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Abstract 
The increasing demand for easily accessible cash drives banks to expand their Automatic 

Teller Machine networks. As the network increase it becomes more difficult to supervise it 
while the operating costs rise significantly.  Cash demand needs to be forecasted accurately so 
that banks can avoid storing extra cash money and can profit by mobilizing the idle cash. This 
paper is motivated by the Neural Network Association and the NN5 competition. The 
objective of the paper is to describe a unique, non-supervising method for forecasting cash 
money withdrawals in different ATMs. More precisely, the data consists of 2 years of daily 
cash money demand at various ATMs at different randomly selected locations across 
England. The only available information is the total cash withdrawals in each ATM at the end 
of each day. Having limited domain knowledge and no information on the causal forces we 
use wavelet analysis to extract the dynamics of the underlying process of each ATM. Next 
wavelet neural networks were used in order to find the true generating process of each ATM 
and to forecast the cash money demand up to 56 day ahead. The performance of the proposed 
technique is evaluated using various error and fitting criteria. 
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1. Introduction 
 
 
The increasing demand for easily accessible cash drives banks to expand their 

Automatic Teller Machine (ATM) networks. As a result the number of ATMs has 
increased steadily after the early 1980s, (Snellman and Virén, 2006). However the 
larger an ATM network becomes, the more difficult becomes to supervise it while the 
operating costs rise significantly. Using optimization methods, banks can avoid 
storing extra cash money and can profit by mobilizing the idle cash, (Simutis et al., 
2007). Cash demand needs to be forecasted accurately similarly to other products in 
vending machines. If the forecasts are flawed, they induce costs. If the forecasts are 
too high unused money is stored in the ATM incurring costs to the bank, on the other 
hand if the ATM runs out of cash customers will be dissatisfied while significant 
profit will be lost. 

This paper is motivated by the Neural Network Association and the NN5 
competition1. The objective of the paper is to describe a unique, non-supervising 
method for forecasting cash money withdrawals in different ATMs. More precisely, 
the data consists of only 2 years of daily cash money demand at various ATMs at 
different locations in England and the objective is to forecast the cash money demand 
for the next 56 days. The only available information to competitors was the cash 
demand in each ATM at the end of each day. In order to avoid overfitting, the out-of-
sample data was not known until the end of the competition.  

As it shown in the next section cash money demand represents a non-stationary 
process. The generating process of each ATM is unique while the cash demand of 
each ATM depends on its physical location. The time-series exhibits trends, 
singularities and seasonal, periodical and irregular structural components of the data 
while missing values and outliers are common among the time-series. ATM 
withdrawals affected by reoccurring holiday periods, regional events of different size 
and impact and bank holidays of different lead and lag effects. The data provided 
originate by randomly selected ATMs in unknown locations in England making 
impossible to identify all the above parameters. 

Having limited domain knowledge and no information on the causal forces we use 
wavelet analysis to extract the dynamics of each process of each ATM. Wavelet 
Transform (WT) is localized in both time and frequency and overcomes the fixed 
time-frequency partitioning, (Daubechies 1992). The time-frequency partition is long 
in time in low- frequencies and long in frequency in high-frequencies. This means that 
the WT has good frequency resolution for low-frequency events and good time 
resolution for high-frequency events.  Also, the WT adapts itself to capture features 
across a wide range of frequencies. Consequently wavelet analysis can be used to 
denoise the original time-series (Donoho and Johnstone, 1994 and Donoho and 
Johnstone, 1998) while the assumption of stationarity can be avoided, (Mallat, 1999). 
While in other frameworks like the Kalman-Filtering (KF) setting the stationarity 
assumption can be avoided, KF is applicable only to linear or nearly linear problems, 
(Brown and Hwang, 1992).  

Next wavelet networks were used in order to identify the true underlying process 
of each ATM and produce 1- to 56-step ahead forecasts. Wavelet networks allow 
constructive procedures that efficiently initialize the parameters of the network. These 
procedures allow the wavelet network to converge to a global minimum of the cost 
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function and lead to smaller network topologies and smaller training times. Using 
wavelet analysis and wavelet networks model assumptions are not needed and the 
framework is not necessarily based on Gaussian errors. 

