Fran in action!

Anthony C. Daniels
Languages and Programming Group
Department of Computer Science, University of Nottingham
acd@cs.nott.ac.uk

July 14, 1997

Abstract

Fran is a Haskell library for creating real-time interactive anima-
tions. This paper demonstrates how the system can be used to create
a realistic animation and indicates how this can be extended to form
large, complex animations. We emphasize the flexibility, composability
and ease of construction afforded by the system from this pragmatic
perspective. No knowledge of Fran is required to read this paper. We
hope that functional programmers will be able to use it as a tutorial.

1 Introduction

Fran [4] stands for Functional Reactive Animation. It is being developed
principally by Conal Elliott at Microsoft Research and in conjunction with
researchers at Glasgow, Nottingham and Yale Universities. Its aim is to ease
the task of building interactive animations. The system is intended to be
very general, but various specific application areas appear particularly well
suited, for example, multimedia, teaching, simulation, communication and
WWW pages. Furthermore, we intend that Fran will exploit the current
and future hardware developments for graphics on PCs.

Some of the key ideas behind Fran [4, 3] were developed in previous systems,
in particular TBAG [2, 5]. Fran is the latest prototype implementation
of this work. So far, the benefits of choosing a lazy functional language
for the implementation have been considerable, especially for prototyping
different representations of the central concepts. Strong typing, type classes,



polymorphism, higher order functions and laziness have all been useful. The
major drawback is low efficiency, but we have also experienced difficulties
analyzing the behavior of complicated reactive elements (often recursively
defined) within the system.

1.1 The aim of this paper

For keen readers this paper can be used as an introductory tutorial; Fran is
freely available on the WWW at:

http://research.microsoft.com/"conal/Fran/

The complete source code for these animations can be obtained from the
authors home-page:

http://www.cs.nott.ac.uk/ acd/

Alternatively it can be read more quickly to get a feel for the system and
how it may be used. Elliott and Hudak [4] give detailed explanations of
the main concepts; their paper is essential reading for those with an in-
terest in the theoretical foundations on which Fran is based. This paper
comments on the applicability of functional languages to this domain, mo-
tivated by an example animation. Readers without experience of functional
programming, or of Haskell in particular, are referred to introductory texts
as prerequisites [1, 7].

1.2 Our example

In this paper we develop an animation of an oarsman performing the rowing
action. Fran is currently restricted to 2D graphics, limiting the realism of the
final animation. However, our animation demonstrates the fundamentals of
good rowing technique; it might, for example, serve as a rowing tutor or as
a component of a larger animation. We build up the animation component-
wise (i.e., bottom up) since we find this a natural way to approach the
problem and Fran allows us to combine separate components easily.



W RBMH Image Animation [_[O[x]

Figure 1: The rower

2 An oarsman

To create any animation we first need to construct images.! In Section 2.1
we define static images using primitives in Fran. These are really animated
images that are constant, meaning that their position and form does not vary
with time. It is possible to modify these definitions to introduce motion; this
is the subject of Section 2.2. Section 2.3 desribes how the animation can
be modified to make the model more realistic. We find it convenient to
describe the legs using a constraint in Section 2.4. Finally we mention the
remaining components of the animation, without going into all the details,
in Section 2.5 and summarize in Section 2.6.

2.1 Constructing images

Our starting point is the sliding seat, which gives us a base to put our oars-
man upon. We can crudely represent the seat with a small rectangle. The
function rectangleLW is a rectangle of the length (horizontal component)

!Note that we distinguish between the construction of images from smaller compo-
nents and the process of drawing or rendering those images on a display. Naturally, the
implementation of Fran includes code to deal with the latter, but it is the former that is
emphasized in the users view of the system [3].



and width (vertical component) given by its arguments?:

rectanglelW 0.3 0.02

The default color is white; the withColor function takes a color and an
image and produces a new version of the image in the given color. Thus we
can re-define our seat to be brown as follows:

withColor brown (rectangleLW 0.3 0.02)

