Formal Specification and Testing of a
Management Architecture

G. P. A. Fernandes®and J. Derrick

Unwversity of Kent

Computing Laboratory, Unwversity of Kent, Canterbury, CT2 TNF, UK.
(Telephone: +44-1227-764000, Email: {gpaf,jd1} Qukc.ac.uk.)

Abstract

The importance of network and distributed systems management to supply and maintain services required
by users has led to a demand for management facilities. Open network management is assisted by repre-
senting the system resources to be managed as objects, and providing standard services and protocols for
interrogating and manipulating these objects. This paper examines the application of formal description
techniques to the specification of managed objects by presenting a case study in the specification and
testing of a management architecture. We describe a formal specification of a management architecture
suitable for scheduling and distributing services across nodes in a distributed system. In addition, we show
how formal specifications can be used to generate conformance tests for the management architecture.

Keywords
Managed objects behaviour; Management architecture; Formal description techniques; Open Distributed
Processing; Conformance.

1 INTRODUCTION

The importance of network and distributed systems management to supply and maintain services re-
quired by users has led to a demand for management facilities. However, fully integrated management
systems which will cope with management of large-scale distributed applications and their underlying
communication services are still not available. Such applications require open management to integrate
their components, which may have been obtained from a number of sources; the cost of system admin-
istration will depend to a large extent on how easy it is to perform this management integration. The
creation of open distributed management depends upon there being a common representation for the
resources being managed. This can be achieved by the creation of a suitable family of managed object
definitions.

At present the nature of the resources to be managed and the behaviour they are expected to exhibit
are expressed in natural language, structured and organized using a simple specification technique set
out in the Guidelines for the Definition of Managed Objects (GDMO) [9]. The informal nature of this
technique makes the implementation and testing of managed objects expensive, because much skilled

*Work supported by JNICT Program PRAXIS XXI (Portugal) under grant No. BD/2804/93

effort is needed to interpret the specifications and construct suitable tests. Formal description techniques
(FDTs) offer the promise of improved quality and cost reduction by removing errors and ambiguities
from the specification and automating aspects of both implementation and testing. Indeed, interworking
will depend on specification and testing and product cost will depend on the efficiency of these processes.
The aim of our work is to test the applicability of FDTs to managed object specification by formally
specifying a realistic and large application using an object-oriented variant of the formal technique Z.

In this paper we show how formal techniques can be used to specify a management architecture suitable
for scheduling and distributing services across nodes in a distributed system. The aim of the architecture
is to optimise the use of resources by distributing the load and managing the resources available in
order to fulfil the requirements of application services [6]. In section 2 of the paper we describe the
management model we use. Section 3 discusses the management infrastructure we have been developing.
Section 4 shows how we can apply an object-oriented variant of the formal language Z to the specification
of interacting managed objects by formally specifying the architecture, and in section 5 we show how test
generation methods can be applied to Z specifications of managed objects.

2 MANAGEMENT MODEL

The role of management is to monitor and control the system to be managed, so it fulfils the requirements
both of the owners and the users of the system. The management model presented in this paper is a
distributed object-oriented model based on the Open Distributed Processing (ODP) Reference Model
[11] and the OSI management model [8]. The Reference Model of ODP provides a framework for the
standardisation of Open Distributed Processing. The OSI Systems Management provides mechanisms
for the monitoring, control and coordination of those resources which allow communication to take place
in the OSI environment (OSIE).

The existing approaches to management address mainly network management. Many of the ideas
included in the OSI management model, a standard for network management, can be used for distributed
systems. However, it must be taken into account that while network management concentrates on largely
autonomous network devices, distributed systems management addresses components which are much
more dependent on each other.

One of the most important ideas in OSI Systems Management is the use of object-oriented principles
to define management information and interfaces. The devices in the network that are subject to manage-
ment are viewed as managed objects. Organisational requirements require partition of OSI management
into functional areas, such as security, account and fault management, or for other management purposes,
such as by geographical, technological or organisational structure. To reflect this, managed objects are
organised into management domains. Managed objects in a particular domain are subject to a common
management policy, which consists of a set of rules constraining the behaviour of those objects. The abil-
ity to specify precisely management policies, independent of the implementation is an important benefit
of formal specification.