In order to evaluate our method we produce out-of-sample forecasts in 11 different 
time series. The rest of the paper is organized as follows. In section 2, the data is 
described. In section 3 the cash money withdrawals modeled non-parametrically using 
a wavelet neural network. A wavelet analysis is used in order to remove the noise 
from the original time-series. The independent variables used for the network training 
were extracted from wavelet analysis. Then 1- to 56- step ahead out-of-sample 
forecasts presented. The proposed methodology was compared with a linear approach. 
Finally, in section 4, we conclude. 

 
 

2. Time-series description 
 
 

In this section the available dataset is described and the main statistics of the cash 
money withdrawals are presented. The time series provided originate from 11 
different cash machines at different randomly selected locations within England and 
are not related. All time series start on March 18, 1996 and run until March 22, 1998 
providing only two years of daily data resulting to 735 values. The data provided by 
the Neural Network Association and first presented in the NN5 competition. The aim 
of the competition is to forecast 1 to 56 step ahead. The competition focus on 11 
“difficult” time series and no other information was given beyond the daily 
withdrawals for the two years. The out of sample was provided after the end of the 
competition in order to avoid overfitting and all the data was linearly scaled to ensure 
the anonymity of the time series. 

Table 1 shows the descriptive statistics of all ATM’s. The standard deviation is 
large for all 11 ATM’s while in the nine of total eleven time-series values of zero 
appear. A closer inspection of the data reveals zeroes, outliers and missing values. 
Moreover missing values and outliers appear in periods corresponding to the 
forecasting horizon. Observing Figure 1 someone can conclude that the volume of 
cash money withdrawals shows strong evidence of seasonality and periodicities. In 
addition, Figure 2 shows the autocorrelation and partial autocorrelation function of the 
first ATM where a periodicity of seven days is clear. The results for the rest of the 
time-series are similar 

The cash money demand represents a non-stationary process. Performing an 
Augmented Dickey-Fuller unit root test it can be shown that non-stationarity was a 
common problem among the original time-series. The results can be found on Table 
2. From Figure 1 a linear trend is clear in several time-series. Table 3 shows the two 
parameters of the linear fitting for each ATM and the corresponding p-values. Next, 
the mean and the upward trend were removed from the data. 

 
 

3. Methodology 
 
 
As it was shown in the previous section and from Figure 2 a strong periodicity of 

seven days is present. Cash withdrawals depend on the day of the withdrawal. In other 
words the level of withdrawals each Monday is similar but different from the level of 



withdrawals each Friday for example. Having only two years of data the noise levels 
are high. In order to smooth out the data we split the data in two groups according to 
the weekday of withdrawals. For example the Thursday, 2nd of January 1997 will be 
matched with the first Thursday of 1998, 1st of January.  Each series was split in two 
vectors y1 and y2 where y1 contains the observations from Tuesday 25 March 1996 
until Monday 23 March 1997 and y2 contains the observations from Tuesday 24 
March 1997 until Monday 22 March 1998. Both y1 and y2 have 364 data points. Next 
the vector y is formed where y is the average of y1 and y2. Since we want two equal 
samples, the first seven observations were not used. 

The missing data and the zeroes lead to misleading average values. If a missing 
value appears in y1 then this value and the corresponding one in y2 are removed. 
Hence the corresponding observation removed from vector y. Figure 3 shows the 
detrended average values of the first ATM. For simplicity we will refer only to the 
first ATM. The analysis and results for the rest of the time-series are similar. 

Next outliers on the data were indentified. Outliers indified using the leverage 
value of each observation in vector y. The leverage value, ht of each observation is 
calcualted by the tth diagonal element of the ‘hat’ matrix  and its value 
lie between 0 and 1. An observation is regarded as an outlier when its leverage 
exceeds three time the average leverage, p/n, where p is the number of parameters in the 
model and n the sample size. In Table 4 the number of outliers, missing values, zeroes as well 
as the number of final observations in each ATM are presented. 

