
Formal Speci�cation and Testing of aManagement ArchitectureG. P. A. Fernandes�and J. DerrickUniversity of KentComputing Laboratory, University of Kent, Canterbury, CT2 7NF, UK.(Telephone: +44-1227-764000, Email: fgpaf,jd1g@ukc.ac.uk.)AbstractThe importance of network and distributed systems management to supply and maintain services requiredby users has led to a demand for management facilities. Open network management is assisted by repre-senting the system resources to be managed as objects, and providing standard services and protocols forinterrogating and manipulating these objects. This paper examines the application of formal descriptiontechniques to the speci�cation of managed objects by presenting a case study in the speci�cation andtesting of a management architecture. We describe a formal speci�cation of a management architecturesuitable for scheduling and distributing services across nodes in a distributed system. In addition, we showhow formal speci�cations can be used to generate conformance tests for the management architecture.KeywordsManaged objects behaviour; Management architecture; Formal description techniques; Open DistributedProcessing; Conformance.1 INTRODUCTIONThe importance of network and distributed systems management to supply and maintain services re-quired by users has led to a demand for management facilities. However, fully integrated managementsystems which will cope with management of large-scale distributed applications and their underlyingcommunication services are still not available. Such applications require open management to integratetheir components, which may have been obtained from a number of sources; the cost of system admin-istration will depend to a large extent on how easy it is to perform this management integration. Thecreation of open distributed management depends upon there being a common representation for theresources being managed. This can be achieved by the creation of a suitable family of managed objectde�nitions.At present the nature of the resources to be managed and the behaviour they are expected to exhibitare expressed in natural language, structured and organized using a simple speci�cation technique setout in the Guidelines for the De�nition of Managed Objects (GDMO) [9]. The informal nature of thistechnique makes the implementation and testing of managed objects expensive, because much skilled�Work supported by JNICT Program PRAXIS XXI (Portugal) under grant No. BD/2804/93

e�ort is needed to interpret the speci�cations and construct suitable tests. Formal description techniques(FDTs) o�er the promise of improved quality and cost reduction by removing errors and ambiguitiesfrom the speci�cation and automating aspects of both implementation and testing. Indeed, interworkingwill depend on speci�cation and testing and product cost will depend on the e�ciency of these processes.The aim of our work is to test the applicability of FDTs to managed object speci�cation by formallyspecifying a realistic and large application using an object-oriented variant of the formal technique Z.In this paper we show how formal techniques can be used to specify a management architecture suitablefor scheduling and distributing services across nodes in a distributed system. The aim of the architectureis to optimise the use of resources by distributing the load and managing the resources available inorder to ful�l the requirements of application services [6]. In section 2 of the paper we describe themanagement model we use. Section 3 discusses the management infrastructure we have been developing.Section 4 shows how we can apply an object-oriented variant of the formal language Z to the speci�cationof interacting managed objects by formally specifying the architecture, and in section 5 we show how testgeneration methods can be applied to Z speci�cations of managed objects.2 MANAGEMENT MODELThe role of management is to monitor and control the system to be managed, so it ful�ls the requirementsboth of the owners and the users of the system. The management model presented in this paper is adistributed object-oriented model based on the Open Distributed Processing (ODP) Reference Model[11] and the OSI management model [8]. The Reference Model of ODP provides a framework for thestandardisation of Open Distributed Processing. The OSI Systems Management provides mechanismsfor the monitoring, control and coordination of those resources which allow communication to take placein the OSI environment (OSIE).The existing approaches to management address mainly network management. Many of the ideasincluded in the OSI management model, a standard for network management, can be used for distributedsystems. However, it must be taken into account that while network management concentrates on largelyautonomous network devices, distributed systems management addresses components which are muchmore dependent on each other.One of the most important ideas in OSI Systems Management is the use of object-oriented principlesto de�ne management information and interfaces. The devices in the network that are subject to manage-ment are viewed as managed objects. Organisational requirements require partition of OSI managementinto functional areas, such as security, account and fault management, or for other management purposes,such as by geographical, technological or organisational structure. To re
ect this, managed objects areorganised into management domains. Managed objects in a particular domain are subject to a commonmanagement policy, which consists of a set of rules constraining the behaviour of those objects. The abil-ity to specify precisely management policies, independent of the implementation is an important bene�tof formal speci�cation.3 MANAGEMENT ARCHITECTUREIn this section we present an architecture to support management of distributed systems, addressing inparticular the issue of distributing the workload submitted to a distributed system by its users. Distributed