By default, image primitives are displayed in the center (origin) of the win-
dow which has logical coordinates from -1 to 1 on both axes. We need to
move our seat down and to the left. To do this we apply a transformation.
The operator *% takes a transformation as its first argument and applies it
to an image, given as the second argument. In this case our transformation
is a translation. The diagram below shows this image; we have added the
axes and numbers to mark the logical co-ordinates:

2To display such a definition using Fran, write a module that imports both
Fran and Disp and then assign the definition to a top level value, for example,
seat = rectangleLW 0.3 0.02. Then enter disp (const seat) at the prompt.



translate2 (vector2XY (-0.5) (-0.5)) %Y
withColor brown (rectangle 0.3 0.02)

The constructor vector2XY builds a two dimensional vector from its argu-
ments which are Cartesian x and y coordinates. translate2 then creates a
translation transformation in two dimensions from the given vector.

The seat runs on wheels on a slide. To create a wheel, we begin with a blue
circle and apply a scaling transformation so that it is the required size; in
this case a scale factor of 0.014 (found by experiment) works well because
the wheels are quite small:

aWheel = uscale2 0.014 %% (withColor blue circle)

The uscale2 function shown here constructs a uniform scaling transforma-
tion in two dimensions. This image of a wheel is used for both the front
and rear wheels. We apply appropriate translations to position the wheels.
These components could be combined in one definition. However, we will
give names to some of the components to make the definition more read-
able and introduce top level definitions for the width and length dimensions
because they are used elsewhere:

seatW, seatlL :: RealB -- (see next section)
seatW = 0.02 -- Width
seatlL = 0.3 -- Length

seatPosition = vector2XY (-0.5) (-0.5)

seat = translate2 seatPosition *
(seatImage ‘overf



rearWheel ‘overf
frontWheel)
where
seatImage = withColor brown
(rectanglelW seatL seatW)
aWheel = uscale2 0.014 xJ
(withColor (gray 0.5) circle)

rearWheel = translate2 rearPos *J, aWheel
rearPos = vector2XY (0.014 - seatL/2.0) (-seatW)
frontWheel = translate2 frontPos *J), aWheel
frontPos = vector2XY (seatL/2.0 - 0.014) (-seatW)

The over function simply overlays one image on top of another; hence we
now have a seat with two small wheels at each end:

—

The use of Haskell’s infix notation with over results in a natural reading.
The slide, which the seat moves back and forth upon, is a gray rectangle
of appropriate position and dimensions.®> The whole image so far can be
defined as:

seat ‘over‘ slide [l e—

When more parts of the rower are defined, we can add them to the animation
by adding the new part using over to the above definition. The order of the
components determines the order the images are overlaid; earlier images are
always on top of later ones. The manner in which images are composed from
the primitives is reminiscent of Henderson’s Functional Geometry[6]. The
same benefits Henderson identified therefore apply to constructing static
images in Fran; the resulting code is clear, concise and easily modifiable.

3Complete definitions are given in the source code.



2.2 Animating

To create an animation the seat must move back and forth along the slide.
Although the images described above are static, they are actually animations
in which the positions of the components are constant. In Fran, we use
behaviors for temporal modeling. A behavior is a value that varies with
time; in the functional paradigm you can think of behaviors (conceptually)
as functions from time to values.* The type of these values may differ in
different contexts. For example, seat defined above is an image behavior. It
is constructed from primitive image behaviors and transformations that, in
turn, are built from vector and scalar behaviors. We can create behaviors of
any type, for example a real-valued behavior®. In fact, Fran uses overloading
to lift all numeric constants so that they are (constant) real-valued behaviors.
Haskell’s overloading is also used to create lifted versions of many operators,
such as cos, + and *. However, the type restrictions sometimes prevent us
from overloading operators, for example, we can not overload + to add a
vector to a point because the argument types must be the same.