1( ' )H y y y y−=

Next we use  wavelet analysis in order to extract the underlying dynamics. Figure 4 
shows the wavelet decomposition. A wavelet is a mathematical function used to 
divide a given function or continuous-time signal into different frequency components 
and study each component with a resolution that matches its scale. A wavelet 
transform is the representation of a function by wavelets. (Mallat, 1999).  

In Zapranis & Alexandridis (2008) and Zapranis & Alexandridis (2007) we give a 
concise treatment of wavelet theory. Here the emphasis is in presenting the theory and 
mathematics of wavelet neural networks and thus we give only the very basic notions 
of wavelets. Very briefly, a family of wavelets is constructed by translations and 
dilations performed on a single fixed function called the mother wavelet. A wavelet ψj 
is derived from its mother wavelet ψ by the relation: 
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where its translation factor mj and its dilation factor dj are real numbers (dj > 0). 
 In this study the Daubechies 7 at level 7 wavelet was used since sevel levels of 

decomposition needed to extract the one year cycle of the data. The Daubechie family 
wavelets have many good properties and proved to perfrom very well in various 
problems, (Daubechies, 1992). Other wavelet families can be used. The wavelet 
transform decomposes the original signal into seven details and one approximation. It 
is clear that the approximation (a7) captures the periodicity of one year that is also 
clear in Figure 4. The lower detail, d1 catpures the noise part of the original signal that 
must be removed. In d2 counting the distance between two spikes reveals a weekly 
periodicity as it was expected from Figure 2. Details 3, 4, 5 and 6 capture periodicities 



that originaly cannot be observed. For example, at d6 a periodicity of two months is 
captured. However its effect is stronger in the beginning of the year and fades later 
on. If the two months periodicity is ignored forecasts in the beginning of the year will 
be understimated. Similarly, if the periodicity considered constant, forecasts at the end 
of the year will be overestimated. 

So far wavelets used to denoise the original signal and to extract the dynamics of 
the underlying cash withdrawals process of each ATM. Next the wavelet 
decomposition, except the lower detail d1, of each time-series is used as an input to 
the wavelet neural network. Wavelet Network acts as a second filter which infers the 
true underlying function of the cash withdrawals in each ATM. 

In this study we use a multidimensional wavelet neural network with a linear 
connection of the wavelons (hidden units) to the output. Moreover in order for the 
model to perform well in linear cases we use direct connections from the input layer 
to the output layer. A network with zero hidden units (HU) is the linear model. 

The structure of a single hidden-layer feedforward wavelet network is given in 
Figure 5. As it is shown in Figure 5 the wavelet network is separated in three layers. 
The lower level is called the input layer where the input units receive information 
outside the network. The middle layer is called the hidden layer where the 
multidimensional wavelets are calculated and each node is called a wavelon or hidden 
unit. The upper layer is called the output layer. The network output is given by the 
following expression:
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In that expression, Ψj(x) is a multidimensional wavelet (wavelon) which is 
constructed by the product of m scalar wavelets, x is the input vector, m is the number 
of network inputs, λ is the number of hidden units and w stands for a network weight. 
The parameter m is known and is equal to the number of the input variables. The 
parameter λ is very crucial to the network performance and is estimated using the 
cross-validation criterion described later. The multidimensional wavelets are 
computed as follows:  
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In the above expression, i = 1, …, m,  j = 1, …, λ+1 and the weights w correspond 
to the translation  ( ) and the dilation ( ) factors. The complete vector of the 
network parameters comprises:
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Following Zhang (1997) we use as a mother wavelet the second derivative of the 
Gaussian the so-called “Mexican Hat” function:  
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Other wavelets can be used depending on the application 
The families of multidimensional wavelets preserve the universal approximation 

property that characterizes neural networks. For detailed exposition in wavelet 
networks we refer to, for example Zhang and Benveniste (1992), Oussar et al. (1998), 
Oussar and Dreyfus (2000) and Zhang (1997). 

