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Abstract—In this paper, in the context of an Ornstein-Uhlenbeck temperature process we 
use neural networks to examine the time dependence of the speed of the mean reversion 
parameter α of the process. We estimate non-parametrically with a neural network a model 
of the temperature process and then we compute the derivative of the network output w.r.t. 
the network input, in order to obtain a series of daily values for α. To our knowledge, this is 
done for the first time, and it gives us a much better insight in temperature dynamics and in 
temperature derivative pricing. Our results indicate strong time dependence in the daily 
values of α but no seasonal patterns. This is important, since in all relevant studies so far, α 
was assumed to be constant. Furthermore, the residuals of the neural network provide a better 
fit to the normal distribution, when compared with the residuals of the classic linear models 
which are being used in the context of temperature modeling (where α is constant). It follows, 
that by setting the mean reversion parameter to be a function of time we improve the accuracy 
of the pricing of the temperature derivatives. Finally, we provide the pricing equations for 
temperature futures, when α is time dependent.  
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1. Introduction 

 

 Since their inception in 1996, weather derivatives have known a substantial growth. 

The first parties to arrange for, and issue weather derivatives in 1996, were energy 

companies, which after the deregulation of energy markets were exposed to weather 

risk. In September 1999, the Chicago Mercantile Exchange (CME) launched the first 

exchange traded weather derivatives. In 2004, the notional value of CME weather 

derivatives was $2.2 billion and grew nine-fold to $22 billion through September 2005, 

with open interest exceeding 300,000 and volume surpassing 630,000 contracts traded. 

However, the Over-The-Counter (OTC) market is still more active than the exchange, 

so the bid-ask spreads are quite large. Today, weather derivatives are being used for 

hedging purposes by companies and industries, whose profits can be adversely affected 

by unseasonal weather or, for speculative purposes by hedge funds and others interested 

in capitalizing on those volatile markets. 

 A weather derivative is a financial instrument that has a payoff derived from 

variables such as temperature, snowfall, humidity and rainfall. However, it is estimated 

that 98-99% of the weather derivatives now traded are based on temperature. This is 

not surprising since, it is estimated that 30% of the US economy is affected by 

temperature (CME, 2005). The electricity sector is especially sensitive to the 

temperature. According to Li and Sailor (1995) and Sailor and Munoz (1997), 

temperature is the most significant weather factor explaining electricity and gas demand 

in the United States. The impact of temperature in both electricity demand and price 

has been considered in many papers, including Henley and Peirson (1998),  Peirson and 

Henley (1994) and  Engle et al (1992). Unlike insurance and catastrophe-linked 

instruments, which cover high-risk and low probability events, weather derivatives 

shield revenues against low-risk and high probability events (e.g., mild or cold winters).   
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 Weather risk is unique in that it is highly localized, and despite great advances in 

meteorological science, still cannot be predicted precisely and consistently. Weather 

derivatives are also different than other financial derivatives in that the underlying 

weather index (HDD, CDD, CAT, etc.) cannot be traded. Furthermore, the 

corresponding market is relatively illiquid. Consequently, since weather derivatives 

cannot be cost-efficiently replicated with other weather derivatives, arbitrage pricing 

cannot directly apply to them. The weather derivatives market is a classic incomplete 

market, because the underlying weather variables are not tradable. When the market is 

incomplete, prices cannot be derived from the no-arbitrage condition, since it is not 

possible to replicate the payoff of a given contingent claim by a controlled portfolio of 

the basic securities. Consequently, the classical Black-Scholes-Merton pricing 

approach, which is based on no-arbitrage arguments, cannot be directly applied. And 

market incompleteness is not the only reason for that; weather indices do not follow 

random walks (as the Black & Scholes approach assumes) and the payoffs of weather 

derivatives are determined by indices, which are average quantities, whilst the Black-

Scholes payoff is determined by the value of the underlying exactly at the maturity date 

of the contract (European options).  

 There are several approaches for dealing with incomplete markets. One of them is 

to introduce the ‘market price of risk’ for the particular type of the incomplete market, 

namely a ‘factor model’, where there are some non-traded underlying objects. Since, 

weather derivatives are path depended they are very similar to the average Asian option 

and similar analytical pricing approaches can be used in this case too. A characteristic 

example is the approach of Geman and Yor (1993), which used Bessel processes to 

obtain an exact analytical expression of the Laplace transformation in time of the option 

price. 
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 A pricing methodology for weather derivatives that is widely used in insurance is 

the actuarial (or insurance) method. It is based on statistical analysis and it is less 

applicable in contracts with underlying variables that follow recurrent, predictable 

patterns. Since, this is the case for most of the weather derivatives contracts, actuarial 

analysis is not considered the most appropriate pricing approach unless the contract is 

written on rare weather events such as extreme cold or heat.  

 Another approach for weather derivatives pricing, is performing simulations based 

on historical data, known as historical Burn analysis. That is, computing the average 

payoff of the weather derivatives in the past n years. The central assumption of this 

method is that the historical record of weather contracts payoffs gives a precise 

illustration of the distribution of the potential payoffs (Dischel, 1999). If weather risk 

is calculated as the payoffs standard deviation, then the price of the contract will be P(t) 

= D(t, T) × (μ ± α × σ), where D(t, T) is the discount factor from contract maturity T to 

the pricing time t, μ is the historical average payoff, σ is the historical standard deviation 

of payoffs and a is a positive number denoting risk tolerance. However, since the 

weather processes are not stationary and this approach does not incorporate forecasts, 

it is bound to be biased and inaccurate. In fact, the historical Burn analysis is considered 

as the simplest pricing method in terms of implementation, and the most probable to 

cause large pricing errors. 

 In contrast to the previous methods, a dynamic model can be used which directly 

simulates the future behavior of temperature. Using models for daily temperatures can, 

in principle, lead to more accurate pricing than modeling temperature indices. In the 

process of calculating the temperature index, such as HDD, as a normal or lognormal 

process, a lot of information is lost (e.g., HDD is bounded by zero). On the other hand, 

deriving an accurate model for the daily temperature is not a straightforward process. 
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Observed temperatures show seasonality in all of the mean, variance, distribution and 

autocorrelations and long memory in the autocorrelations. The risk with daily modeling 

is that small misspecifications in the models can lead to large mispricing in the 

contracts. 

 The continuous processes used for modeling daily temperatures usually take a 

mean-reverting form, which has to be descretized in order to estimate its various 

parameters. Once the process is estimated, one can then value any contingent claim by 

taking expectation of the discounted future payoff. Given the complex form of the 

process and the path-dependent nature of most payoffs, the pricing expression usually 

does not have closed-form solutions. In that case Monte-Carlo simulations are being 

used. This approach typically involves generating a large number of simulated 

scenarios of weather indices to determine the possible payoffs of the weather derivative. 

The fair price of the derivative is then the average of all simulated payoffs, 

appropriately discounted for the time-value of money; the precision of the Monte-Carlo 

approach is dependent on the correct choice of the temperature process and the look 

back period of available weather data. 