Point2 is the type of a co-ordinate in two dimensions and Point2B is the
behavior version (or lifted type). It is therefore simple to create a moving
seat by defining its position using a non-constant Point2 behavior. We
factor out the initial position and the distance that the seat moves from this
position as separate top-level values:

-- The central position of the seat, as above.
seatPosition0 = point2XY (-0.5) (-0.5)

-- The distance the seat moves from its central position
-- on the slide.
seatDistance = 0.23 :: RealB

-- Our new seat position behavior (replaces previous omne).
seatPosition = seatPositionO .+~
vector2XY (seatDistance * (cos time)) 0.0

“For a number of reasons, particularly efficiency considerations, the implementation
does not represent behaviors this way.

SHaskell’s Double type is given the synonym RealVal and the real-valued behavior type
is called RealB.



Here we used a new operator .+~ which adds a vector (right argument) to
a point (left argument). We also use our first non-constant behavior: time.
This behavior gives the current time, which changes as the animation pro-
gresses. The function cos is the usual cosine function lifted to the behavior
level. So our seat oscillates about a central position by a vector of magnitude
seatDistance in the x direction multiplied by the cosine of time. Here is
an illustration of the animation:

Ideally we would like to control the rating, or strokes per minute, that our
oarsman performs. We can achieve this by defining two simple functions
and some appropriate constants:

rating = 20.0 :: RealB
strokesPerSec = rating/60.0

-- Given a time, multiplies so that a stroke takes one time
-- unit.
strokeInl x = x*strokesPerSec

-- The cosine function with period 1.
cosPeriodl x = cos (2.0*pi*x)

seatCos = cosPeriodl . strokelnl

Now if we replace cos in the definition of seatPosition above with seatCos,
the seat will go up and down the slide exactly twenty times per minute.

2.3 Modeling

We shall now turn our attention to modeling the motion of a real oarsman.
Our rower will be composed of a number of connected limbs that we will
define using rounded rectangles (rectangles with circles at each end). We
can abstract from the low level description of these limbs by factoring out
the common elements into a general 1imb function. Rather than giving the



position of the center of a limb and its size, we will use the end points and
width as parameters to 1imb. This is because we will calculate the position
of the oarsman’s joints, which are the end points of limbs. Hence our 1imb
function has the following type:

limb :: Point2B -> Point2B -> RealB -> ColorB -> ImageB

The first two arguments (point behaviors) are the end points, followed by
the width and color of the limb. Its definition is simply a rectangle of
appropriate dimensions with a rotation and a translation applied so that
the ends of the rectangle are at the given end points. Circles (of radius half
the width of the rectangle) are overlaid at the end points to round off the
appearance of the limbs. We think using functions such as limb greatly
improves the readability of the source code.

Let’s add the torso. We adopt a naming convention in our code using postfix
W and L for the width and length of the limbs respectively. The hip is
positioned centrally just above the seat:

shoulder = hip .+" vector2Polar bodyL bodyAngle
hip = seatT .+~

vector2XY (seatL/2.0) ((seatW + bodyW)/2.0)
bodyW = 0.15 :: RealB
bodyL = 0.6 :: RealB

bodyAngle = pi/2.0 - (pi/6.0)*bodyCos :: RealB
bodyCos = cosPeriodl . strokelnl

body = limb shoulder hip bodyW red

The vector2Polar constructor takes a length and an angle and creates the
vector using polar coordinates. Hence our rowers hip is positioned above
the seat and his torso extends at an angle given by bodyAngle from the hip.
We have defined this angle to vary between -7/6 and 7/6 from the vertical,
using bodyCos which is the same as seatCos defined previously. However,
on running this animation, any rowing enthusiast will immediately identify
a number of serious flaws in our rowers technique, even though at this stage
he only consits of a body on a seat. Essentially, the back should not swing
backwards until the seat is near backstops, i.e., its left most position, to



maximize the power obtained from the leg drive. To reflect this we will need
to increase the accuracy of our model. One approach would be to define
a periodic function that directly gives the angle of the back at any given
time. We use a simpler solution; the motion proceeds in one direction and
then back in the opposite direction during one stroke, or in other words,
the motion is monotone over a half period. We can write any such function
using a special function composed with cos, giving a smooth, continuous
periodic function. The required function maps from the origin to (1, 1)
monotonically increasing and represents the relative rate of the motion. Here
are the definitions, leading to a new bodyCos function which replaces the
one above:

-- Maps times to congruent times in the fundamental
-- interval [0, 1) of the periodic function.

modulol x = x - fromIntegerB (floorB x)

periodicFn relativeRate
= cosPeriodl . relativeRate . modulol . strokelnl

bodyCos = periodicFn relativeRate time

where
relativeRate x = cond (x <* openBackT0)
(drive x)
(cond (x <* bodyLeanT1)
(bodyLean x)
(bodyLeant x))
where
bodyLeanTl = 0.55 -- Body now lent over fully.
openBackT1 = 0.35 -- Now leaning back at finish.
drive x = 0.0
bodyLean x = 2.5%x - 0.375
bodyLeant x = 1.0
cond is the analogue of if ... then ... else for behaviors and <* is the

behavior level < operator. Now the body swings over towards the end of the
drive as required. We can use the same technique to model the motion of the
seat, which moves quickly during the drive (right to left) and slowly during

10



the recovery.® Higher-order functions helped us to describe this aspect of the
model and we feel the resulting code is clear and modular. In particular, the
general principal of using cos and a relative rate to create various periodic
functions was abstracted by the periodicFn function. This function is quite
complicated, but it naturally decomposes into four simple functions which
are composed to form the complete definition.

2.4 Constraints

To form the thigh, we must know the position of each end of the limb. We
already know where the hip joint is but not the knee. The knee connects
the thigh to the lower leg (shin) which is connected to the foot. The foot is
strapped onto the foot-plate, so we know that the bottom of the shin (ankle)
is fixed. To calculate the knee joint we observe that it is just the point of
intersection of two circles, one centered at the hip the other at the ankle
with radii given by the thigh length and the shin length, respectively. Our
definition of knee uses a function circleIntersectsCircle which gives this
point. Note that there are two points where overlapping circles intersect;
the final argument to circleIntersectsCircle is a Boolean value to enable
the selection of the point we require:

kneeJoint = circlelntersectsCircle hip ankle
thighl. shinLl True

]
o O
(G2l

:: RealB
:: RealB

thighW
thighL

thigh = 1limb hip kneeJoint thighW yellow

Definitions for the shin are similar, and the foot and foot-plate are simple
static images.

2.5 Finishing touches

It is straightforward to add the upper arm and forearm; the position of
the shoulder is known and the arm swings according to armCos. This is a

5The part of the stroke when the rower is going back up the slide towards frontstops,
with the blade held clear of the water.

11



EEELE 4

Figure 2: The crew rowing animation

function defined using periodicFn and the appropriate relative rate function
to describe how the arm swings. The neck and head are also straightforward
to define; since the rower always looks ahead we calculate the top of his head
using a vertical vector added to the bottom of his head (which is joined to
the neck and so on.)

2.6 Summary so far

We have encapsulated the essential model components (limbs and periodic
functions) in general functions. Defining our man was then easy; join the
limbs in sequence and work out where the other end goes. For animating
people in general we could apply inverse kinematics techniques and encode
these principles in some general functions abstracting out the necessary pa-
rameters. Such generalizations are made possible by the underlying func-
tional language, Haskell, on which Fran is based. Furthermore, we could
expect general partial evaluation techniques to optimize these definitions,
helping to produce more efficient compiled code.

3 Making the rower work for us

In this section we will give some examples to illustrate re-use and composi-
bility of animations in Fran, by creating various animations based on our
rower.