The final approximation and all details, except the noise part, d1, were used as an 
input to the wavelet neural network. Since the Mexican Hat’s set of values lies in the 
interval (-1,1) the target values, the vectors y after removing the outliers, were 
rescaled to (-1,1) domain. By rescaling the input values in the same domain helps to 
reduce the training times of the network and increase the wavelet network 
performance.  

One of the most crucial steps is to identify the correct topology of the network i.e. 
to find the correct number λ in equation (3.2) that minimizes the prediction risk. A 
network with less hidden units than needed will not be able to learn the underlying 
function while selecting more hidden units than needed the network will overfit the 
data – the network will learn part of the noise. In order to select the correct network 
we use the cross-validation criterion that proved to outperform other techniques 
(Zapranis and Refenes, 1999, Efron and Tibshirani, 1993).  

In v-fold cross-validation from our initial training sample, of length n, we create ν 
random sub-samples without replacement, Di, of size k, where i=1,…,ν and k<n. Here 
a 2% fold of the original training sample was used forming 50 samples from each 
time-series. Next the sub-samples Di are removed one by one from the original 
sample Dn and a network is trained on the remaining data. Then the trained network is 
evaluated, on the removed sample, using the prediction risk measure. The network is 
evaluated using the averaged square errors function. The procedure is repeated for 
each hidden unit and the network with the smallest prediction risk is selected. Hence, 
selecting an appropriate value for λ a stable network that learns the true underlying of 
function of a signal can be constructed while at the same time the model and 
prediction risk is minimized. Table 5 shows the number of hidden units needed to 
model the cash withdrawals in each ATM.  

Each network is trained using past data, then the trained network can be used to 
produce forecasted values for the cash withdrawal in each ATM. Here we forecast 1- 
to 56- steps ahead. Figure 6 presents the real and forecasted out-of-sample values for 
all 11 ATMs. Examining Figure 6 it is clear that the real and forecasted values are 
very close in most cases. Also the weekly periodicity successfully captured from the 
wavelet network. However the fitting is very poor for 1st, 6th and 10th ATM.  

To account for a different number of observations in the individual data sub-
samples of training and test set, and the different scale between individual series we 
propose to use a mean percentage error metric, which is also established best-practice 



in industry and in previous competitions2. The evaluation of each competitor was 
based on the mean Symmetric Mean Absolute Percent Error (SMAPE) across all time 
series. Table 6 presents the SMAPE for each ATM as well as 9 more error criteria for 
testing the performance of the wavelet networks. 

Since the structure of the time-series is irregular and the noise level is high, the 
error criteria are high as it was expect. The average Symmetric Mean Absolute 
Percentage Error (SMAPE) for the 11 ATMs is 27.92. The Mean Absolute Error 
(MAE) is always less than 5.62 when the spread between the maximum and minimum 
out-of-sample observation is over 30 for each ATM.  

Moreover as presented in Table 6 the Percentage of Change in Direction (POCID) 
and Independent POCID (IPOCID) are very high. Leaving out the 10th ATM, the 
POCID criterion is above 60% in all cases with maximum 90.91% in the ninth ATM. 
Similarly the IPOCID criterion is above 60% in all cases with maximum 83.64% in 
the ninth ATM meaning that the WN can successfully predict the movement in the 
changes of the cash money withdrawals. 

In order to evaluate our methodology different linear models of the ARMA family 
were fitted in each time-series. The out-of-sample results of the linear approach can 
be found on Table 7. Examining Table 7 it is clear that the wavelet networks 
outperform the linear approach. Only for the 1st and the 3rd ATM the linear approach 
seems perform better. However, the IPOCID criterion is only 34.54% and 41.82% for 
the two ATMs. Examining the real and the forecasted values in Figure 7 it is clear that 
the predictions are not good even if the error criteria are smaller than the ones in the 
case of the wavelet network. In general from Figure 7 someone can conclude that the 
performance of the linear models is very poor. 