scheduling is used in order to locate a new service on the most appropriate node, taking into account thecurrent state of the system and the quality of service requirements of the service.A centrally-located allocator { Distributed System Manager (DSM) { is responsible for taking decisionsin order to determine to which node in the system each service will be allocated. To determine if a nodeis suitable to instantiate a service, the DSM has to compare the quality of service (QoS) requirements ofthe service with the resources provided by the node. Placement is based on the last known state of thesystem, which is stored by the DSM, and updated by the monitoring information it receives from nodemanagers.The foundation of any management system is a database containing information about the componentsbeing managed. This type of database is often referred to as Management Information Base (MIB). TheMIB is a structured collection of managed objects which represent the components that are monitoredand controlled by a management system. Each node in the system maintains a MIB that re
ects thestatus of the managed objects at that node.The Node Manager is an entity local to a node, responsible for managing the objects within that nodeand reporting monitoring information to the DSM. It is capable of performing management operations onmanaged objects on behalf of a DSM and of emitting management noti�cations on behalf of a managedobject to inform the DSM about the occurrence of an event. The node manager monitors and controls theservices instantiated on the node and collects information about the resources available. This informationis stored in the local MIB.The DSM also maintains aMIB where information about the nodes under the DSM control is stored.After initialisation, the DSM issues requests for monitoring information only when it is trying to �nd asuitable location for a service. The set of polled nodes will send monitoring information which will beused to update the DSM MIB.All newly created services are instantiated by theDSM upon request by the trader. The (ODP) trader isan object that provides a service which accepts and stores service o�ers from potential providers (servers)and hands out this information on request to potential clients. The DSM selects a suitable location forthe service requested and asks the local node manager to instantiate that service.4 SPECIFYING MANAGED OBJECTS FORMALLYThis section illustrates how we have used an object-oriented variant of Z to specify our managementarchitecture.Z [16] is a state based formal description technique (FDT), and Z speci�cations consist of informalEnglish text interspersed with formal mathematical text. The formal part describes the abstract stateof the system (including a description of the initial state of the system), together with the collectionof available operations, which manipulate the state. The descriptions are given in terms of set theoryand �rst-order predicate calculus. The schema calculus provides a useful (and visual) way to structurespeci�cations, and to provide for a degree of modularity in the de�nition of operations. Z has proved to beone of the most enduring formal description techniques, partly because of its simplicity and readability.It has gained signi�cant industrial usage and support over the years. Z has been shown to be a suitablevehicle for the speci�cation of information related activities, and because of this has been considered asuitable language for use in the information viewpoint within ODP.However, modern distributed systems are object-based, and for this reason there has been interestin extending Z to facilitate an object-oriented speci�cation style. This allows for a proper de�nition ofinheritance, and for encapsulation to be used to structure the speci�cation in terms of classes and objects.

Object-Z [5] and ZEST [13, 2] are similar object-oriented extensions of Z. They both use the concept ofa class to encapsulate the descriptions of an object's state with its related operations. In addition, theyprovide support for inheritance, instantiation and the description of communication between objects. Inthis paper we use ZEST to specify our managed objects, although a description in Object-Z would bevery similar. Using an object-oriented variant of Z allows a hierarchy of classes to be developed as theGuidelines for the De�nition of Managed Objects [9] indicate.
MIB

object
table

dsmtrader

alias
table

DSM

dsmadmin

dsmnm

dsmservice

dsmnotify

Factory

Node

MIB

NodeManager

nmctrl

nmnotify
resources

servers

trfed
Trader

trader

Client

Figure 1 The management architecture.We specify the collection of objects shown in Figure 1. The complete speci�cation, called MgtSystem,de�nes a number of objects (DSM , Nodes , Trader) with a description of how they interact. To illustratethe speci�cation of a single object, we will consider the DSM object. Some familiarity with the Z languageis assumed.4.1 Specifying a single object - the DSMWe model a managed object class by a ZEST class speci�cation which encapsulates a number of �xedattributes, a state schema declaring the variable attributes, and a collection of operation schemas. In afashion similar to Z, these are enclosed by lines with the class name at the top (here DSM).Inside the class are the variables and operations used in the class, some of these are for internal useonly, while others form part of the interface of the class. We document this by beginning each class with adescription of the interfaces. A ZEST class may have several interfaces, and each interface de�nes what isvisible at that particular interface of the object. A name appearing in an interface corresponds to eitheran operation or attribute, for example, the dsmnm interface consists of the operations UpdateNode and