 In this paper, we address the problem of pricing the European CAT options. For 

this purpose we extent the mean-reverting process with seasonality in the level and 

volatility proposed by Benth and Saltyte-Benth (2007a) - a generalization of (Dornier 

and Querel, 2000) which is descretized in the form of an AR(1) model. We estimate 

non-parametrically a non-linear AR(1) model with a neural network. This removes the 

constraint of a constant mean reverting parameter. By computing the derivative of the 

network output w.r.t. the network input, we take a series of daily values for the mean 

reversion parameter for a period of 30 years for the city of Paris. Analytical expressions 

for the various network derivatives are given by Zapranis and Refenes (1999). 
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  It is important to mention here, that up to date the mean reversion parameter was 

assumed constant in all relevant studies. However, our findings indicate exactly the 

opposite. The daily variation of the value of the mean reversion parameter is quite high. 

The non-linear neural model which encapsulated this time dependency provides a much 

better fit to the temperature data than the classic linear alternative. The implications in 

the accuracy of the pricing process of this type of derivatives are obvious. Furthermore, 

the complexity of the pricing equations is not being increased significantly by using a 

time dependent mean reversion parameter. Below, first we describe the basic steps of 

our analysis and then the organization of the rest of the paper. 

 Given the temperature model, the first step is to identify and remove from the 

temperature series the (possible) trend and the non-stationary seasonal cycle, hoping 

that what is left will be stationary. This is usually done by modeling the seasonal 

variations as deterministic and the same every year (seasonally stationary). The 

stochastic variability of the temperature is then moved entirely from the seasonal cycle 

into the residuals.  

 In modeling the seasonal cycle deterministically, there are several approaches. The 

discrete Fourier transform (DTF) is considered to be the most accurate, since, in 

principle at least, removes the seasonal cycle both in the mean and in the variance. For 

a detailed discussion on this subject see Jewson and Brix (2005). However, recently 

Zapranis and Alexandridis (2006, 2007) proposed a novel approach in modeling the 

seasonal cycle which is an extension of the DFT approach. Since small 

misspecifications in a dynamical model can lead to large pricing errors, we incorporate 

wavelet analysis in the modeling process in order to calibrate our model. The 

fundamental idea behind wavelets is to analyze according to scale. Wavelet analysis is 

an extension of the Fourier transform, which superposes sines and cosines to represent 
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other functions. Wavelet analysis decomposes a general function or signal into a series 

of (orthogonal) basis functions, called wavelets, with different frequency and time 

locations. The wavelet analysis procedure adopts a particular wavelet function, called 

a mother wavelet. Temporal analysis is performed with a contracted high-frequency 

version of the mother wavelet, while frequency analysis is performed with a dilated, 

low-frequency version of the same mother wavelet. Because the original signal can be 

represented in terms of a wavelet expansion (using coefficients in a linear combination 

of the wavelet functions), data operations can be performed using just the corresponding 

wavelet coefficients. A particular feature of the analyzed signal can be identified with 

the positions of the wavelets into which it is decomposed. Results of the wavelet 

transform can be presented as a contour map in frequency-time plane (spectrogram), 

allowing the changing spectral composition of non-stationary signals to be measured 

and compared. As illustrated in Donoho et al (1995) the wavelet approach is very 

flexible in handling very irregular data series. Wavelet analysis has the ability to 

represent highly complex structures without knowing the underlying functional form, 

which is of great benefit in economic and financial research. In order to capture the 

seasonality of the volatility of the temperature we use a truncated Fourier series. The 

specific terms of the Fourier series are being selected on the basis of the results of a 

wavelet analysis of the temperature. As we demonstrate here, wavelet analysis is very 

useful in offering guidance as to which terms of the Fourier series to select. The wavelet 

decomposition brings out the structure of the underlying temperature series as well as 

trends, periodicities, singularities or jumps that could not be observed originally 

(Alaton et al., 2000 and Davis, 2001). Our approach was tested in 40 years of 

temperature data collected from Paris (from 1960 to 2000), and the improvement in 
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terms of distributional properties was found to be significant, Zapranis & Alexandridis 

(2007). The same approach is used in this paper. 

 Once the trend and the seasonal cycle in the mean and the variance have being 

removed, one has to investigate the distributional properties of the residuals (anomalies) 

of the temperature process. To the extent that this part of the modeling approach and 

the initial temperature process are accurate, the residuals must follow a normal 

distribution with mean zero and standard deviation of one at all times of the year. 

However, often the hypothesis of normality is rejected, Benth & Saltyte-Benth (2005). 

 As it is shown in the next section, the temperature process can be written as an 

AR(1) model after removing the linear trend and the seasonal component. Or, as we 

propose here as a non-linear AR(1) fitted non-parametrically with a neural network, 

which allows us to examine the time structure of the speed of the mean reversion of the 

temperature process. We show that temperature is a mean reverting process where the 

speed of mean reversion depends on time. Our findings were compared against a linear 

AR(1) process with a constant parameter. 

 Since, there is time dependency in the variance of the residuals we have to extract 

that variance. In doing so, we group the residuals in 365 groups, each group 

corresponding to a particular day of the year.  Each group comprises 30 observations. 

Each observation corresponds to a different year. Then we take the average for each 

group. Using those 365 values we model the residual variance with a neural network 

having as inputs the harmonics corresponding to the seasonal cycles of the residuals, 

identified by a second wavelet analysis.   

 The rest of the paper is organized as follows. In section 2, we give an introduction 

to wavelet analysis. In section 3, describe the process used to model the average daily 

temperature in Paris. The calibration of the temperature model is done based on the 
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results of wavelet analysis. We also estimate and then remove the linear trend and the 

seasonality component. In section 4, we estimate a linear AR(1) model with a constant 

speed of mean reversion parameter. Then we model the seasonal residual variance, 

again using the wavelet analysis approach. The analysis is repeated in section 5 where 

we estimate the AR(1) model non parametrically using a neural network. We extract 

daily values of the speed of mean reversion of our process. Then we estimate the 

seasonal residual variance, again using wavelet analysis. In section 6, we give the 

analytical expressions for pricing temperature futures with a time dependent speed of 

mean reversion parameter. Finally, in section 7, we conclude. 

 

 

2. Introduction to Wavelet Analysis: Examples of Its Application to Simulated 

Time-Series 

 

2.1.  Fourier Transform and Wavelet Analysis  

 

 Wavelet analysis is a mathematical tool used in various areas of research. 

Especially, during the last years wavelets are frequently used in order to analyse time-

series, data and images. Time-series are represented by local information such as 

frequency, duration, intensity and time-position and by global information such as the 

mean states over different time periods. Both global and local information is needed for 

a correct analysis of a signal. The Wavelet transform (WT) is a generalization of Fourier 

and windowed Fourier transforms (FT and WFT).  
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 FT breaks down a signal into a linear combination of constituent sinusoids of 

different frequencies; hence the FT is decomposition on a frequency by frequency basis. 

However, in transforming to the frequency domain, time information is lost. When 

looking at a FT of a signal, it is impossible to tell when a particular event took place. 