 
 

4. Conclusions 

 
In this study a novel forecasting method presented. The particular problem 

designed by the Neural Network Association for the NN5 Competition. Having in our 
possession only two years daily cash withdrawals in 11 randomly selected ATM 
across England we produced 1- to 56-step ahead forecasts. The original data were 
irregular while missing values, outliers and observations of zero appear, especially in 
periods corresponding to the forecasting horizon. Moreover the forecasting window 
was very large. We used wavelet analysis in order to decompose 11 different time 
series. The decomposition extracted the driving dynamics of the underlying process 
that leads the cash money withdrawals in the form of details and an approximation. 
Wavelet analysis was able to successfully capture and remove the noise from the 
original signal. The remaining details and the approximation comprised the training 
sample to the wavelet network. Using the driving dynamics as inputs to the wavelet 
network, results to a smaller network topology and less training time while the 

                                                            
2 Evaluation method of the NN5 Competition. 



changes in the dynamics of different periodicities can be captured. Finally, out-of-
sample forecasts presented. From the results it is clear that the wavelet network can 
successfully capture different periodicities and can predict the change in direction of 
the cash money withdrawals even in the cases where the volume of withdrawals were 
not forecasted satisfactory. Moreover the wavelet network framework outperformed 
the linear approach which proved to be inappropriate for predicting cash money 
withdrawals. 

The proposed technique proved to be useful in predicting cash money withdrawals. 
However the limited information and the design of the problem lead to large out-of-
sample errors. Having more information such as the number of withdrawals, more 
data, the physical location of each ATM and the different regional effects in each 
ATM, the results can significantly improved. 
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Figure 1: Cash demand from 11 different ATM’s. 

 

 

 

 

 

 

 

 

 

 

 



Figure 2: Autocorrelation and partial-autocorrelation function for the first ATM. 

 

 
 
 
 

Figure 3: Average cash demand for the first ATM. 

 

 

 

 



 
Figure 4: The Wavelet decomposition, the details d1-d7, the approximation a7 and the 

synthesized signal s 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 5: The structure of a wavelet neural network. 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 6: Out of sample forecasts using wavelet networks. Real data (blue line) and 
forecasts (red line) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 7: Out of sample forecasts using linear models. Real data (blue line) and forecasts 
(red line) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



Table 1. Descriptive Statistics. 
 Mean St.Dev. Max. Min. Skewness Kurtosis 
X1 7.743 3.177 19.48 0.652 0.545 2.913 
X2  22.426 11.090 68.03 0 0.621 3.603 
X3 19.320  7.237 41.60 0 0.228  3.021  
X4 23.311 12.173 75.45 0.113 0.716 3.332 
X5 16.150 6.562 44.92 0 0.560 3.501 
X6 19.509 9.190 53.89 0 0.602 3.485 
X7 16.783 7.353 52.97 0 0.573 5.204 
X8 17.507 6.841 56.29 0 0.514 4.221 
X9 26.554 11.977 85.20 0 0.767 3.294 
X10 22.797 10.424 56.21 0 0.459 2.692 
X11 15.178 6.818 61.89 0 0.918 5.525 

 
 
 

Table 2. Unit root tests. 
 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 

P-Value 0. 3250 0.0881 0. 6475 0.4202 0.2018 0.1179 0.4678 0.2111 0.2092 0.318 0.4149
Unit Root Y Y Y Y Y Y Y Y Y Y Y 

 

 

Table 3. Coefficients of the linear trend in each ATM. 
 a P-Value b P-Value 

X1 7.74298 0.0000 - - 
X2 22.4259 0.0000 - -  
X3 17.0259 0.0000 0.006434 0.0000 
X4 20.2877 0.0000 0.008468 0.0001 
X5 16.1493 0.0000 - - 
X6 19.5089 0.0000 - - 
X7 15.7236 0.0000 0.002935 0.0249 
X8 17.5069 0.0000 - - 
X9 26.5541 0.0000 - - 

X10 23.9871 0.0000 -0.003302 0.0873 
X11 15.1783 0.0000 - - 

The linear trend: a+bt  
 

 
 

Table 4. Final observations for each ATM. 
 Missing Values Outliers Zeroes Final Obs. 

