population. Nbég in
real-world databases NI << N, where N is the numtfer
tuples being mined, so that the cost to implemdm t
diversity-oriented mutation operator tends to beimsmaller
than the cost to evaluate the fitness of individuals.

As a third form of mutation, we can select the ftbes
attribute in PGA, i.e. the attribute that maximizks fitness



of the individual. We call this fitness-oriented tamion. This
operator can significantly improve the fithess oh a
individual, but it has one drawback. Its computatie very
computationally expensive. For each attribute inAP&
database query must be executed, to evaluate dhédinal’'s
fithess when that attribute replaces the previamai-gttribute
allele. This takes O(g*m), where q is the numbeitugfies
selected by a query and m is the cardinality of RGA the
number of possible goal attributes).

As a final remark, our GP framework for generalizel®
induction presents a problem that does not occtihéncase
of classification. A GP individual may represent iamalid
rule, if the goal attribute specified in the rulecors in the
TSD tree. Although it is trivial to avoid this wheenerating
the initial population, this situation can occurasesult of
crossover in the TSD tree. The traditional appro@chope
with this problem is to ignore the crossover whéis t
situation happens. As an alternative solution, wggsst to
use our previously-proposed mutation operator (i @f its
three suggested forms) as a repair operator, sihce
effectively replaces the current goal attributeslallwith an
attribute that does not occur in the TSD tree. Hvisids the
need for a special repair operator and contribfibesthe
simplicity and uniformity of our framework.

6. Advantagesof the Integration

Between DM and Relational DBM S

From a DM viewpoint, the tight integration betwebe DM
algorithm (the GP, in this paper) and a Relatiddatabase

our framework can be efficiently executed by havia
processors of a Parallel SQL Server accessing #te id
parallel [Hasan et al. 96]. This parallelization is
automatically done by the Parallel SQL Server, i.e. it is
entirely transparent for the GP. We stress that uhst
majority of large data warehouses are implemented o
Parallel SQL Servers [Hedberg 95], [IBC 95].

(€) Portability Across a Wide Range of (Parallel)
RDBMS - Once the database queries produced by our
framework are expressed in standard SQL, they aan b
executed in a wide range of commercially-availdRizBMS.
Furthermore, virtually all commercially-availablear@llel
SQL Servers offer an SQL interface [IBC 95]. Thidemds
the benefit of portability to a wide range of p&btomputer
architectures, including both shared-memory anttibiged-
memory systems.

7. Discussion and Summary
We proposed a genetic programming (GP) framework fo
two major data mining tasks, namely classificatiand
generalized rule induction. The framework specifiesGP
phenotype and a GP genotype for these two taske. Th
phenotype is based on relational algebraic operstio
expressed by an SQL query. This leads to a tigegration
between the data mining algorithm (the GP) andtiozlal
database systems.

Concerning data mining issues, this integratiorddeto
minimization of data redundancy and improved sdlitgb
data-privacy control and portability (see the poesgi

Management System (RDBMS) achieved in our frameworlS€ction). Furthermore, this integration can be used

has several advantages - see [Freitas 97] for details.
(a) Improved scalability - Our framework capitalizes on

significantly speed up the execution of the GPcesithe
evaluation of the fitness of an individual can bené by

database and data warehouse technology, allowing DNUPMItting SQL queries to a parallel SQL serverisTis

systems to scale up to very large databases.

(b) Data re-use and minimization of data redundancy
- In our framework the data being mined is keptesidn the
RDBMS during all the DM process. Thus, we get thadiits
of data re-use and minimization of data redundamdych
are crucial in large-scale DM applications [Brown et al. 95].

(c) Improved security and data-privacy control - Our
integrated framework allows the DM system to berfedim
the usual security and concurrency control mechais
offered by RDBMSs. This is important due to thet fiat
DM applications, by their very nature, are caugecfincern
about security and data privacy [O’'Leare 95]. Mwexg note
that in our framework the GP algorithm analyzesyonl
statistics or aggregated data (the Count valueBigire 3)
retrieved from the database server, rather tharotiggnal
data. Hence, our approach has the benefit of aniaagion,
i.e. it avoids the risk of re-identifying individuacases
[Klosgen 95].

(d) Automatic Exploitation of Data Parallelism on
Parallel SQL Servers - Despite its limitations, SQL is a
declarative-style RDBMS query language. Hence, Sk
database queries (requests for fithess evaluagemgrated in

important, since the vast majority of current dataehouses
are implemented on parallel SQL servers.

Turning to GP issues, our phenotype involves a fofm
lazy learning, where the actual generation of & tulle is
delayed until more information is available to pod a
better rule. Moreover, we discussed some GP-sdasties
separately for the tasks of classification and gaized rule
induction.

In the case of the classification task we discusted
influence of the type of classification (two-clasgrsus
multiple-class problems) on the GP search. In galgr, we
discussed the need for a niching scheme in the oése
multiple-class problems and pointed out an impadrtan
difference between niching in multimodal function
optimization and niching in multiple-class classifiion
problems. As a simple example of how to exploitsthi
difference to improve the GP, we suggested a niehin
oriented elitist reproduction scheme.

In the case of the task of generalized rule indungtive
proposed three forms of mutation to modify thelallef the
goal attribute gene, namely random mutation, dityers
oriented mutation (aiming at increasing the divgrsif the
goal attribute gene in the population) and fitnesented
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