This is a serious drawback if the signal properties change a lot over time, i.e., if they 

contain non-stationary or transitory characteristics: drift, trends, abrupt changes, and 

beginnings and ends of events. These characteristics are often the most important part 

of the signal, and FT is not suited to detecting them. 

 In order to achieve a sort of compromise between frequency and time, FT was 

expanded in Windowed Fourier Transform. WFT uses a window across the time series 

and then uses the FT of the windowed series. This is a decomposition of two parameters, 

time and frequency. However, since the window size is fixed with respect to frequency, 

WFT cannot capture events that appear outside the width of the window. Many signals 

require a more flexible approach that is one where we can vary the window size to 

determine more accurately either time or frequency. 

 Wavelet Transform, on the other hand is localized in both time and frequency and 

overcomes the fixed time-frequency partitioning. The new time-frequency partition is 

long in time in low- frequencies and long in frequency in high-frequencies. This means 

that the WT has good frequency resolution for low-frequency events and good time 

resolution for high-frequency events.  Also, the WT adapts itself to capture features 

across a wide range of frequencies. Consequently the assumption of stationarity can be 

avoided.  

 In addition, wavelets have the ability to decompose a signal or a time-series in 

different levels. As a result, this decomposition brings out the structure of the 

underlying signal as well as trends, periodicities, singularities or jumps that cannot be 
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observed originally. Wavelets can prove to be a valuable tool for analyzing a wide range 

of time-series and they have already been used with success in image processing, signal 

de-noising, density estimation, signal and image compression and time-scale 

decomposition. Wavelet techniques are being used in finance, for detecting the 

properties of quick variation of values. 

 

2.2.  Wavelets  

 A wavelet is a waveform of effectively limited duration that has an average value 

of zero. A wavelet family is a set of orthogonal basis functions generated by dilation 

and translation of a compactly supported scaling function,  (or father wavelet), and a 

wavelet function, ψ (or mother wavelet). The wavelet family consists of wavelet 

children which are dilated and translated forms of a mother wavelet: 

 ,

1
a b

t b
t

aa
 

 
  

                                                                                             (2.1) 

where, a is the scale or dilation parameter and b is the shift or translation parameter. 

The value of the scale parameter determines the level of stretch or compression of the 

wavelet. The term normalizes . In most cases, we will limit our choice 

of a and b values by using a discrete set, because calculating wavelet coefficients at 

every possible scale is computationally intensive. However, if we choose only a subset 

of scales and translations based on powers of two (the dyadic lattice) then our analysis 

will be much more efficient and just as accurate. We obtain such an analysis from the 

Discrete Wavelet Transform (DWT). The wavelet family is taken from a double 

indexed regular lattice: 

    , , : ,j j

j ka b p kqp j k Z 
                (2.2)

 



1 a  , 1a b t 
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where the parameters p and q  denote the step sizes of the dilation and the translation 

parameters. For p = 2 and q = 1 we have the standard dyadic lattice: 

    , 2 , 2 : ,j j

j ka b k j k Z 
                           (2.3)

 The scaling function  generates for each the sets , 

where Z denotes the set of integers and 

   2

, 2 2 , ,j j

j k t t k j k    Z
                (2.4)

 The basis wavelet functions are usually of the form: 

   2

, 2 2 , ,j j

j k t t k j k    Z
                (2.5)

 It follows from above that there is a sequence {hk} (where hk is a scaling filter 

associated with the wavelet) such that  
 
and 

   
0

2 2 -k

k

f t h f t k



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                 (2.6)

 

where is normalized so that .  

 When {hk} is finite, a compactly supported scaling function is the solution to the 

above dilation equation. The wavelet function is defined in terms of the scaling function 

as: 

   
0

2 2k

k

t g t k 




 
                 (2.7)

where  and is a wavelet filter. 

 Then  is the orthogonal complement of Vj in Vj+1, . 

 Over the years a substantial number of wavelet functions have been proposed in the 

literature, (Mallat, 1999 and Daubechies, 1992). In this study we use the Daubechies 

wavelet family. 

 jZ  ,span ,j j kV k Z
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2.3.  Signal Reconstruction 

 

 Representing a signal as a function T(t), the Continuous Wavelet Transform (CWT) 

of this function comprises the wavelet coefficients C(a,b), which are produced through 

the convulsion of a mother wavelet function ψ(t) with the analyzed signal T(t): 

   ,
t b

C a b T t dt
a






 
  

 


                 (2.8)

 

 The wavelet coefficients are localized in time and frequency. We term 

approximations the high scale, low frequency components and details the low scale, 

high frequency components. Given the wavelet coefficients we can perform continuous 

synthesis of the original signal: 

   2

1 1 1
,

t b
T t C a b dadb

K a aa


 

 

 
    

 
 

              (2.9)

 

 The DWT of the signal function comprises the wavelet coefficients C(j,k), which 

are produced through the convulsion of a mother wavelet function ψj,k(t) with the 

analyzed signal T(t): 

     ,, j kC j k T t t dt




 
               (2.10)

 

 Thus, the discrete synthesis of the original signal is: 

     ,, j k

j Z k Z

T t C j k t
 

                (2.11) 



Preprint - Published in the Applied Mathematical Journal, 14 (4) pp. 355-386, 2008 

 At each level j, we build the j-level approximation aj, or approximation at level j, 

and a deviation signal called the j-level detail dj, or detail at level j. We can consider 

the original signal as the approximation at level 0, denoted by a0. The words 

approximation and detail are justified by the fact that a1 is an approximation of a0 taking 

into account the low frequencies of a0, whereas the detail d1 corresponds to the high 

frequency correction. For detailed expositions on the mathematical aspects of wavelets 

we refer to, for example Mallat (1999), Wojtaszczyk (1997) and Daubechies (1992). 

 

 

3. Dynamic Modeling Of The Temperature Process. 

 

 

 

 Many different models have been proposed in order to describe the dynamics of a 

temperature process. The common assumptions in all these models concerning the 

temperature are the following: it follows a predictable cycle, it moves around a seasonal 

mean, it is affected by global warming, it appears to have autoregressive changes and 

its volatility is higher in the winter than in summer. 

 Early models were using AR(1) processes or continuous equivalents (see for 

example Alaton et al. (2000), Cao and Wei (2000), Davis (2000)). Other researchers 

(e.g., Dornier and Querel, 2000, Moreno, 2000) have suggested versions of a more 

general ARMA(p,q) model. However, it has been shown that all these models fail to 

capture the slow time decay of the autocorrelations of temperature and hence lead to 

significant underpricing of weather options, Caballero et al. (2002). In order to deal 
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with this problem, more complex models were proposed, with a characteristic example 

being the model of Brody et al. (2002) , which is an Ornstein-Uhlenbeck process. This 

model was further extended, at first by replacing the noise part of the process 

(Brownian) by a fractional Brownian noise and then by a Levy process (Benth and 

Saltyte-Benth, 2005). 

 Our analysis is based on the model of Benth & Saltyte-Benth, where the temperature 

is expressed as a mean reverting Ornstein-Uhlenbeck process, i.e. 