3 MANAGEMENT ARCHITECTURE

In this section we present an architecture to support management of distributed systems, addressing in
particular the issue of distributing the workload submitted to a distributed system by its users. Distributed

scheduling is used in order to locate a new service on the most appropriate node, taking into account the
current state of the system and the quality of service requirements of the service.

A centrally-located allocator — Distributed System Manager (DSM) — is responsible for taking decisions
in order to determine to which node in the system each service will be allocated. To determine if a node
is suitable to instantiate a service, the DSM has to compare the quality of service (QoS) requirements of
the service with the resources provided by the node. Placement is based on the last known state of the
system, which is stored by the DSM, and updated by the monitoring information it receives from node
managers.

The foundation of any management system is a database containing information about the components
being managed. This type of database is often referred to as Management Information Base (MIB). The
MIB is a structured collection of managed objects which represent the components that are monitored
and controlled by a management system. Each node in the system maintains a MIB that reflects the
status of the managed objects at that node.

The Node Manager is an entity local to a node, responsible for managing the objects within that node
and reporting monitoring information to the DSM. It is capable of performing management operations on
managed objects on behalf of a DSM and of emitting management notifications on behalf of a managed
object to inform the DSM about the occurrence of an event. The node manager monitors and controls the
services instantiated on the node and collects information about the resources available. This information
is stored in the local MIB.

The DSM also maintains a MIB where information about the nodes under the DSM control is stored.
After initialisation, the DSM issues requests for monitoring information only when it is trying to find a
suitable location for a service. The set of polled nodes will send monitoring information which will be
used to update the DSM MIB.

All newly created services are instantiated by the DSM upon request by the trader. The (ODP) trader is
an object that provides a service which accepts and stores service offers from potential providers (servers)
and hands out this information on request to potential clients. The DSM selects a suitable location for
the service requested and asks the local node manager to instantiate that service.

4 SPECIFYING MANAGED OBJECTS FORMALLY

This section illustrates how we have used an object-oriented variant of Z to specify our management
architecture.

Z [16] is a state based formal description technique (FDT), and Z specifications consist of informal
English text interspersed with formal mathematical text. The formal part describes the abstract state
of the system (including a description of the initial state of the system), together with the collection
of available operations, which manipulate the state. The descriptions are given in terms of set theory
and first-order predicate calculus. The schema calculus provides a useful (and visual) way to structure
specifications, and to provide for a degree of modularity in the definition of operations. Z has proved to be
one of the most enduring formal description techniques, partly because of its simplicity and readability.
It has gained significant industrial usage and support over the years. Z has been shown to be a suitable
vehicle for the specification of information related activities, and because of this has been considered a
suitable language for use in the information viewpoint within ODP.

However, modern distributed systems are object-based, and for this reason there has been interest
in extending Z to facilitate an object-oriented specification style. This allows for a proper definition of
inheritance, and for encapsulation to be used to structure the specification in terms of classes and objects.

Object-Z [5] and ZEST [13, 2] are similar object-oriented extensions of Z. They both use the concept of
a class to encapsulate the descriptions of an object’s state with its related operations. In addition, they
provide support for inheritance, instantiation and the description of communication between objects. In
this paper we use ZEST to specify our managed objects, although a description in Object-Z would be
very similar. Using an object-oriented variant of Z allows a hierarchy of classes to be developed as the
Guidelines for the Definition of Managed Objects [9] indicate.

dsmadmin

dsmnm

dsmtrader / nmctrl Node
/ dsmnotify NodeM anager O
/\ dsmservice
trfed QQ
nmnotify
resources
trader

Figure 1 The management architecture.

We specify the collection of objects shown in Figure 1. The complete specification, called MgtSystem,
defines a number of objects (DSM, Nodes, Trader) with a description of how they interact. To illustrate
the specification of a single object, we will consider the DSM object. Some familiarity with the Z language
is assumed.

4.1 Specifying a single object - the DSM

We model a managed object class by a ZEST class specification which encapsulates a number of fixed
attributes, a state schema declaring the variable attributes, and a collection of operation schemas. In a
fashion similar to Z, these are enclosed by lines with the class name at the top (here DSM).