3.1 Crew Rowing

An obvious application is to put our rower in a boat with some other rowers.
Our crew rowing animation consists of four rowers positioned horizontally

12



across the screen in a boat with a coxswain.” Juxtaposing images is a very
common operation so we define a general function that takes a list of images
and overlays them horizontally. It assumes the images fill the display (i.e.,
the region (-1, -1) to (1, 1)) and re-sizes them horizontally so the resulting
image also fits in the display. Also, it takes a further argument that specifies
the gap to use between adjacent images. In our animation, we actually want
the rowers to overlap, so we supply a negative argument:

besidesGap is g
= foldll over (map scaleAndMove (zip [0..] is))
where
n

p

length is :: Int
1/(fromIntegral n) :: Double

scaleAndMove (r, image)
= translate2 pos *J
scale2 (vector2XY (1iftO p) (1iftO p)) =), image
where
pos = vector2XY (1ift0 (-1.0 + p +
2x(fromIntegral r)*p + gap r)) O
gap r
| even n
=g * (1/2 + fromIntegral (r - (n ‘div‘ 2)))
| otherwise
= g * fromIntegral (r - ((n-1) ‘div‘ 2))

Using besidesGap, the crew is quite easy to define:
crew = besidesGap (replicate 4 rower) (-0.15)

The boat and cox are defined using the primitive for creating static images
provided by Fran. Now boat, crew and cox can be combined and we can
make them move:

boatAndCrew t0 = translate2 pos *
(boat ‘over‘ crew ‘over‘ cox)

where
pos = point2XY (2.0 - (time/10.0)) 0.0

"The coxswain, or cox, is the steersman, usually seated in the stern of the boat.

13



With the current implementation this animation has quite a low frame rate,
even on a powerful PC, so developing it further is difficult at this stage.
However, it is easy to imagine, how it could progress: a river, another crew,
a race, an entire regattal

3.2 Play, stop, fast-forward

To illustrate how interactive features can be used with Fran animations, we
will add VCR-like buttons to the display so that the user can stop, play and
fast-forward the animation. The rower has limited scope for interactivity, so
this example is illustrative rather than particularly inspiring. To implement
this feature we use a time transformation and hence we do not provide a
rewind button because we can not go back in time. Rewinding could be
achieved by reversing the rower’s actions while still moving forward in time.
However, that would require a different model of controlling the VCR, based
on changing the actual animation, rather than a simple manipulation of real-
time.

We will now describe the main definition which is called controlRower. The
first line of controlRower describes the three buttons overlaid on our basic
rower, with a time transformation applied:

controlRower tO
= (buttons ‘over‘ rower)
‘timeTransform*
integral (playV tO 1.0) tO
where ...

The buttons themselves are simple static images. A time transformation
literally maps actual time to a different time frame which is then used for
the animation. In practice, when sampling the animation (evaluating one
frame) at a time t, the time transformation is first applied to t and then
the resulting value is used to sample the behavior. The t0’s appearing in
the above definition are start times. When an animation is displayed a start
time is passed to the definition so that it can use this information. We
have not needed to use start times in any of the previous definitions; they
are ignored by writing animations that do not take a start time and using
const.

14



The tricky part of this definition is the time transformation, which is bro-
ken down in the where clause. The reactive behavior playV is the rate at
which time is advancing on the VCR. Thus, in the main definition above we
integrate playV and this gives the (VCR) time the animation has reached
(because integrating a rate gives the a value that is changing at this rate).