        

 ( ) ( ) ( ) ( ) ( ) ( )dT t dS t T t S t t dB t                                                                    (3.1)                                                       

 

where, T(t) is the daily average temperature, B(t) is a standard Brownian motion, S(t) is 

a deterministic function modeling the trend and seasonality of the average temperature, 

while σ(t) is the daily volatility of temperature variations.  

 

 In Benth & Saltyte-Benth (2007a) both S(t) and σ2(t) are being modeled as a 

truncated Fourier series, i.e.: 

 

1 1

0

1 1

( ) sin(2 π( ) / 365) cos(2 π( ) / 365)
I J

i i j j

i j

S t a bt a a i t f b j t g
 

                     (3.2) 

2 2

2

1 1

( ) sin(2 π / 365) cos(2 π / 365)
I J

i j

i j

t c c i t d j t
 

                                                 (3.3) 

 

From the Ito formula an explicit solution for (3.1) can be derived: 

 

   ( )

0
( ) ( ) (0) (0) ( ) ( )

t
t sT t S t e T S s e dB t                                                         (3.4)                     
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 According to this representation T(t) is normally distributed at t and it is reverting 

to a mean defined by S(t). Previous works (Benth and Saltyte-Benth 2007a, Alaton et 

al. 2000) suggest that S(t) is modeled by a sinusoid with a period of one year. In this 

paper, the exact specification of models (3.2) and (3.3) is decided based on the results 

of wavelet analysis of the temperature series. 

 In this section we derive the characteristics and dynamics of the daily temperature 

of the city of Paris, France. The data consists average daily temperatures of 30 years 

(1971-2000). The distribution of the data is not normal, indicating a temperature 

process that is generally hard to model. 

 In order to identify the number of terms I1, J1 in (3.2) and I2, J2 in (3.3) we 

decompose the temperature series using a wavelet transform. Lau et al. (1995) 

confirmed seasonalities in the temperature series with a period greater than one year. 

This conclusion was also reached in Zapranis and Alexandridis (2006) when the 

Daubechies 11 wavelet at level 11 was used for the decomposition of 100 years of the 

average daily temperature time-series of Paris. Specifically, in these articles, wavelet 

analysis  captured the following dynamics of temperature in Paris: first, an upward trend 

exists in the temperature reflecting the global and urban warming. This is clearly shown 

in figure 1, in approximations 8 to 11. Also a series of cycles affects the dynamics of 

temperature. An one year cycle exists in the first seven approximations, as expected. 

Moreover, cycles of 2, 4, 8 and 13 years also exist and affect the temperature dynamics 

(details 9,10,11 and approximation 11 respectively). Also, wavelet analysis captures a 

product of two sinusoids, with a period of 1 and 7 years respectively (detail 8). Finally, 

the lower details reflect the noise part of the time-series. A closer inspection of the noise 

part reveals seasonalities, which will be extracted later on.  
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 A discrete approximation to (3.4), which is the solution to the mean reverting 

Ornstein-Uhlenbeck process (3.1), is: 

 

   ( 1) ( ) ( 1) ( ) ( ) ( ) ( ) ( 1) ( )T t T t S t S t T t S t t B t B t                                (3.5) 

 

which can be written as: 

 

1 ( )t t tT T t                                                                                                 (3.6) 

 

where  

 

( ) ( ) ( )T t T t S t                                                                                                        (3.7) 

 

1                                                                                                              (3.8) 

                                            

 In order to estimate (3.6) we need first to remove the trend and seasonality 

components from the average temperature series. 

 Firstly, we quantify the upward trend indicated by the results of the wavelet analysis 

by fitting a linear regression to the temperature data. The regression is statistically 

significant with intercept a =11.171 and slope b=0.00010562. The corresponding 

standard errors are 0.095717 and 0.00000908 and the t-statistics are 116.4089 and 

8.641278 while both p-values are zero. Subtracting the trend form the original data we 

obtain the de-trended temperature series. 
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 After removing the linear trend from the data we use wavelet analysis to indentify 

the seasonal part. The results of the wavelet analysis indicate that the seasonal part of 

the temperature takes the following form: 

 

0 1 1 2 2

3 3 4 4

5 5 6 6

( ) sin(2π( ) / 365) sin(2π( ) / (2 365))

       sin(2 ( ) / (13 365)) (1 sin(2 ( ) / (7 365)))sin(2 / 365)

       sin(2π( ) / (8 365)) sin(2π( / (4 365)) 365))

S t a bt a b t f b t f

b t f b t f t

b t f b t f

  

       

      

      

          (3.9) 

 

 The estimated parameters of the above model are as follows: α0 = -0.0008, b1 = -

7.6994, b2 = 0.1317, b3 = 0.0469, b4 = -0.2743, b5 = -0.3445, b6 = 0.0796, f1 = -73.2644, 

f2 = 95.0642, f3 = -640.2319, f4 = 183.1090, f5 = -13.1151 and f6 = -134.5803. The mean 

of the residuals 5.9091e-009 and the standard deviation is 3.3708. Next the temperature 

series is de-seasonalized by removing S(t). The approximation of the trend and the 

remaining seasonal part of the temperature is done in two different steps. Thus the 

inclusion of a0 represents part of the trend that the simple linear fitting did not capture. 

The detailed wavelet analysis of the seasonal part S(t) can be found in Zapranis & 

Alexandridis (2007). 

 

 

4. The Linear Regression Approach.  

    

 Our temperature data consisted of 30 years up to 2000 of de-trended and de-

seasonalized daily average temperatures, ( )T t , from the city of Paris. We separate the 

data in 3 groups, each group corresponding to one decade. First we remove the 29th of 

February to from 3 equal groups of 3650 data points each. Then we use the linear AR(1) 
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model, proposed by Benth & Saltyte-Benth (2007a). We estimate the parameter α for 

the AR(1) model for each decade. For all three decades the constant was found to be 

zero, as it was expected, while the reversion parameter α takes the values: α1 = 0.797, 

α2 = 0.7989, α3 = 0.8005 (the subscript indicates the decade); these values are also 

statistically significant (t = 79.35, 79.88, 80.33). For all three decades the adjusted R2 

is over 0.63 and F is over 6297. For simplicity we will refer only to the last decade. The 

results for all decades can be found in Table 1. 

 For the 3rd (last) decade the distributional statistics of the residuals of the AR(1) 

model (3.6), indicate a significant deviation from the normal distribution (Fig. 2). There 

is a negative skewness (-0.174117), positive kurtosis (3.021718) and the value of the 

Jarque-Bera statistic is 18.50932. The p-value is less than 0.05, so that the hypothesis 

of normal distribution has to be rejected. The results for the 1st and 2nd decade are very 

similar.  

 Previous works (Benth & Saltyte-Benth 2007a, 2005, Zapranis and Alexandridis, 

2006, 2007) suggest seasonal variance in the residuals of the AR(1) model. Figures 3 

and 4 show the autocorrelation of the residuals and squared residuals respectively. The 

autocorrelation of the residuals is significant in the first three lags with lag 1 to be 

positive while lag 2 and 3 are negative (Fig. 3). As Benth et al. (2007b) suggest the 

autocorrelation may be modeled by GARCH process. The autocorrelation of the 

squared residuals indicates time dependency in the variance of the residuals (Fig. 4). 