Inside the class are the variables and operations used in the class, some of these are for internal use
only, while others form part of the interface of the class. We document this by beginning each class with a
description of the interfaces. A ZEST class may have several interfaces, and each interface defines what is
visible at that particular interface of the object. A name appearing in an interface corresponds to either
an operation or attribute, for example, the dsmnm interface consists of the operations UpdateNode and

NoResources (the add tells us these operations are included in the interface). Attributes and operations
not appearing in any of the named interfaces are then internal to the class. In the formal specification,
the names of the interfaces document the interface partition, and they are not used when invoking the
operations.

Variable attributes are declared in a state schema, and their initial values are given by the schema
INIT - here we specify that all variable attributes are in their own initial states (i.e. the ones given by
their INIT schemas). The variable attributes in the DSM are in fact instances of appropriate classes.
They represent the data concerning aliases (i.e. service descriptions), objects created and the results of
node monitoring (the MIB). The declaration dsm_mib : DSM _MIB declares dsm_mib to be an instance of
the class DSM_MIB, which is specified as a ZEST class consisting of the data stored in the MIB together
with operations to access and update that data. The dsm_mib contains information about the resources
available on the nodes managed by the DSM. The DSM can manipulate the dsm_mib via its operations,
for example, the information stored in the dsm_mib for a node can be updated by the node calling the
DSM UpdateNode operation, which calls Update_Node in the dsm_mib.

Re-use is supported by the definition of generic classes and operations. For example, DSMTable is a
generic class defined in terms of two generic parameters which can be instantiated with particular types
(Alias, Handle, etc) in differing contexts.

_ DSM
interface dsmnm add UpdateNode, NoResources
interface dsmservice add InstallAlias, RemoveAlias, . ..
interface dsmitrader add LookupConstraintsFailed, LookupConstraintsSuccess, . . .
interface dsmnotify add Capsule Terminated

id : DSMId

alias_table : DSMTable[Alias, AliasDatal)
object_table : DSMTable[Handle, NotificationData]
dsm_mib : DSM_MIB

__INIT
alias_table. INIT A object_table. INIT N dsm_mib.INIT

UpdateNode = dsm_mib. Update_Node[nmld?/nodeld?, nmData?/nodeData?, TRUE [result!]

The other ZEST operations come here

The behaviour of a class is described by specifying ZEST operations. Each ZEST operation describes
how the output is related to the input and how the state changes as a result of invoking the operation.
For example, UpdateNode is an operation defined in terms of an operation in the dsm_mib object, but
with the names of the inputs and outputs changed (e.g. nmld? is used instead of nodeld? etc).

4.2 The Node class

The Node class encapsulates the node entities and operations involved in management. It includes an
instance of NM, the node manager class, and an instance of the Factory class. The factory is the entity
responsible for the instantiation of services.

— Node
interface ezternal add CheckRequirements, SendInfo, Instantiate, Kill

nm : NM
factory : Factory

id : NMId

id = nm.id

CheckRequirements = nm.CheckRequirements, SendInfo = nm.SendInfo
Instantiate = nm.Instantiate

An aziomatic declaration specifies that the identity (id : NMId) of the Node class is equal to the identity
of the node manager in the class (id = nm.id). The definition SendInfo = nm.SendInfo promotes the
operation SendInfo defined in the object nm to be an operation of the class Node.

The Node Manager monitors and controls the services instantiated on the node and collects information
about the resources available. The node manager class is represented by NM below.

__ NM
interface nmctrl add CheckRequirements, SendInfo, Instantiate, Kill
interface nmnotify add CapsuleTerminated
UpdateEntry == DSMId x SentTime
UpdateList == seq UpdateEntry
UpdateRecord == MIBUpdateTime x UpdateList
id : NMId

nm_mib : NM_MIB
updateRecord : UpdateRecord

_ CheckRequirements
dsmld? : DSMId
updated! : Bool
dsmlId!: DSMId

dsmld! = dsmlId?
let mibTime == updateRecord.1l A updateList == updateRecord.2
in (3, sentTime : SentTime o (dsmld?, sentTime) € ran updateList/\
(sentTime = mibTime = updated! = TRUE)A
(sentTime # mibTime = updated! = FALSE))

__ SendInfo
dsmld? : DSMId
nmld! : NMId
nmData! : NM_MIB
dsmlid' : DSMId

nmld! = id A nmData! = nm_mib A dsmld! = dsmId?