NoResources (the add tells us these operations are included in the interface). Attributes and operationsnot appearing in any of the named interfaces are then internal to the class. In the formal speci�cation,the names of the interfaces document the interface partition, and they are not used when invoking theoperations.Variable attributes are declared in a state schema, and their initial values are given by the schemaINIT - here we specify that all variable attributes are in their own initial states (i.e. the ones given bytheir INIT schemas). The variable attributes in the DSM are in fact instances of appropriate classes.They represent the data concerning aliases (i.e. service descriptions), objects created and the results ofnode monitoring (the MIB). The declaration dsm mib : DSM MIB declares dsm mib to be an instance ofthe class DSM MIB , which is speci�ed as a ZEST class consisting of the data stored in the MIB togetherwith operations to access and update that data. The dsm mib contains information about the resourcesavailable on the nodes managed by the DSM. The DSM can manipulate the dsm mib via its operations,for example, the information stored in the dsm mib for a node can be updated by the node calling theDSM UpdateNode operation, which calls Update Node in the dsm mib.Re-use is supported by the de�nition of generic classes and operations. For example, DSMTable is ageneric class de�ned in terms of two generic parameters which can be instantiated with particular types(Alias , Handle, etc) in di�ering contexts.DSMinterface dsmnm add UpdateNode;NoResourcesinterface dsmservice add InstallAlias ;RemoveAlias ; : : :interface dsmtrader add LookupConstraintsFailed ;LookupConstraintsSuccess ; : : :interface dsmnotify add CapsuleTerminatedid : DSMIdalias table : DSMTable[Alias ;AliasData]object table : DSMTable[Handle;Noti�cationData]dsm mib : DSM MIBINITalias table:INIT ^ object table:INIT ^ dsm mib:INITUpdateNode b= dsm mib:Update Node[nmId?=nodeId?;nmData?=nodeData?;TRUE=result !]The other ZEST operations come hereThe behaviour of a class is described by specifying ZEST operations. Each ZEST operation describeshow the output is related to the input and how the state changes as a result of invoking the operation.For example, UpdateNode is an operation de�ned in terms of an operation in the dsm mib object, butwith the names of the inputs and outputs changed (e.g. nmId? is used instead of nodeId? etc).4.2 The Node classThe Node class encapsulates the node entities and operations involved in management. It includes aninstance of NM, the node manager class, and an instance of the Factory class. The factory is the entityresponsible for the instantiation of services.

Nodeinterface external add CheckRequirements ;SendInfo; Instantiate;Killnm : NMfactory : Factoryid : NMIdid = nm:idCheckRequirements b= nm:CheckRequirements ;SendInfo b= nm:SendInfoInstantiate b= nm:Instantiate: : :An axiomatic declaration speci�es that the identity (id : NMId) of the Node class is equal to the identityof the node manager in the class (id = nm:id). The de�nition SendInfo b= nm:SendInfo promotes theoperation SendInfo de�ned in the object nm to be an operation of the class Node.The Node Managermonitors and controls the services instantiated on the node and collects informationabout the resources available. The node manager class is represented by NM below.NMinterface nmctrl add CheckRequirements ;SendInfo; Instantiate;Killinterface nmnotify add CapsuleTerminatedUpdateEntry == DSMId � SentTimeUpdateList == seqUpdateEntryUpdateRecord ==MIBUpdateTime �UpdateListid : NMIdnm mib : NM MIBupdateRecord : UpdateRecordCheckRequirementsdsmId? : DSMIdupdated ! : BooldsmId ! : DSMIddsmId ! = dsmId?let mibTime == updateRecord :1 ^ updateList == updateRecord :2in (91 sentTime : SentTime � (dsmId?; sentTime) 2 ranupdateList^(sentTime = mibTime) updated ! = TRUE)^(sentTime 6= mibTime) updated ! = FALSE))SendInfodsmId? : DSMIdnmId ! : NMIdnmData! : NM MIBdsmId ! : DSMIdnmId ! = id ^ nmData! = nm mib ^ dsmId ! = dsmId?