Especially in fig. 4, we can observe the seasonal variation although is not so clear as in 

Benth et al. (2007b) due to the fact that part of it was removed by the wavelet analysis. 

 Since, for the residuals e(t) of AR(1) model it is true that  

 

( ) ( ) ( )e t t t                                                                                                            (4.1) 
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where ε(t) are i.i.d. N(0,1), we can extract the seasonal variance of the residuals as 

follows: Firstly, we group the residuals in 365 groups, comprising 10 observations each 

(each group corresponds to a single day of the year). Then, by taking the average of the 

10 squared values we obtain the variance for that day. That is, we assume that 

 

2 2(365 ) ( )t t                                                                                                      (4.2)                            

 

where t = 1, …, 3,650 (for each decade). 

  In deciding which terms of a truncated Fourier series to use in order to model the 

variance σ2(t), we perform again a wavelet analysis, which indicates the  presence of 

five cycles within σ2(t). The wavelet decomposition of the seasonal variance is shown 

in Fig.5. Approximation a7  and details d7, d6, d5  suggest an one-year cycle, a half-year 

cycle, a 1/4 of a year cycle, a 1/9 of a year cycle and a 1/18 of a year cycle, respectively. 

We model accordingly the variance σ2(t), as follows: 

 

2

0 1 2 3 4

5 1 2 3

4 5

( ) sin(2 / 365) sin(4 / 365) sin(8 / 365) sin(18 / 365)

sin(36 / 365) cos(2 / 365) cos(4 / 365) cos(8 / 365)

cos(18 / 365) cos(36 / 365)

t c c t c t c t c t

c t d t d t d t

d t d t

    

   

 

    

   

 

    (4.3) 

 

 The values of the estimated parameters of (4.3) for the 3rd decade are: c0 = 4. 0968, 

c1 = 0.4412, c2 = -0.1352, c3 = 0.1913, c4 = 0.0898, c5 =0.1733, d1 = 0.0527, d2 = 0.5410, 

d3 = -0.056 d4 = 0.1229 and d5 = -0.0059. 

 

 The estimated parameters for all three decades can be shown in Table 2 

(bottom). Figure 6 shows the empirical and the fitted seasonal variance of the AR(1) 
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model while in figure 7 it is shown the  autocorrelation of the squared residuals after 

dividing out the seasonal variance. It is clear that the seasonal variance was removed 

successfully. Note that although the seasonal variance has the same number of 

estimated parameters as in Benth and Saltyte-Benth (2007a) the selected cycles are 

different and resulted from wavelet analysis. Correct modeling of the seasonal variance 

results to correct pricing of weather derivates. As we show in the last section the price 

of weather derivatives is sensitive to the variance σ2, hence, correct modeling is 

essential. 

   After dividing out the seasonal variance of the residuals we left with the noise 

part of the temperature signal. According to our theoretical model we expect to have a 

normally distributed noise. By examining the statistics of the noise part (Fig. 8) we have 

to reject the hypothesis of normal distribution. For the last decade α3 = 0.8005. The 

standard deviation of the remaining noise part is 1.0007 and the mean is 0.0253. The 

Jarque-Bera is 14.22022 and its p-value is 0.000817. We  conclude to the same result 

by observing the QQ-plot (Fig. 9) of the residuals after dividing out the seasonal 

variance. In Table 1, we can see the distributional statistics for all three decades. From 

the table we conclude that only in first decade we marginally accept the hypothesis of 

normality. 

      The findings of Benth and Saltyte-Benth (2007a) for the Stockholm temperature 

series are very similar. Although, they did not use wavelet analysis to calibrate their 

model, they had managed to remove seasonality from the residuals, but their 

distribution proved to be non-normal. They suggested that a more refined model would 

probably rectify this problem, but they did not proceed in estimating one. In an earlier 

paper regarding Norwegian temperature data, Benth and Saltyte-Benth (2005) 

suggested to model the residuals by a generalized hyperbolic distribution. However, as 
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the same authors comment the inclusion of a non-normal model leads to a complicated 

Levy process dynamics. Recently Benth et al. (2007b) proposed a continuous-time 

autoregressive process with lag p (CAR(p)-process) but their distribution proved again 

to be non-normal. 

Zapranis and Alexandridis (2006) eastimated a number of alternatives to the 

original AR(1) model. In particular they estimated an ARMA(3,1) model, a long-

memory homoscedastic ARFIMA model and a long-memory heteroscedastic 

ARFIMA-FIGARCH model. Their findings suggest that, increasing the model 

complexity and thus the complexity of theoretical derivations in the context of weather 

derivative pricing does not seem to be justified. 

 

5. The Neural Network Approach.  

 

 The de-trended and de-seasonalized temperature series, T , can be modeled with an 

AR(1) process with a zero constant term, as shown in (3.6). In the context of such a 

model the mean reversion parameter α is typically assumed to be constant over time. In 

Brody et al. (2002) it is mentioned that in general α should be a function of time, but 

no evidence was presented. On the other hand, Benth and Saltyte-Benth (2005), using 

a dataset comprising 10 years of Norwegian temperature data, calculated mean annual 

values of α. They reported that their variation from year to year was not significant. 

They also investigated the seasonal structures in monthly averages of α and they 

reported that none was found. However, since to date, no one has computed daily values 

of the mean reversion parameter, since there is no obvious way to do this in the context 

of model (3.6). On the other hand, averaging techniques, in a yearly or monthly basis, 



Preprint - Published in the Applied Mathematical Journal, 14 (4) pp. 355-386, 2008 

run the danger of filtering out too much variation and consequently presenting a 

distorted picture regarding the true nature of α. The impact of a false specification of α, 

on the accuracy of the pricing of temperature derivatives is significant, Alaton et al. 

(2000) . 

 In this section, we address that issue, by using a neural network (N.N.) to estimate 

non-parametrically relationship (3.6) and then estimate α as a function of time. By 

computing the derivative of the network output w.r.t. the network input we obtain a 

series of daily values for α. This is done for the first time, and it gives us a much better 

insight in temperature dynamics and in temperature derivative pricing. As we will see 

the daily variation of α is quite significant after all.  

 

5.1 The Neural Networks Approach: Time Dependent Mean Reversion Parameter 

 

 Using neural networks we estimated non-parametrically the generalized version of 

(3.6), that is: 

 

 ( 1) ( ) ( )T t T t e t                                                                                               (5.1) 

 

      Once we have the estimator of the underlying function  , then we can compute the 

daily values of α as follows: 

 

( ) ( 1) / ( ) /t dT t dT t d dT                                                                                 (5.2) 
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The analytic expression for the neural network derivative /d dT   can be found in 

Zapranis & Refenes (1999).  