Instantiate = . ..

The information concerning the resources provided by the node is stored in the nm_mib. This information
is reported by the node manager to the DSM to keep the dsm_mib updated.

Different management domains, with different responsibilities and purposes may coexist. A DSM is the
agent responsible for the management of the nodes which are members of one domain. The same node can
be a member of different domains, being therefore under the control of more than one DSM. The node
manager stores, for each DSM it is associated with, its identifier and the last time monitoring information
was sent to update that DSM’s dsm_mib. For this purpose, the NM state includes updateRecord of type
UpdateRecord which is declared as follows (with appropriate definitions for the components):

UpdateEntry == DSMId x SentTime
UpdateList == seq UpdateEntry
UpdateRecord == MIBUpdateTime x UpdateList

updateRecord contains information about the last time the nm mib was updated (MIBUpdateTime) and
the last time information from the nm_mib was sent to each DSM.

The operation CheckRequirements can be called on a node by any DSM that controls that node. This
operation checks if the information in the nm_mib has not been changed since the last time it was sent
to the DSM identified by dsmlId?, in which case returns updated! = TRUE. If the nm mib has been
changed then the node manager will have to retrieve the new information from the nm mib, as specified
in SendInfo, and send it to the DSM. Instantiate is the operation provided by the node manager that
allows a new instance of a service to be created via the factory, its definition is omitted here.

4.3 Specifying the interaction between objects

The complete specification contains definitions of the trader class (Trader) and a Nodes class. The
interactions between objects of these classes is given by MgtSystem. This class contains an object of type
Trader, a distributed systems manager (i.e. an object of type DSM) together with a set of nodes being
managed (Nodes) on which services can be scheduled. The class Nodes will contain a set of objects of type
Node together with operations to add and delete nodes etc. Operations are defined in MgtSystem which
describe how objects in the class interact and communicate. We have omitted some of the operations and
the type definitions.

— MgtSystem

trader : Trader

dsm : DSM

nodes : Nodes
suttableNodes : P NMId

__INIT
trader INIT N dsm.INIT A nodes.INIT

PoliNodes = [suitableNodes? : P NMId, A(suitableNodes)] o
N\ node : suitableNodes? o
((node.CheckRequirements o [updated! = TRUE A suitableNodes' = suitableNodes U {node}])
V((node.CheckRequirements o [updated! = FALSE]) g node.SendInfo g dsm.UpdateNode))

NewActivation =
(DSMCreateNewActSuccessg
(PollNodes o [suitableNodes = @] A [result! : DSMServiceStatus | result! = NoSuitableNode])
V(PollNodes e [suitableNodes # @]
(InstantiateService o [instantiateResult! = FALSE] A
[result! : DSMServiceStatus | result! = Failed ToCreateServer])
V(InstantiateService o [instantiateResult! = TRUE]3
DSMLookupUpdate A [result! : DSMServiceStatus | result! = DSMServiceSuccess])))

NewActivation specifies the behaviour corresponding to the creation of a new service instance (called an
activation). When the DSM decides to create a new instance of a service, a suitable node will have to
be found to allocate that instance. The DSM looks up in the dsm_mib for nodes that can provide the
service requirements (this is specified in DSMCreateNewActSuccess) and polls them to check if they can
still provide the same requirements.

The operation PollNodes specifies the sequence of operations that are performed when the suitable
nodes are polled. The DSM invokes CheckRequirements on each node. This operation will return up-
dated!, which is TRUE if the information in the nm mib has not been changed since the last time it was
sent to the DSM, and FALSE otherwise. In the last case the node manager will retrieve the updated
information from the nm mib (as specified in SendInfo) and send it to the DSM by calling its UpdateNode
operation. UpdateNode will update the information in the dsm_mib for that node.