Instantiate b= : : :The information concerning the resources provided by the node is stored in the nm mib. This informationis reported by the node manager to the DSM to keep the dsm mib updated.Di�erent management domains, with di�erent responsibilities and purposes may coexist. A DSM is theagent responsible for the management of the nodes which are members of one domain. The same node canbe a member of di�erent domains, being therefore under the control of more than one DSM. The nodemanager stores, for each DSM it is associated with, its identi�er and the last time monitoring informationwas sent to update that DSM's dsm mib. For this purpose, the NM state includes updateRecord of typeUpdateRecord which is declared as follows (with appropriate de�nitions for the components):UpdateEntry == DSMId � SentTimeUpdateList == seqUpdateEntryUpdateRecord ==MIBUpdateTime �UpdateListupdateRecord contains information about the last time the nm mib was updated (MIBUpdateTime) andthe last time information from the nm mib was sent to each DSM.The operation CheckRequirements can be called on a node by any DSM that controls that node. Thisoperation checks if the information in the nm mib has not been changed since the last time it was sentto the DSM identi�ed by dsmId?, in which case returns updated! = TRUE. If the nm mib has beenchanged then the node manager will have to retrieve the new information from the nm mib, as speci�edin SendInfo, and send it to the DSM. Instantiate is the operation provided by the node manager thatallows a new instance of a service to be created via the factory, its de�nition is omitted here.4.3 Specifying the interaction between objectsThe complete speci�cation contains de�nitions of the trader class (Trader) and a Nodes class. Theinteractions between objects of these classes is given by MgtSystem. This class contains an object of typeTrader, a distributed systems manager (i.e. an object of type DSM) together with a set of nodes beingmanaged (Nodes) on which services can be scheduled. The class Nodes will contain a set of objects of typeNode together with operations to add and delete nodes etc. Operations are de�ned in MgtSystem whichdescribe how objects in the class interact and communicate. We have omitted some of the operations andthe type de�nitions.MgtSystemtrader : Traderdsm : DSMnodes : NodessuitableNodes : PNMIdINITtrader :INIT ^ dsm:INIT ^ nodes :INIT

PollNodes b= [suitableNodes? : PNMId ;�(suitableNodes)] �Vnode : suitableNodes? �((node:CheckRequirements � [updated ! = TRUE ^ suitableNodes 0 = suitableNodes [fnodeg])_((node:CheckRequirements � [updated ! = FALSE]) o9 node:SendInfo o9 dsm:UpdateNode))NewActivation b=(DSMCreateNewActSuccesso9(PollNodes � [suitableNodes = ?] ^ [result ! : DSMServiceStatus j result ! = NoSuitableNode])_(PollNodes � [suitableNodes 6= ?]o9(InstantiateService � [instantiateResult ! = FALSE] ^[result ! : DSMServiceStatus j result ! = FailedToCreateServer])_(InstantiateService � [instantiateResult ! = TRUE]o9DSMLookupUpdate ^ [result ! : DSMServiceStatus j result ! = DSMServiceSuccess]))): : :NewActivation speci�es the behaviour corresponding to the creation of a new service instance (called anactivation). When the DSM decides to create a new instance of a service, a suitable node will have tobe found to allocate that instance. The DSM looks up in the dsm mib for nodes that can provide theservice requirements (this is speci�ed in DSMCreateNewActSuccess) and polls them to check if they canstill provide the same requirements.The operation PollNodes speci�es the sequence of operations that are performed when the suitablenodes are polled. The DSM invokes CheckRequirements on each node. This operation will return up-dated!, which is TRUE if the information in the nm mib has not been changed since the last time it wassent to the DSM, and FALSE otherwise. In the last case the node manager will retrieve the updatedinformation from the nm mib (as speci�ed in SendInfo) and send it to the DSM by calling its UpdateNodeoperation. UpdateNode will update the information in the dsm mib for that node.The � notation in (node:CheckRequirements � [updated ! = FALSE]) signi�es enrichment in that[updated ! = FALSE] enriches the environment in which node:CheckRequirements is interpreted. Dis-tributed conjunction, as in Vnode : suitableNodes? � : : : is a convenient mechanism to take the conjunc-tion for each node of type suitableNodes? of the expression following the �.The operation PollNodes also illustrates communication in Object-Z/ZEST using the operator o9. Theoperator composes the two operations in the given order (therefore it is not commutative) with thefollowing communication mechanism. Communication is left to right and hidden, outputs of the leftoperand equate to inputs of the right operand with the same basename (i.e. ignoring ! and ?) and bothare hidden [5]. Thus in the communication node:SendInfo o9 dsm:UpdateNode the outputs of the �rstoperation are used as inputs to the second operation. Sequential chains (as in (node:CheckRequirements �[updated ! = FALSE]) o9 node:SendInfo o9 dsm:UpdateNode) are interpreted left-associatively.After PollNodes has been performed, the global variable suitableNodes will contain the set of nodesthat can still provide the service requirements. InstantiateService speci�es the behaviour correspondingto the allocation of a new service instance to a node selected from suitableNodes.5 DERIVING TESTS FROM FORMAL SPECIFICATIONSOne potential application of formal techniques is in the automation of some or all of the process oftesting. In order to support conformance testing of distributed systems, ODP de�nes conformance within