 We estimate  (•) non-parametrically with the neural network g(•). Given an input 

vector x (the harmonics) and a set of weights w (parameters), the network response 

(output)  ;g x w  is: 

 

[2] [1] [1] [2]

1, 1

1 1

( ; )
m

j ij i m j

j i

g w w x w w


    

 

  
    

  
 x w                                                     (5.3) 

 

where, [1]

,i jw  is a weight corresponding to the connection between the ith  input and the 

jth hidden unit, [1]

1,m jw   is a bias term corresponding to the jth hidden unit, [2]

jw  is the 

weight of the connection between the jth hidden unit and the output unit, and [2]

1w  is the 

bias term of the output unit, and the function γ(•) is a sigmoidal function. 

     For the 3rd decade the daily values of α (3,650 values) are depicted in Fig. 10. The 

corresponding frequency histogram is given in Fig. 11. The graphs for the 1st and 2nd 

decades are very similar. The relevant statistics for all three decades are given in Table 

1.  

  It is clear, that the mean reversion parameter is not constant. On the contrary, its 

daily variation is quite significant; this fact naturally has an impact on the accuracy of 

the pricing equations and it has to be taken into account. Intuitively, it was expected 

α(t) not to be constant. If the temperature today is away from the seasonal average (a 

cold day in summer) then it is expected that the speed of mean reversion to be high; i.e. 

the difference of today and tomorrows temperature it is expected to be high. In contrast 
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if the temperature today is close to the seasonal variance we expect the temperature to 

revert to its seasonal average slowly. 

 Referring now to Fig. 10, we observe that the spread between the maximum and 

minimum value is quite high (0.8586 and 0.2303 correspondingly). The standard 

deviation is 0.0587 and the mean is 0.7573. We also observe, that there is an upper 

threshold in the values of α(t) (0.8376) which is rarely exceeded. This can also be seen 

in the frequency distribution of α(t) in Fig. 11. As expected, the average values of α(t) 

which were derived from the neural network models are actually very close to the 

values of α which were derived in the previous section. First we examine if α(t) is a 

stochastic process by itself. Both an Augmented Dickey-Fuller (A.D.F.) and 

Kwiatkowski-Phillips-Schmidt-Shin (K.P.S.S.) tests are used. The A.D.F. test statistic 

is -10.73455 with p-value=0 that leads to the rejection of the null hypothesis that α(t) 

has unit root. The K.P.S.S test statistic is 0.157341 and less that the critical values in 

1%, 5% and 10% suggesting the acceptance of the null hypothesis that α(t) is stationary. 

Table 3 shows the A.D.F. test and table 4 the K.P.S.S test for all three decades. The 

histogram in figure 11 may suggest that the distribution of α(t) is bimodal. Hartigan’s 

DIP statistic is a measure of departure from unimodality. If a distribution is unimodal 

then the DIP converges to zero otherwise converges to a positive constant (Hartigan & 

Hartigan, 1985). We found that the DIP is 0.0226 and the p-value=0. Hence, we reject 

the hypothesis that α(t) follows a unimodal distribution. Moreover figure 10 suggest 

seasonalities in the structure of α(t). The autocorrelation function of α(t) is shown in 

figure 12. A seasonality of a half year is clear in the autocorrelation function. Also the 

first 23 lags are statistically important. For a closer inspection we use wavelet analysis 

to decompose the signal of α(t). The decomposition is shown in figure 13. Wavelet 
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analysis confirms the half year cycle while reveals a major cycle of two years and a 

seasonality of one year.  

 The distributional statistics of the residuals of the neural network (Fig. 14), do not 

indicate a significant deviation from the normal distribution in contrast to the AR(1) 

model with constant parameter. There is a small negative skewness (-0.094027), 

positive kurtosis (3.031307) and the value of the Jarque-Bera statistic is 5.525856. The 

probability is 0.063107 (>0.05), indicating that we have to accept the normality 

hypothesis in contrast to the linear regression approach. Next we examine the 

autocorrelation function of the residuals. The autocorrelation of the residuals is 

significant in the first lag (Fig. 15), while the autocorrelation of the squared residuals 

indicates, although not clear, time dependency in the variance of the residuals (Fig. 16). 

In order to verify the existence of seasonality in the variance we use wavelet analysis. 

 In this section we will remove the seasonality in variance using the same approach 

as in previous section. 

 In deciding which terms of a truncated Fourier series to use in order to model the 

variance σ2(t), we perform again a wavelet analysis. As it was expected, our results are 

similar to the ones from section 4. Hence, we model the seasonal variance as in (4.3). 

The wavelet decomposition can be found in figure 17. 

 The values of the estimated parameters of for the 3rd decade when the speed of 

mean reversion is a function of time are: c0 = 4. 3390, c1 = 0.5095, c2 = -0.0721, c3 = 

0.1883, c4 = 0.1533, c5 =0.1379, d1 = 0.1260, d2 = 0.6230, d3 = -0.2897 d4 = 0.0637 and 

d5 = -0.0431. Again, the estimated parameters for all three decades can be found in 

Table 2 (top). 

 The empirical values of the variance of the residuals (365 values) together with the 

fitted variance can be seen in Fig. 18. We observe that the variance takes its highest 
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values during the winter months, while it takes its lowest values during early autumn. 

This is consistent to our initial hypothesis in section 3. 

The standard deviation of the residuals is 2.0697, while the standard deviation of the 

remaining noise part is 0.9962 and its mean is 0.1165. 

 In Fig. 19, we can see the autocorrelation function of the squared residuals of the 

process, after dividing out the volatility from the residuals.  

 We observe that the seasonality has been removed, but there is still autocorrelation 

in the first lag while using the linear regression method we had three significant lags. 

Moreover, the Jarque-Bera statistic is reduced to 2.568741 with a p-value of 0.276825 

leading to the acceptance of the hypothesis of normal distribution. Figure 20 presents 

the distribution statistics of the residuals after dividing out the volatility function of the 

residuals. 

     As we have seen, the hypothesis of normality was accepted only in the case of the 

neural models. In Fig. 21 and Fig. 9 we can see the normality plots for the residuals 

(after dividing out the seasonal variance) of the neural network and the AR(1) model 

for the 3rd  decade. Clearly, in the case of the neural network the residuals provide a 

better fit to the normal distribution. 

 In Table 1, we can see the distributional statistics for all three decades. The neural 

networks approach always gives a smaller Jarque-Bera and higher p-value. Moreover, 

the skewness of the distributions corresponding to the N.N.s is always significantly 

lower, although, the kurtosis is lower only for the first decade. Finally, in the last decade 

the normality hypothesis using the linear regression is rejected (p=0.000817) while it is 

accepted using the neural network approach (p=0.276825). 
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 Finally, the estimated parameters from the seasonal variance are presented in Table 

2, for all three decades. The top table refers to the N.N. model, while the bottom table 

refers to the AR(1) model. 