Now we will describe the definition of playV which is given below. It is
a piecewise constant behavior that, over an interval, is one of three values
representing the current playing rate: 1 for play mode, 4 for fast-forward
or 0 for stop. We change between these three constant values by detecting
button press events and recursively calling playV with the new playing rate.
To implement this we need to make use of Fran’s event combinators. An
event occurs at a (one) particular time yielding a value. ‘untilB°¢ is used to
create piecewise behaviors; b ‘untilB‘ e gives the value of the behavior b
until the event e occurs. Then it takes the value that the event yielded. The
first line of the definition below can now be read as: firstly lift the constant
value rate0 to a constant behavior. The behavior playV will then take this
value until the event on the RHS of untilB occurs. The occurrence of a
button press event is captured by newRate tO which is the event that yields
the (new) rate corresponding to the control clicked. The actual behavior we
require is the behavior which starts off with our new rate and then continues
to behave like a VCR. This is of course playV t v where t is the time the
last event occurred and v is the new rate - the value which the event yielded.
We use the event combinator +=> which passes on the time and value to avoid
having to explicitly write these parameters.

So newRate is the event that occurs when a control is clicked on and yields
the corresponding rate. It uses the event combinator .|. which gives the
earlier of two events, so the newRate event occurs when either of the three
button press events occur, and corresponds to whichever one occurs first.
The individual events representing each button are defined using —=> which
takes an event (clicking on a button) on the LHS and gives a new event
which occurs the same time but yields the value on the RHS; in this case
the new rate of 1, 4 or 0:

playV t0 rateO
where
newRate tO

1ift0 rate0 ‘untilB‘ newRate tO +=> playV

pickEvent playIm tO -=> 1.0
.|. pickEvent ffwdIm t0 -=> 4.0
.|. pickEvent stopIm t0 -=> 0.0

15



[= RBMH Image Animati O]

0= m

Figure 3: The rower with VCR controls

The events that occur when a button is clicked on are given in terms of a
general function called pickEvent. This takes an image and a start time
and gives the event that occurs when the user clicks on the given image.
The event yields the value of the release event which we ignore above by
using —=>. The exact details of the definition of pickEvent can be under-
stood by reading Elliott and Hudak’s paper [4]. Essentially, when the mouse
button is clicked (the event 1bp t0) we grab the mouse position (snapshot
the mouse position). Then we use suchThat, which ensures that the main
event only occurs when this event occurs (clicking the left button) and a
further condition is satisfied. This further condition is that the mouse is
positioned over the given image when the button was pressed. A simple
picking function, S.pick2, is used to determine this:

pickEvent iB tO
= ((\t0 -> 1bp tO ‘snapshot‘ (pairB (mouse t0) iB))
‘suchThat
mouseOnImage) t0 ==> fst
where
mouseOnImage (releaseEvent, (mousePos, i))
= S.pick2 i mousePos

16



3.3 Sophisticated modeling

The previous animation introduced simple interaction with the user, but
interaction can also occur between components of the animation. So, for
example, the crew could contain separate rowers who interact with each
other. To accomplish this it would be necessary to define how each rower
responds to the other rowers. For example, the stroke® could row at a given
rating and the other members of the crew could follow him, perhaps with
slight variability to model the imperfection of a real oarsman’s timing. The
definitions would become more complicated, but because all components are
first-class values they can be built compositionally which helps animators
create extendible, maintainable programs. Of course, the sophistication of
the model is virtually limitless; one can imagine imperfect rowers who all
respond to their senses, for example making adjustments to correct the bal-
ance in a three-dimensional model. A serious mistake such as ‘catching a
crab’® could cause major upset to the crew, and justly the rower may be
struck from behind by an oar handle in his kidney. Of course such models
would require considerable computing power and are beyond the scope of
the average user, but they illustrate the potential of the forms of declarative
reactivity afforded by the system. Now consider rowers reacting not only
to the person in front of them, but also to the person behind (for example,
stopping when accidentally hit in the back). Any rower’s actions depend
on the rower behind, who in turn depends on this rower. In other words,
we have a system of mutually recursive definitions. Fran is able to solve
these equations by sampling at discrete times'®. From this perspective, the
system is actually executing a specification, by computing an approximate
solution to some potentially complicated set of equations.