the reference model. In addition, Part 4 of the ODP reference model de�nes an architectural semanticswhich provides an interpretation of the ODP modelling and speci�cation concepts in Z and a number ofother formal languages. This interpretation includes the de�nition of conformance in each language. Thusconformance assessment of an ODP system written using a formal technique begins with the architecturalsemantics, since it provides a means to interpret the speci�cation, and hence to provide for meaningfultest generation, and also to de�ne the location of conformance and reference points, i.e. at which locationsthe testing will take place.Because behaviour is represented by the Z operation schemas, a conformance statement in a Z speci�-cation corresponds to one or more operation schemas. Behaviour is said to conform if the post-conditionand invariant predicates of this information manipulation are satis�ed in the associated Z schemas.A reference point will occur at an interface where tests can be applied to check for conformance. In Z,interfaces are associated with collections of operation schemas, so reference points can be considered toreside at the pre-conditions of the operation schemas. However, a Z speci�cation will not in itself identifywhich reference points are programmatic, perceptual, interworking or interchange. Such identi�cationwould accompany the speci�cation as informal commentary.Appropriate work on test generation from Z speci�cations includes [18, 3, 1, 17, 7], however, little ofthis work is speci�cally targeted towards distributed systems or ODP in particular. Exceptions to thisinclude [3, 17]. [17] describes important work done under the Prost project in the UK on the testabilityof managed object speci�cations. ZEST is used to specify managed objects, and an inheritance hierarchyis constructed which facilitates the construction of a sound and complete test suite. Importantly, though,the test generation aims to supply heuristics and is not automatic. The heuristics provide a collection oftests together with a residual component which makes explicit the functionality not covered by the testsuite. The tests generated form an independent and orthogonal collection of tests.Because of the inheritance hierarchy, the reuse of tests between related speci�cations is maximised. Aprototype tool-set developed by Logica provides organisational support for the collection of test speci�-cations as they are generated.We illustrate the use of the method de�ned in [17] by deriving tests for operations speci�ed in ourmanagement architecture. The method derives a formal speci�cation (also written in Z) of conformancetests from each managed object, by producing a collection of tests for each operation in the managedobject.The method describes three actions: partitioning, weakening and simpli�cation, to construct a set oftests for each operation. The method is based on the idea of testing only some of the interesting inputsand only some of the consequences of the operation, a test is therefore an abstraction of the originaloperation. Each time an action is applied it divides an operation into several parts, each of which willeither be a test or be further divided. The division must satisfy the following rules (and heuristics enforcethis), where Op is the operation under test and fTig the collection of tests at this stage: soundness i.e.8 i � Op) Ti ; completeness i.e. the collection of tests must cover the operation, so Op = Vi Ti .As an example, consider the operation RemoveAlias which is part of the complete DSM speci�cation:RemoveAlias�(alias table)alias? : Aliasstatus ! : DSMServiceStatus(alias? 62 dom alias table:table) status ! = NonExistantAlias)(alias? 2 dom alias table:table ^ alias table:table(alias?):2 = TRUE) status ! = AliasActive)