 

 

6. Temperature Derivative Pricing. 

 

   The list of traded contracts in weather derivatives market is extensive and constantly 

evolving. In Europe, CME weather contracts for the summer months are based on an 

index of Cumulative Average Temperature (CAT). The CAT index is the sum of the 

daily average temperatures over the contract period. The average temperature is 

measured as the simple average of the minimum and maximum temperature over one 

day. The value of a CAT index for the time interval [τ1,τ2] is given by the following 

expression: 

 

2

1

( )T s ds


                                                                                                                  (6.1) 

 

where the temperature is measured in degrees of Celsius. In USA, CME weather 

derivatives are based on Heating Degree Days (HDD) or Cooling Degree Days (CDD) 

index. A HDD is the number of degrees by which daily temperature is below a base 

temperature, while a CDD is the number of degrees by which the daily temperature is 

above the base temperature,  

 

i.e., Daily HDD = max (0, base temperature – daily average temperature),  
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       Daily CDD = max (0, daily average temperature – base temperature).  

 

   The base temperature is usually 65 degrees Fahrenheit in the US and 18 degrees 

Celsius in Europe and Japan. HDDs and CDDs are usually accumulated over a month 

or over a season. For the two Japanese cities, weather derivatives are based on the 

Pacific Rim index. The Pacific Rim index is simply the average of the CAT index over 

the specific time period. At the end of 2006, at CME were traded weather derivatives 

for 18 US cities3, 9 European cities4, 2 Japanese cities5, as well as seasonal strip and 

frost contracts.  

 So far, we modeled the temperature using an Ornstein-Uhlenbeck process (as in 

Benth & Saltyte-Benth, 2007a) and we also used wavelet analysis to identify and filter 

out the seasonal component. Moreover, we have shown that the mean reversion 

parameter α in model (3.6) is characterized by significant daily variation. Recall that 

parameter α is connected to our initial model (3.1) with α=1+κ where κ is the speed of 

mean reversion. It follows that, the assumption of a constant mean reversion parameter 

introduces significant error in the pricing of weather derivatives. In this section, we give 

the pricing formula for a future contract written on the CAT index that incorporate the 

time dependency of the speed of the mean reversion parameter. First, we re-write (3.1) 

where parameter κ, now is a function of time t, κ(t).  

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )dT t dS t t T t S t t dB t                                                               (6.2) 

 

                                                 
3 Atlanta, Baltimore, Boston, Chicago, Cincinnati, Dallas, Des Moines, Detroit, Houston, Kansas City, 

Las Vegas, Minneapolis-St. Paul, New York, Philadelphia, Portland, Sacramento, Salt Lake City, 

Tucson.  
4 Amsterdam, Barcelona, Berlin, Essen, London, Madrid, Paris, Rome, Stockholm. 
5 Tokyo, Osaka. 
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From the Ito formula an explicit solution can be derived: 

 

 0 0 0
( ) ( ) ( )

0
( ) ( ) (0) (0) ( ) ( )

t t s
tu du u du u du

T t S t e T S e s e dB s
  


                                (6.3) 

 

Note that  is bounded away from zero and that the derivatives of  have been 

explicitly calculated in section 5.1.                                                                                                                                 

 Our aim is to give a mathematical expression for the CAT future price. It is clear 

that the weather derivative market is an incomplete market. Cumulative average 

temperature contracts are written on a temperature index which is not a tradable or 

storable asset. In order to derive the pricing formula, first we must find a risk-neutral 

probability measure Q~P ,where all assets are martingales after discounting. In the case 

of weather derivatives any equivalent measure Q is a risk neutral probability. If Q is the 

risk neutral probability and r is the constant compounding interest rate then the arbitrage 

free future price of a CAT contract at time  is given by:   

 

2
2

1

( )

1 2( ) ( , , ) | 0
r t

Q CAT te d F t





         

   F                                                           (6.4) 

and since CATF  is tF  adapted we derive the price of a CAT futures to be 

2

1
1 2( , , ) ( ) |CAT Q tF t d




      

   F                                                                           (6.5) 

 

Using the Girsanov’s Theorem, under the equivalent measure Q, we have that  

 

( ) ( ) ( )dW t dB t t dt                                                                                               (6.6) 

 

( )t '( )t

1 2t   
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and note that  is bounded away from zero. Hence, by combining equations (6.2) 

and (6.6) the stochastic process of the temperature in the risk neutral probability Q is: 

 

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )dT t dS t t T t s t t t dt t dW t                                          (6.7) 

 

where θ(t) is a real-valued measurable and bounded function denoting the market price 

of risk. The market price of risk can be calculated by historical data. More specifically 

θ(t) can be calculated by looking the market price of contracts. The value that makes 

the price of the model fits the market price is the market price of risk. Using Ito formula, 

the solution of equation (6.7) is: 

 

 0 0 0

0 0

( ) ( ) ( )

0

( ) ( )

0

( ) ( ) (0) (0) ( ) ( )

          ( ) ( )

t t s

t s

tu du u du u du

tu du u du

T t S t e T S e s s e ds

e s e dB s

  

 

 







     

 





                             (6.8) 

 

 By replacing this expression to (6.5) we find the price of future contract on CAT 

index at time t where 1 20 t     . 

 

Proposition 6.1 The CAT future price for 1 20 t      is given by 

2 2

1 1
1 2 1 2( , , ) ( ) | ( )CAT Q tF t T s ds S s ds I I

 

 
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   F                                             (6.9) 

where, 
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                                                                                               (6.10) 
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Proof. From equation (6.5) and (6.8) we have that: 

2 2 2

1 1 1
1 2( , , ) ( ) | ( ) ( ) |CAT Q t Q tF t T s ds S s ds T s ds
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  
        

        F F  

and using Ito’s Isometry we can interchange the expectation and the integral 
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Hence, 
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where [ , ]1 t s  is zero outside the interval [t,s]. Then we can change the order of the 

integrals. 
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z dz

t s
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Next we split the outer integral in two parts. 
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The second part is zero when s>u. Hence we can change the limits of the inner integral 
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or equivalently . 

0 0

1 2 2 2
0 0

1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

s s

u u
z dz z dz z dz z dz

t u
e u u e dsdu e u u e dsdu

      

 
                     ⁭ 

  

 Practitioners often prefer easy to implement models than realistic ones. A classic 

example is the Black-Scholes equation. The above solution of the price of a CAT future 

is not easy to solve although is not much more complex than the pricing formulas 

presented by Benth & Saltyte-Benth (2007a). To calculate equation (6.9) is not a 

straightforward process. Alternatively we can calculate the price of a future contract on 

a CAT index using numerical methods. According to our analysis in section 5.1, α(t) 

and hence according to (3.8) κ(t) can be modeled as a truncated Fourier series where: 

   
3 3

1 1

( ) sin 2 / 365 sin 2 / 365
I J

i j

i j

t e e i t g j t  
 

                                           (6.12) 

hence, the integral 0
( )

s

z dz

e
  can be easily calculated using numerical procedures. 

 

7. Conclusions 

 

 In this paper, in the context of an Ornstein-Uhlenbeck temperature process we have 

used neural networks to examine the time dependence of the speed of the mean 

reversion parameter α of the process. By computing the derivative ( 1) / ( )dT t dT t  of 

the fitted neural model, we obtained daily values for α. To our knowledge, we are the 

first to have done so. Our results, indicate strong time dependence in the daily values 

of α but no seasonal patterns. We compared the fit of the residuals to the normal 
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distribution of two types of models. Neural networks, were α is a function of time, and 

AR(1) models, were α is constant. Generally, in the case of neural networks we have a 

better fit. It follows, that by setting the speed of mean reversion parameter to be a 

function of time we improve the accuracy of the pricing of the temperature derivatives. 