The e notation in (node.CheckRequirements e [updated! = FALSE]) signifies enrichment in that
[updated! = FALSE] enriches the environment in which node.CheckRequirements is interpreted. Dis-
tributed conjunction, as in A node : suitableNodes? o ... is a convenient mechanism to take the conjunc-
tion for each node of type suitableNodes? of the expression following the e.

The operation PollNodes also illustrates communication in Object-Z/ZEST using the operator g. The
operator composes the two operations in the given order (therefore it is not commutative) with the
following communication mechanism. Communication is left to right and hidden, outputs of the left
operand equate to inputs of the right operand with the same basename (i.e. ignoring ! and ?) and both
are hidden [5]. Thus in the communication node.SendInfo 5 dsm.UpdateNode the outputs of the first
operation are used as inputs to the second operation. Sequential chains (as in (node. CheckRequirements o
[updated! = FALSE]) g node.SendInfo § dsm.UpdateNode) are interpreted left-associatively.

After PollNodes has been performed, the global variable suitableNodes will contain the set of nodes
that can still provide the service requirements. InstantiateService specifies the behaviour corresponding
to the allocation of a new service instance to a node selected from suitableNodes.

5 DERIVING TESTS FROM FORMAL SPECIFICATIONS

One potential application of formal techniques is in the automation of some or all of the process of
testing. In order to support conformance testing of distributed systems, ODP defines conformance within

the reference model. In addition, Part 4 of the ODP reference model defines an architectural semantics
which provides an interpretation of the ODP modelling and specification concepts in Z and a number of
other formal languages. This interpretation includes the definition of conformance in each language. Thus
conformance assessment of an ODP system written using a formal technique begins with the architectural
semantics, since it provides a means to interpret the specification, and hence to provide for meaningful
test generation, and also to define the location of conformance and reference points, i.e. at which locations
the testing will take place.

Because behaviour is represented by the Z operation schemas, a conformance statement in a Z specifi-
cation corresponds to one or more operation schemas. Behaviour is said to conform if the post-condition
and invariant predicates of this information manipulation are satisfied in the associated Z schemas.

A reference point will occur at an interface where tests can be applied to check for conformance. In Z,
interfaces are associated with collections of operation schemas, so reference points can be considered to
reside at the pre-conditions of the operation schemas. However, a Z specification will not in itself identify
which reference points are programmatic, perceptual, interworking or interchange. Such identification
would accompany the specification as informal commentary.

Appropriate work on test generation from Z specifications includes [18, 3, 1, 17, 7], however, little of
this work is specifically targeted towards distributed systems or ODP in particular. Exceptions to this
include [3, 17]. [17] describes important work done under the Prost project in the UK on the testability
of managed object specifications. ZEST is used to specify managed objects, and an inheritance hierarchy
is constructed which facilitates the construction of a sound and complete test suite. Importantly, though,
the test generation aims to supply heuristics and is not automatic. The heuristics provide a collection of
tests together with a residual component which makes explicit the functionality not covered by the test
suite. The tests generated form an independent and orthogonal collection of tests.

Because of the inheritance hierarchy, the reuse of tests between related specifications is maximised. A
prototype tool-set developed by Logica provides organisational support for the collection of test specifi-
cations as they are generated.

We illustrate the use of the method defined in [17] by deriving tests for operations specified in our
management architecture. The method derives a formal specification (also written in Z) of conformance
tests from each managed object, by producing a collection of tests for each operation in the managed
object.

The method describes three actions: partitioning, weakening and simplification, to construct a set of
tests for each operation. The method is based on the idea of testing only some of the interesting inputs
and only some of the consequences of the operation, a test is therefore an abstraction of the original
operation. Each time an action is applied it divides an operation into several parts, each of which will
either be a test or be further divided. The division must satisfy the following rules (and heuristics enforce
this), where Op is the operation under test and {T;} the collection of tests at this stage: soundness i.e.
Vi e Op = Ty; completeness i.e. the collection of tests must cover the operation, so Op = A; T;.