X1 22 10 1 331 
X2 18 8 2 336 
X3 10 7 0 347 
X4 20 6 0 338 
X5 10 8 6 340 
X6 16 11 1 336 
X7 14 5 4 341 
X8 9 9 7 339 
X9 13 4 1 346 
X10 15 5 2 342 
X11 15 7 2 340 

 



 
Table 5. Network topology for each ATM. 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 
Hidden Units 9 13 2 13 9 13 14 13 14 1 11 

 
 
 
 

Table 6: Out of sample results using wavenet networks. 
 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 
MdAE1 4.403 2.047 3.824 3.782 3.507 3.147 4.176 2.723 4.207 8.478 2.577 
MAE2 5.620 2.628 4.198 5.090 4.407 4.329 5.220 3.806 5.180 12.809 3.640 
MaxAE3 24.425 7.370 13.987 29.160 14.319 19.390 23.887 14.425 27.694 48.325 16.662 
RMSE4 7.186 3.187 5.364 7.263 5.532 6.016 7.142 5.071 6.924 16.608 4.983 
NMSE5 0.448 1.684 0.982 0.400 0.827 0.621 0.783 0.657 0.372 1.608 0.529 
MSE6 51.646 10.159 28.779 52.758 30.607 36.195 51.011 25.721 47.939 275.824 24.782 
MAPE7 49.787 28.459 20.407 27.154 34.562 22.402 577.620 34.973 17.163 40.035 22.782 
SMAPE8 33.122 32.425 18.935 21.225 28.286 24.041 36.87% 24.746 18.306 47.658 22.289 
POCID9 81.82% 60.00% 78.12% 87.27% 65.45% 70.91% 76.36% 89.09% 90.91% 54.54% 83.64% 
IPOCID10 61.82% 69.09% 67.28% 76.36% 60.00% 65.45% 72.73% 69.09% 83.64% 67.28% 70.91% 

 
1 Median Absolute Error 
2 Mean Absolute Error 
3 Maximum Absolute Error 
4 Root Mean Square Error 
5 Normalized Mean Square Error 
6 Mean Square Error  
7 Mean Absolute Percentage Error 
8 Symmetric Mean Absolute Percentage Error 
9 Prediction of Change in Direction 
10 Independent Prediction of Change in Direction 

 

 

Table 7: Out of sample results using a linear model. 
 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 
MdAE1 2.269 8.360 2.373 7.554 4.036 4.982 5.342 4.177 7.832 9.196 3.758 
MAE2 2.516 8.284 3.876 8.823 4.805 5.744 6.605 4.954 8.476 12.710 4.849 
MaxAE3 8.607 22.055 17.472 24.404 15.064 17.998 17.583 16.362 27.189 48.099 15.186 
RMSE4 3.221 10.515 5.346 10.687 5.939 7.446 8.372 6.183 10.766 16.677 6.299 
NMSE5 1.720 0.960 0.976 0.867 0.953 0.952 1.077 0.976 0.901 1.622 0.845 
MSE6 10.376 110.57 28.612 114.2 35.274 55.447 70.101 38.228 115.910 278.140 39.687 
MAPE7 26.160 79.077 18.223 45.265 35.421 35.821 490.700 44.943 29.659 38.900 30.649 
SMAPE8 29.532 42.809 17.488 34.953 30.110 29.384 44.303 31.688 29.309 46.241 29.002 
POCID9 63.63% 74.55% 74.54% 81.82% 69.09% 70.91% 61.82% 80.00% 70.91% 52.72% 78.18% 
IPOCID10 34.54% 41.82% 54.54% 54.54% 70.91% 47.27% 50.91% 49.09% 42.27% 50.91% 65.46% 

 
1 Median Absolute Error 
2 Mean Absolute Error 
3 Maximum Absolute Error 
4 Root Mean Square Error 
5 Normalized Mean Square Error 
6 Mean Square Error  
7 Mean Absolute Percentage Error 
8 Symmetric Mean Absolute Percentage Error 
9 Prediction of Change in Direction 
10 Independent Prediction of Change in Direction 
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