(alias? 2 dom alias table:table ^ alias table:table(alias?):2 6= TRUE^alias table:table(alias?):3 = TRUE) status ! = AliasPosted)((alias? 2 dom alias table:table ^ alias table:table(alias?):2 6= TRUE^alias table:table(alias?):3 6= TRUE))(status ! = DSMServiceSuccess ^ alias table:Remove from table[alias?=key?][TRUE=result !]))Partitioning the operation involves deriving a set of tests each covering a di�erent aspect of theoperations pre-condition. The partition is de�ned by predicates Hi , and for an operation Op de�ned interms of a declaration D and a predicate P , we derive tests Ti given byOpDP TiDHi) PThis will split the operation into a collection of tests such that Op b= T1 ^ : : :^Tn . For example, for theoperation RemoveAlias we could partition as follows:H1 - alias? 62 dom alias table:tableH2 - alias? 2 dom alias table:tableChoosing the predicates Hi to perform the partition is part of the testers skill, the aim is to choosea partition that simpli�es what is being tested. The partitioning process generates (after simpli�cation)tests T1 and T2 (where we will subdivide T2 further) given by:T1�(alias table)alias? : Aliasstatus ! : DSMServiceStatus(alias? 62 dom alias table:table) status ! = NonExistantAlias)T2�(alias table)alias? : Aliasstatus ! : DSMServiceStatus(alias? 2 dom alias table:table ^ alias table:table(alias?):2 = TRUE) status ! = AliasActive)(alias? 2 dom alias table:table ^ alias table:table(alias?):2 6= TRUE^alias table:table(alias?):3 = TRUE) status ! = AliasPosted)((alias? 2 dom alias table:table ^ alias table:table(alias?):2 6= TRUE^alias table:table(alias?):3 6= TRUE))(status ! = DSMServiceSuccess ^ alias table:Remove from table[alias?=key?][TRUE=result !]))Repeated partitioning can be applied on the input e.g. on the value of alias table:table(alias?):2 etc, toproduce four tests, the last being:

T4�(alias table)alias? : Aliasstatus ! : DSMServiceStatus((alias? 2 dom alias table:table ^ alias table:table(alias?):2 6= TRUE^alias table:table(alias?):3 6= TRUE))(status ! = DSMServiceSuccess ^ alias table:Remove from table[alias?=key?][TRUE=result !]))Weakening can now be applied, which loosens the constraints on the output (and after-state). Weak-ening an operation Op produces a test Tw and a residual part Tr , which documents the aspects of theoperation we are not testing, with Op b= Tw ^ Tr . In RemoveAlias we are not interested in checking theoutput status !, just that the alias table has been altered correctly, so we weaken the test T4 to derivethe weakening Tw . The remaining component, Tr , will now document the aspects of RemoveAlias notcovered by the conformance testing.Tw�(alias table)alias? : Aliasstatus ! : DSMServiceStatus((alias? 2 dom alias table:table ^ alias table:table(alias?):2 6= TRUE^alias table:table(alias?):3 6= TRUE))alias table:Remove from table[alias?=key?][TRUE=result !]This method works well on the individual schema level, however, most of the interesting behaviour in amanaged object results from a process of combining operations using the schema calculus. Current testgeneration methods such as the one outlined above need to be extended to produce tests from operationsde�ned using the schema calculus. For example, if the operations Op1 and Op2 produce complete andsound tests fTig and fRjg respectively, can we derive a suitable collection of tests for the operationOp1 o9 Op2?6 CONCLUSIONSThe use of formal description techniques is increasing within ODP, and a number of proposals to specifymanaged objects formally have been made [14, 15, 12, 19, 10]. However, existing work in this area hasconcentrated on small scale case studies involving just one managed object (often the Sieve or LOGmanaged object). At ISINM'95 we reported on di�ering proposals to the formal speci�cation of managedobjects [4]. Further work in the UK has produced guidelines on how to specify managed objects in Z [20],and derived a method for producing tests derived from these formal speci�cations.The aim of our work has been to test the applicability of these methods by specifying a larger scale casestudy of a new application (rather than a behaviour that is well documented). While Z is not necessarily aperfect vehicle for managed object speci�cation, it does o�er considerable bene�ts over current practice.For speci�cations where behaviour is important or subtle, GDMO clearly needs enhancement, and Zo�ers a wide user base and suitable facilities for abstraction. The ability to derive tests from formalspeci�cations adds another dimension to the usefulness of the technique, although further work is neededin this area as outlined above.