As an example, consider the operation RemoveAlias which is part of the complete DSM specification:

__ RemoveAlias
A(alias_table)
alias? : Alias
status! : DSMServiceStatus

(alias? & dom alias_table.table = status! = NonEzistantAlias)
(alias? € dom alias_table.table A alias_table.table(alias?).2 = TRUE = status! = AliasActive)

(alias? € dom alias_table.table A alias_table.table(alias?).2 # TRUENA
alias_table.table(alias?).3 = TRUE = status! = AliasPosted)

((alias? € dom alias_table.table A alias_table.table(alias?).2 # TRUEN
alias_table.table(alias?).3 # TRUE) =
(status! = DSMServiceSuccess N alias_table. Remove_from_table[alias? [key?|[TRUE /[result!]))

Partitioning the operation involves deriving a set of tests each covering a different aspect of the
operations pre-condition. The partition is defined by predicates H;, and for an operation Op defined in
terms of a declaration D and a predicate P, we derive tests T; given by

_Op ~T;
D D
P H, = P

This will split the operation into a collection of tests such that Op = T1 A ... A T,,. For example, for the
operation RemoveAlias we could partition as follows:

H; - alias? ¢ dom alias_table.table
H> - alias? € dom alias_table.table

Choosing the predicates H; to perform the partition is part of the testers skill, the aim is to choose
a partition that simplifies what is being tested. The partitioning process generates (after simplification)
tests T7 and Ty (where we will subdivide T» further) given by:

T
A(alias_table)
alias? : Alias
status! : DSMServiceStatus

(alias? & dom alias_table.table = status! = NonEzistantAlias)

T
A(alias_table)
alias? : Alias
status! : DSMServiceStatus

(alias? € dom alias_table.table A alias_table.table(alias?).2 = TRUE = status! = AliasActive)
(alias? € dom alias_table.table A alias_table.table(alias?).2 # TRUENA
alias_table.table(alias?).3 = TRUE = status! = AliasPosted)
((alias? € dom alias_table.table A alias_table.table(alias?).2 # TRUEA
alias_table.table(alias?).3 # TRUE) =
(status! = DSMServiceSuccess N alias_table. Remove_from_table[alias? [key?|[TRUE [result!]))

Repeated partitioning can be applied on the input e.g. on the value of alias_table.table(alias?).2 etc, to
produce four tests, the last being:

Ty
A(alias_table)
alias? : Alias
status! : DSMServiceStatus

((alias? € dom alias_table.table A alias_table.table(alias?).2 # TRUEN
alias_table.table(alias?).3 # TRUE) =
(status! = DSMServiceSuccess N alias_table. Remove_from_table[alias? [key?|[TRUE /[result!]))

Weakening can now be applied, which loosens the constraints on the output (and after-state). Weak-
ening an operation Op produces a test Ty, and a residual part 7, which documents the aspects of the
operation we are not testing, with Op = T,y A T. In RemoveAlias we are not interested in checking the
output status!, just that the alias_table has been altered correctly, so we weaken the test T4 to derive
the weakening T,,. The remaining component, T,., will now document the aspects of RemoveAlias not
covered by the conformance testing.

Ty
A(alias_table)
alias? : Alias
status! : DSMServiceStatus

((alias? € dom alias_table.table A alias_table.table(alias?).2 # TRUEA
alias_table.table(alias?).3 # TRUE) =
alias_table. Remove_from_table[alias? [key?|[TRUE [result!]

This method works well on the individual schema level, however, most of the interesting behaviour in a
managed object results from a process of combining operations using the schema calculus. Current test
generation methods such as the one outlined above need to be extended to produce tests from operations
defined using the schema calculus. For example, if the operations Op; and Op, produce complete and
sound tests {T;} and {R;} respectively, can we derive a suitable collection of tests for the operation
Op1 § Opa?

6 CONCLUSIONS

The use of formal description techniques is increasing within ODP, and a number of proposals to specify
managed objects formally have been made [14, 15, 12, 19, 10]. However, existing work in this area has
concentrated on small scale case studies involving just one managed object (often the Sieve or LOG
managed object). At ISINM’95 we reported on differing proposals to the formal specification of managed
objects [4]. Further work in the UK has produced guidelines on how to specify managed objects in Z [20],
and derived a method for producing tests derived from these formal specifications.