3.4 Using modules

We used Haskell’s module system to structure our animation. Here are the
modules used with a brief description:

8In a crew, the stroke is the rower nearest the cox who sets the rating, or strokes per
minute, which is followed by the rest of the crew.

9Catching a crab means failing to extract the blade from the water at the finish (the
end of the stroke). The boat continues to move but your blade is stuck in the water
holding back the boat.

10The general applicability of this idea is still under investigation; it has been used to
good effect in specific cases, for example, an animation of planetary orbits.

17



1. Geometry: This includes functions like circleIntersectCircle.
2. Rower: The basic rower, as defined in Section 2.

3. Crew: The crew rowing definitions from Section 3.1.

4. Compose: Contains functions like besidesGap.

5. ControlRower: The definitions from Section 3.2.

6. PickEvent: The pickEvent function.

All modules import the standard Fran library. Further module import de-
pendencies are shown below; each module imports the modules below it
when they are joined by a line:

ControlRower Crew

PickEvent Rower Compose

Geometry

4 Evaluation

We will evaluate three different aspects of this system. The first two are
from an animators’ perspective; they examine the actual results produced
and the difficulty of creating them. We then evaluate the use of Haskell for
implementing Fran.

4.1 The end result

Our animation shows the rowing action quite accurately. We were able to
model the body movements in two dimensions and, in particular, to adjust
the speed of these movements to reflect actual rowing (so our rower has a
good ‘rhythm’). The performance of this animation was fairly poor on a
good PC, reflecting the early stage of development of this prototype system.

18



The realism would be greatly enhanced by the addition of 3D data types
to the system, at the cost of slightly more work defining the positions and
shapes. In theory, more realism could also be obtained using texture map-
ping and other rendering techniques, although in practice this may require
specialized graphics hardware to obtain acceptable real-time performance
on PCs. Still, our simple rower serves a purpose - demonstrating the ba-
sic rowing technique - and can be put to many uses, as described in the
previous section.

4.2 The ease of construction

A good measure for how (relatively) easy it is to construct an animation can
be obtained by considering the pure modeling approach. Fran uses modeling
based semantics which helps to abstract away from presentation tasks [3].
Let us define a pure model as a complete (mathematical) description of the
animation that is unambiguous but uses any reasonable notation deemed
appropriate. Such models are optimal in terms of requiring the minimum
amount of work to define. If you try writing such a definition usually it will
not differ significantly from the corresponding Fran program. In our opinion,
this is because Fran has a very natural declarative semantics. Because we
have not had to do much more work than describing the pure model, we
claim that for some interactive animations the Fran system is near optimal
in terms of ease of construction. However, it is not difficult to find examples,
particularly where complex interaction is involved, when this is not true.
This suggests where most of the future research effort on the semantics of
the system is likely to be directed.

More specifically, we cite the following reasons for relative easy of construc-
tion:

e Behaviors are first-class values of various types. This makes them easy
to manipulate and compose.

e Fran has a declarative semantics that is naturally implemented in a
language like Haskell. The declarative style is exactly what we want
for describing our models of animations on a computer.

e Systems of recursive equations can be entered and assuming no circu-
larity Fran will do the right thing.

e Fran is almost executing a specification.

19



e Using the Haskell module system, we can separate components. By
encapsulating components in modules, we gain the usual advantages
of security, re-usability, understandability and separate compilation.

It is interesting to note some technical problems that arise when trying to
create animations like this using primitive techniques, such as programming
in C without the use of a powerful library like Fran:

e Animating in real time. How do you ensure the rower performs at the
exact rating specified by the model? How would our controlRower
animation be defined?

e Composing animation components. If components use side effects will
they interfere, limiting composability?

Essentially, these problems are due to combining the modeling and presen-
tation tasks in the implementation. There are considerable advantages to
be gained by separating these two tasks, although how to do this efficiently
in practice is still a hot research topic.

To sum up, for this example and many others we have found Fran to be an
easy and productive system for creating interactive animations.