Also, since small misspecifications in dynamic models lead to large mispricing errors, 

we presented an approach to estimate and calibrate the seasonal component in both 

mean reversion and variance using wavelet analysis. Finally, we provided the pricing 

equations for temperature futures of a CAT index derivative, when α is time dependent. 
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Figure 1. Daily temperature time-series (s) for Paris, France, approximations (aj) and details (dj) produced by the 

wavelet decomposition. 
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Fig.2. Distribution statistics of the residuals of the AR(1) model 
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Fig.3. ACF of the residuals of the AR(1) model for the de-trended and de-seasonalized Paris average daily data 
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Fig.4. ACF of the squared residuals of the AR(1) model for the de-trended and de-seasonalized Paris average daily 
data. 
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Fig.5. Wavelet decomposition of the averaged squared variance. 
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Fig.6. Empirical variance and fitted variance for the AR(1) model.  
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Fig.7. ACF of the squared residuals of the AR(1) model after dividing out the volatility function from the residuals. 
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Fig.8. Distribution statistics of the residuals of the AR(1) model after dividing out the volatility function from the 
regression residuals 
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Fig.9. Normal probability plot of the of the residuals of the AR(1) model after dividing out the volatility function from 
the residuals  
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Fig.10. Daily variation of the mean reversion parameter α.  
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Fig.11. Frequency distribution of the mean reversion parameter α. 
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Fig.12. ACF of the speed of mean reversion α(t) 
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Fig.13. Wavelet decomposition of α(t). 
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Fig.14. Distribution statistics of the residuals of the N.N. model 
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Fig.15. ACF of the residuals of the N.N. model for the de-trended and de-seasonalized Paris average daily data 
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Fig.16. ACF of the squared residuals of the N.N. model for the de-trended and de-seasonalized Paris average daily 
data 
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Fig.17. Wavelet decomposition of the averaged squared variance. 
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Fig.18. Empirical variance and fitted variance for the NN model. 
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Fig.19. ACF of the squared residuals of the NN model after dividing out the volatility function from the residuals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Preprint - Published in the Applied Mathematical Journal, 14 (4) pp. 355-386, 2008 

 

Fig.20. Distribution statistics of the residuals of the NN model after dividing out the volatility function from the 
residuals. 
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Fig.21. Normal probability plot of the of the residuals of the NN model after dividing out the volatility function from the 
residuals  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
TABLE 1 
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DISTRIBUTIONAL STATISTICS 

  Decade1 Decade2 Decade3  

Mean -0.02237 -0.00374 0.025286  

0.027346 0.067015 0.116506  

Median -0.001483 -0.00012 0.032083  

0.039475 0.065229 0.10273  

Maximum 3.6872 3.4283 3.1298  

3.6395 3.3923 3.6474  

Minimum -4.0096 -3.4861 -3.9787  

-3.7338 -3.3591 -3.6221  

Std. Dev 1.000689 1.000795 1.000838  

1.000445 0.998902 0.996331  

Skewness -0.07411 -0.13531 -0.15291  

-0.05289 -0.11002 -0.06353  

Kurtosis 3.10874 2.984192 3.000145  

3.05332 2.916664 3.027429  

Jarque-

Bera 

5.139474 11.1759 14.22022  

2.134051 8.420029 2.568741  

Probability 0.076556 0.003743 0.000817  

0.34403 0.014846 0.276825  

 

Distributional statistic for each decade after dividing out the seasonal variance. The first row of each statistic corresponds to the 

AR(1) model. The second row corresponds to the N.N. model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
TABLE 2 

PARAMETER ESTIMATION FOR THE SEASONAL VARIANCE 

 Decade1 Decade2 Decade3 
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c0 4.3078 4.2618 4.339 

c1 0.16928 0.35246 0.5095 

c2 -0.33575 -0.22978 -0.0721 

c3 0.079308 0.11756 0.1883 

c4 0.006756 0.23951 0.1533 

c5 -0.23018 0.21061 0.1379 

d1 0.72976 0.34437 0.126 

d2 0.72429 0.35277 0.0623 

d3 0.11016 0.1796 -0.2897 

d4 -0.20968 0.027802 0.0637 

d5 -0.2206 0.068786 -0.0431 

 

 

 Decade1 Decade2 Decade3 

c0 4.2707 4.1713 4.0968 

c1 0.12959 0.28903 0.44127 

c2 -0.37756 -0.24132 -0.13527 

c3 0.16133 0.16338 0.19132 

c4 0.065612 0.26635 0.089875 

c5 -0.23215 0.22791 0.17336 

d1 0.57271 0.33498 0.052762 

d2 0.71875 0.41667 0.54105 

d3 0.12225 0.13236 -0.05608 

d4 -0.19856 0.076904 0.12299 

d5 -0.21465 0.082671 0.005984 

 

 

Parameter estimation of the seasonal variance using N.N. (top) and an AR(1)model (bottom) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
TABLE 3 

AUGMENTED DICKEY-FULLER TEST 
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Null Hypothesis: α(t)  has a unit root 

Exogenous: Constant   

     

     
First Decade   t-Statistic   Prob.* 
     

     
Augmented Dickey-Fuller test statistic -8.823206 0.0000 

Test critical values: 1% level  -3.431969  

 5% level  -2.862141  

 10% level  -2.567133  

     

     
Second Decade   t-Statistic   Prob.* 

     

     
Augmented Dickey-Fuller test statistic -10.35569 0.0000 

Test critical values: 1% level  -3.431968  

 5% level  -2.862140  

 10% level  -2.567133  

     
     

Third Decade   t-Statistic   Prob.* 

     

     
Augmented Dickey-Fuller test statistic -10.73455 0.0000 

Test critical values: 1% level  -3.431965  

 5% level  -2.862139  

 10% level  -2.567132  

     

     
*MacKinnon (1996) one-sided p-values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
TABLE 4 

K.P.S.S. TEST 
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Null Hypothesis: α(t)  is stationary 

Exogenous: Constant   

     

     
First Decade    LM-Stat. 
     

     
Kwiatkowski-Phillips-Schmidt-Shin test statistic                                                                   0.121631 

Asymptotic critical values*: 1% level   0.739000 

  5% level   0.463000 

  10% level   0.347000 

     
     

Second Decade    LM-Stat. 

     

     
Kwiatkowski-Phillips-Schmidt-Shin test statistic                                                                  0.575217 

Asymptotic critical values*: 1% level  0.739000 

  5% level   0.463000 

  10% level   0.347000 

     

     
Third Decade    LM-Stat. 

     

     
Kwiatkowski-Phillips-Schmidt-Shin test statistic                                                                   0.157341 

Asymptotic critical values*: 1% level   0.739000 

  5% level   0.463000 

  10% level   0.347000 
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