REFERENCESD. Carrington and P. Stocks. A tale of two paradigms: Formal methods and software testing. In J.P.Bowen and J.A. Hall, editors, ZUM'94, Z User Workshop, pages 51{68, Cambridge, United Kingdom,June 1994.E. Cusack and G. H. B. Rafsanjani. ZEST. In S. Stepney, R. Barden, and D. Cooper, editors, ObjectOrientation in Z, Workshops in Computing, pages 113{126. Springer-Verlag, 1992.E. Cusack and C. Wezeman. Deriving tests for objects speci�ed in Z. In J. P. Bowen and J. E. Nicholls,editors, Seventh Annual Z User Workshop, pages 180{195, London, December 1992. Springer-Verlag.J. Derrick, P.F. Linington, and S.J. Thompson. Formal description techniques for object management. InA. S. Sethi, Y. Raynaud, and F. Faure-Vincent, editors, Fourth IFIP/IEEE International Symposiumon Integrated Network Management (ISINM '95), pages 641{653. Chapman and Hall, May 1995.R. Duke, G. Rose, and G. Smith. Object-Z: A speci�cation language advocated for the description ofstandards. Computer Standards and Interfaces, 17:511{533, September 1995.G. P. A. Fernandes and I. A. Utting. An Object-Oriented Model for Management of Services in aDistributed System. To appear in the ECOOP'96 workshop on Object Oriented Technology for Serviceand Network Management, 1996.H-M. Horcher. Improving software tests using Z speci�cations. In J. P. Bowen and M. G. Hinchey, editors,Ninth Annual Z User Workshop, LNCS 967, pages 152{166, Limerick, September 1995. Springer-Verlag.ISO/IEC 10040. Information Technology - Open Systems Interconnection - Systems ManagementOverview, 1992.ISO/IEC JTC1/SC21/WG4 10165-4 (X.722). Information Technology - Open Systems Interconnection- Structure of Management Information - Part 4: Guidelines for the De�nition of Managed Objects,1991.ISO/IEC JTC1/SC21/WG4 N1644. Liaison to CCITT SG VII concerning the use of Formal Techniquesfor the speci�cation of Managed Objects, December 1992.ITU Recommendation X.901-904 | ISO/IEC 10746 1-4. Open Distributed Processing - Reference Model- Parts 1-4, July 1995.N D North. RSL speci�cation of the log managed object. Technical report, National Physical Laboratory,UK, 1992.G. H. B. Rafsanjani. ZEST - Z Extended with Structuring: A users's guide. Technical report, BritishTelecom, June 1994.S. Rudkin. Modelling information objects in Z. In J. de Meer, V. Heymer, and R. Roth, editors, IFIP TC6International Workshop on Open Distributed Processing, pages 267{280, Berlin, Germany, September1991. North-Holland.L. Simon and L. S. Marshall. Using VDM to specify OSI managed objects. In K R Parker and G A Rose,editors, Formal Description Techniques 1991. North Holland, 1992.J. M. Spivey. The Z notation: A reference manual. Prentice Hall, 1989.S. Stepney. Testing as Abstraction. In J. P. Bowen and M. G. Hinchey, editors, Ninth Annual Z UserWorkshop, LNCS 967, pages 137{151, Limerick, September 1995. Springer-Verlag.P. Stocks and D. Carrington. Deriving software test cases from formal speci�cations. In 6th AustralianSoftware Engineering Conference, pages 327{340, July 1991.C. Wezeman and A. J. Judge. Z for managed objects. In J. P. Bowen and J. A. Hall, editors, EighthAnnual Z User Workshop, pages 108{119, Cambridge, July 1994. Springer-Verlag.H. B. Zadeh. Using ZEST for Specifying Managed Objects. Technical report, British Telecom, January1996.