The aim of our work has been to test the applicability of these methods by specifying a larger scale case
study of a new application (rather than a behaviour that is well documented). While Z is not necessarily a
perfect vehicle for managed object specification, it does offer considerable benefits over current practice.
For specifications where behaviour is important or subtle, GDMO clearly needs enhancement, and Z
offers a wide user base and suitable facilities for abstraction. The ability to derive tests from formal
specifications adds another dimension to the usefulness of the technique, although further work is needed
in this area as outlined above.

REFERENCES

D. Carrington and P. Stocks. A tale of two paradigms: Formal methods and software testing. In J.P.
Bowen and J.A. Hall, editors, ZUM’94, Z User Workshop, pages 51-68, Cambridge, United Kingdom,
June 1994.

E. Cusack and G. H. B. Rafsanjani. ZEST. In S. Stepney, R. Barden, and D. Cooper, editors, Object
Orientation in Z, Workshops in Computing, pages 113-126. Springer-Verlag, 1992.

E. Cusack and C. Wezeman. Deriving tests for objects specified in Z. In J. P. Bowen and J. E. Nicholls,
editors, Seventh Annual Z User Workshop, pages 180-195, London, December 1992. Springer-Verlag.
J. Derrick, P.F. Linington, and S.J. Thompson. Formal description techniques for object management. In
A. S. Sethi, Y. Raynaud, and F. Faure-Vincent, editors, Fourth IFIP/IEEE International Symposium

on Integrated Network Management (ISINM ’95), pages 641-653. Chapman and Hall, May 1995.

R. Duke, G. Rose, and G. Smith. Object-Z: A specification language advocated for the description of
standards. Computer Standards and Interfaces, 17:511-533, September 1995.

G. P. A. Fernandes and I. A. Utting. An Object-Oriented Model for Management of Services in a
Distributed System. To appear in the ECOOP’96 workshop on Object Oriented Technology for Service
and Network Management, 1996.

H-M. Horcher. Improving software tests using Z specifications. In J. P. Bowen and M. G. Hinchey, editors,
Ninth Annual Z User Workshop, LNCS 967, pages 152-166, Limerick, September 1995. Springer-Verlag.

ISO/IEC 10040. Information Technology - Open Systems Interconnection - Systems Management
Overview, 1992.

ISO/IEC JTC1/SC21/WG4 10165-4 (X.722). Information Technology - Open Systems Interconnection
- Structure of Management Information - Part 4: Guidelines for the Definition of Managed Objects,
1991.

ISO/IEC JTC1/SC21/WG4 N1644. Liaison to CCITT SG VII concerning the use of Formal Techniques
for the specification of Managed Objects, December 1992.

ITU Recommendation X.901-904 — ISO/IEC 10746 1-4. Open Distributed Processing - Reference Model
- Parts 1-4, July 1995.

N D North. RSL specification of the log managed object. Technical report, National Physical Laboratory,
UK, 1992.

G. H. B. Rafsanjani. ZEST - Z Extended with Structuring: A users’s guide. Technical report, British
Telecom, June 1994.

S. Rudkin. Modelling information objects in Z. In J. de Meer, V. Heymer, and R. Roth, editors, IFIP TC6
International Workshop on Open Distributed Processing, pages 267—280, Berlin, Germany, September
1991. North-Holland.

L. Simon and L. S. Marshall. Using VDM to specify OSI managed objects. In K R Parker and G A Rose,
editors, Formal Description Techniques 1991. North Holland, 1992.

J. M. Spivey. The Z notation: A reference manual. Prentice Hall, 1989.

S. Stepney. Testing as Abstraction. In J. P. Bowen and M. G. Hinchey, editors, Ninth Annual Z User
Workshop, LNCS 967, pages 137-151, Limerick, September 1995. Springer-Verlag.

P. Stocks and D. Carrington. Deriving software test cases from formal specifications. In 6th Australian
Software Engineering Conference, pages 327-340, July 1991.

C. Wezeman and A. J. Judge. Z for managed objects. In J. P. Bowen and J. A. Hall, editors, Fighth
Annual Z User Workshop, pages 108-119, Cambridge, July 1994. Springer-Verlag.

H. B. Zadeh. Using ZEST for Specifying Managed Objects. Technical report, British Telecom, January
1996.