4.3 The use of Haskell
4.3.1 Haskell as the host language

Haskell plays a critical role as the host language of the Fran library. Some of
the benefits of Fran detailed in the previous section are due to Haskell. In-
deed, it is difficult to see how Fran could be embedded into an existing imper-
ative language for reasons given below; instead a completely new language
specific to animation would need to be implemented. Using a functional lan-
guage avoids this considerable overhead. Other functional languages may
be suitable host languages, the essential criteria being:

e No (or restricted) side-effects, so that components can be composed
and re-used without interfering with each other. However, it may be
the case that the ability to create abstract data types, even in an
imperative language, is sufficient.

e A declarative style, which is beneficial for modeling.

20



e Polymorphism, so, for example, behaviors can be represented in a
uniform manner. In particular, it is difficult to see how lifting could
be achieved without parametric polymorphism to define the lifting
functions and overloading to enable convenient notation (e.g., a Num
instance for behaviors). Without uniform lifting it may not be possible
to encapsulate behaviors as an abstract data type.

e The order of evaluation should be independent from the model, so that
the presentation engine can be separated and given full control over
execution of the animation.

4.3.2 Haskell as the implementation language

Many features of Haskell have eased the implementation of Fran. Polymor-
phism is almost essential because we lift many different types to behaviors,
and without polymorphism it may not be possible to encapsulate behaviors
as mentioned above. Type classes have also been useful for defining opera-
tions that apply to some types of behaviors but not all, for example we can
only integrate behaviors that are vectorspaces.

Laziness appears extremely useful for the representation of behaviors. Be-
haviors contain an infinite amount of information but, at any one time, we
are only interested in a small part of this. We can use laziness to simplify
the construction of behaviors by building the entire infinite structure which
describes the behavior over all times in the future. Because evaluation is
lazy, the presentation engine drives the evaluation of this infinite structure
so that for each sample time only the values necessary for constructing the
current frame are computed.

Finally, we have found many of the advantages usually enjoyed when pro-
gramming in a functional language useful:

Strong typing.

Higher-order functions.
e Concise syntax.
e Composability and orthogonality.

So Haskell has been excellent for implementing the system, but, as noted
earlier, it is rather slow. However, the system is in an early stage of devel-
opment and there is a lot of scope for improvement. In particular, we hope

21



that Fran will be able to exploit a commingle of new technologies and that
together these will transform the performance.

5 Conclusion and future

We have created a basic animation and built different animations re-using
this component. We have evaluated the Fran system for this task.

Some ideas for animations you might like to try are: bungee jumping, GUI
components, educational programs (e.g., teaching mathematics and physics
such as simple harmonic motion, resonance, Kepler’s laws), colliding balls,
springs and weights, juggling, planetary motion and pong.

Future system enhancements include 3D graphics, sound and optimizations
for improved performance.

References

[1] Richard Bird and Philip Wadler. An Introduction to Functional Pro-
gramming. Prentice-Hall., 1987.

[2] Ricky Yeung Conal Elliott, Greg Schechter and Salim Abi-Ezzi. TBAG:
A high level framework for interactive, animated 3D graphics applica-
tions. In SIGGRAPH, 1994.

[3] Conal Elliott. The essence of active VRML. Technical report, Microsoft
Research, 1996.

[4] Conal Elliott and Paul Hudak. Functional reactive animation. In ICFP,
1997.

[5] Ricky Yeung Greg Schechter, Conal Elliott and Salim Abi-Ezzi. Func-
tional 3D graphics in C++ - with an object-oriented, multiple dispatch-
ing implementation. Technical report, SunSoft, Inc., 1995.

[6] Peter Henderson. Functional geometry. In ACM Symposium on LISP
and Functional Programming, pages 179-187, 1982.

[7] P. Hudak and J. Fasel. A gentle introduction to Haskell. SIGPLAN
Notices, 27(5):Section T, 1992.

22



