
Mexitl: Multimedia in Executable IntervalTemporal Logic?Howard Bowman1, Helen Cameron2, Peter King2 and Simon Thompson11 Computing Laboratory, University of Kent at Canterbury, Canterbury, Kent, CT27NF, United Kingdom2 Department of Computer Science, University of Manitoba, Winnipeg, Manitoba,R3T 2N2, CanadaEmail Contacts: fH.Bowman,S.J.Thompsong@ukc.ac.uk andfprking,hacamerog@cs.umanitoba.caAbstract. This paper explores a formalism for describing a wide classof multimedia document constraints, based on an interval temporal logic.We describe the requirements on temporal logic speci�cation that arisefrom the multimedia documents application area. In particular, we high-light a canonical speci�cation example. Then we present the temporallogic formalism that we use. This extends existing interval temporal logicwith a number of new features: actions, framing of actions, past opera-tors, a projection-like operator called �lter and a new handling of intervallength. A model theory, logic and satisfaction relation are de�ned for thenotation, a speci�cation of the canonical example is presented, and aproof system for the logic is introduced.1 IntroductionThis paper explores a formalism for describing a wide class of multimedia docu-ment constraints. The formalism is based on an interval temporal logic. The termmultimedia indicates that a documentmay contain continuous or time-dependententities [10] known as media items [6], in addition to the more traditional spatialitems in paper documents. Part of the task facing the author of such a docu-ment, therefore, is to describe the dynamic temporal relationships that are tohold between media items. We are interested in documents with rich sets of suchrelationships, and as a consequence are keenly interested in issues of consistencyveri�cation, modelling, proto-typing, and speci�cation re�nement. While a num-ber of authoring systems for multimedia documents are extant [3, 9], little workhas been done on the question of suitable formalisms for the speci�cation andmanipulation of such temporal constraints in the context of multimedia.This paper introduces an interval temporal logic speci�cation notation calledMexitl which stands forMultimedia in Executable Interval Temporal Logic. While? Travel grants to support the research presented here have been provided by theBritish Council. The second and third authors are supported by individual researchgrants from the Natural Sciences and Engineering Research Council of Canada.

the anticipated application area for this notation is multimedia, it is also relevantto other areas of real-time speci�cation. King [11, 12] proposed the use of IntervalTemporal Logic (ITL) to specify multimediadocuments and the theory presentedhere stems from that earlier work.A major di�erence between ITL and standard linear time temporal logic[15], is that ITL is interpreted over �nite state sequences, called intervals, ratherthan over in�nite models. A number of authors have investigated ITLs, including[4, 8, 13, 16]. The restriction to �nite states prompts consideration of a numberof temporal operators not typically found in non-interval temporal logics, suchas chop and projection, which will be discussed in Section 3.1.We anticipate that complete speci�cations of multimediadocuments will havea number of elements. Firstly, an abstract data typing notation will be used inorder to describe the primitive operations/actions (we use these terms inter-changeably in the sequel) to be used in specifying the document. Actions suchas displayCaption or playVideo are typical examples. A suitable abstract datatyping notation is suggested in [11]. We will not consider this notation here,rather the speci�cation language that we present takes the primitive actionsas given. In addition, mechanisms to de�ne composite actions out of primitiveactions can be added.We introduce a methodology for developing multimedia artefacts using Mex-itl . Speci�cations are written in the logic, and re�ned according to the rulesof the language. Implementations can be developed in various ways, includingeither by means of deterministic re�nements or as proofs of Mexitl formulasinterpreted in a constructive logic.Structure of the Paper. The paper is structured as follows. Section 2 reviewsthe requirements associated with multimedia documents. In particular, an ex-ample of a typical presentation from the �eld is highlighted. Section 3 presentsthe speci�cation notation that we are advocating. The operators of the core lan-guage are presented, the model theory is highlighted and the satisfaction relationis de�ned. Section 4 contains an account of how the operators used in the paperare derived from the core operators of the language. Then Section 5 applies thede�ned notation to the requirements highlighted in Section 2. Section 6 gives aninitial account of the logic of the Mexitl operators. Related work is discussed inSection 7 and concluding remarks are presented in Section 8.Note that a shorter version of this paper has been published as [2].2 Multimedia Documents2.1 Multimedia Document RequirementsThere is no extant formal or standard taxonomy of functional requirements fortemporal constraints among media items in multimedia documents. However,the multimedia literature displays a good deal of commonality and agreementin this regard. Indeed, in [6], Er
e presents a set of eighteen issues, or func-tional requirements, which he regards as being su�cient to describe multimedia

documents. This set was obtained by a study of what is provided in a numberof existing authoring systems and standards. In [11], King presents an alterna-tive set of eight requirements, which encompasses Er
e's set. We will not repeatthis work in any detail here, but for the sake of completeness we will providea summary of the requirements. We will divide our summary into two sets ofrequirements, a set of three general requirements, which are dictated mainly bythe authoring aspect of this area of application, followed by eight individualfunctional requirements.This summary of requirements will be illustrated by a fairly complex example.In Section 5.2, we will show how each component of this example is expressiblein the formalism to be described in Sections 3 and 4.GeneralRequirements The most basic requirement is to represent the displayof a media item. Indeed, we require various forms of display. We �rst requirewhat we might term standard display, where a media item is simply presentedin its normal fashion at its normal rate. In addition, to the extent that thephysical properties of the medium in question permit them, we must allow inour formalism for variations of this standard display such as presenting at halfspeed, rewind, fast-forward, and so forth.Secondly, we need to represent the notion of reader intervention during amultimedia display. This intervention will frequently require early terminationof a media item.Thirdly, we require facilities for composing sets of constraints. Documents,just like programs, are rarely static or �xed, and new documents are often createdby adding to existing ones. An author will frequently use a section of an existingdocument as part of a new, larger document. We thus require the ability toexpress both serial and parallel composition of sets of media item constraints.Parallel composition is also required to permit independent development of whatare termed channels in the multimedia literature [3, 9], which may then becombined so that they occur in the same time interval { that is, in the samemultimedia presentation.In this work we have chosen to generalise somewhat the notion of channel asit is used in the multimedia literature. See [3, 9], for example, where the termchannel refers to a single type of medium, and one may refer, for example, to thevideo channel or the audio channel. By way of contrast, our notion of channel isa higher-level one, corresponding more closely to the notion of an independentauthor. In our work, therefore, a channel will usually contain items of di�eringphysical media types, since a single author may well wish to make use of sucha variety of media types in creating part of a complete multimedia document.Our use of the term channel is akin to the use of such terms as \thread" in otherareas of computer science.Functional Requirements The following eight individual items are required,although arbitrary combinations of these items are also to be permitted:

1. Temporal placement of a media item at an absolute (time) point;2. Speci�cation of the duration of a media item;3. Determination of the start and �nish points of a media item;4. Relative placement of two or more media items;5. Repetitive display of a media item;6. Conditional display of a media item;7. Scripting, that is, using events or conditions occurring in one media item tocontrol the display of a second; and8. Exception handling, that is controlling error situations which may occurduring the display of a multimedia document.2.2 ExampleWe will now illustrate the requirements list given in the previous section by in-troducing an informal speci�cation of a fairly elaborate example of a multimediadocument. We will annotate the various parts of this example with referencesto the corresponding items in the list given above. This entire example will beexpressed in the ITL formalism in Section 5 below. We refer to this exampleas the Beethoven Problem. The Beethoven Problem requires the development ofa multimedia document consisting of an audio of Beethoven's Fifth Symphony,Opus 67 in C minor, together with various other media items which are designedto illustrate the music as it is played. King [12] presents an earlier version of aportion of this example.Beethoven's Fifth Symphony comprises four movements.1. Play the four movements of the symphony in sequence with a gap of 20seconds between each movement.This simple example uses sequential composition and duration speci�cation;it involves Requirements 2 and 4. Note that King [11] shows in detail hown-ary temporal relations can be represented in (a subset of) the formalismdescribed herein; we will not repeat the details of this. Strictly speaking,this example also involves Requirement 1, since we are assuming that thesymphony is to begin at time zero. Note also that in what follows we willnot be very concerned about temporal units or the granularity of real time.We may, for example, simply assume that one clock tick equals one second,or any other convenient unit.2. Before the �rst movement begins, play an audio which announces the nameof the symphony, the composer, and the orchestra. Two seconds after thisaudio starts, display a video still of Beethoven. Stop the video still displayas the �rst movement starts. After the last movement, wait 3 seconds anddisplay for 30 seconds a video of Ludwig van Beethoven and then, after afurther 5 seconds, display information about how to order this presentation.The various parts of this speci�cation may be composed in a variety ofways. For example, each might occupy a separate channel and all channelsthen be composed in parallel. Alternatively, they may be incorporated by

serial composition into one of the existing channels. The choice to be made islargely a matter of taste. As individual items, they involve serial compositiontogether with Requirements 2 and 4.3. At the start of each movement display an appropriate title for 5 seconds.Each title is a video still. Repeat the 5 second display of each title every 3minutes during the corresponding movement.We may regard the display of the four video stills as comprising a secondchannel, which is to be composed in parallel with the �rst: the four move-ments. We have an instance of Requirement 5, a repetitive display. The ac-tual display of the video stills themselves requires duration speci�cation asin Requirement 2.4. The audio introduced in Example 2 is actually in three parts, correspondingto the name of the symphony, the composer, and the orchestra. During thisaudio display,either display a rolling text item containing the same information (assumethis item has the same length as the audio)or display, in sequence, three video stills containing the same informationfor the appropriate time lengths.This example is a further instance of parallel composition, but also introducesa conditional speci�cation (Requirement 6), and also involves some simplesequential composition.5. The twenty second gap between the second and third movements shouldbe replaced by a video/audio display describing the third movement. If thevideo/audio display takes longer than twenty seconds, truncate the displayto twenty seconds.This example illustrates the need for an exception handling facility; we mustallow for truncation of the display in question if it does in fact require longerthat 20 seconds, and decide what happens if it requires less that 20 seconds.Note, therefore, that we require the start and �nish points of the item, anillustration of Requirement 3.6. At the �rst sound of a viola, display a purple band for 3 seconds.7. During the �rst crescendo passage, display a mammoth.8. During each crescendo passage of the �rst movement, display a looped videotape of a bug climbing an inclined plane. For each crescendo passage afterthe �rst one, continue playing the video from the point at which it waspreviously stopped.9. Count the number of C minor chords in the symphony.10. During each staccato note of the �rst movement,
ash the screen red.Examples 6 to 10 illustrate the need for what we have chosen to call scripting,using events or conditions in one media item to control the display of asecond. Examples 6 and 7 refer to a particular instance of such conditions,the �rst occurrence in both these cases. Examples 8, 9 and 10 refer to allinstances of such conditions. Note that these conditions that may hold ata speci�c time point (staccato) or over an interval (crescendo). Example 9is a somewhat di�erent example of scripting, where the operation to be

performed is a housekeeping task, counting the number of chords, ratherthan the display of a media item.This de�nition of the Beethoven problem illustrates each of the eight itemslisted under functional requirements. It also illustrates some, but not all, ofthe general requirements appearing in Section 2.1. Speci�cally, the notions ofparallel and sequential composition are illustrated, but the notions of variablespeed display and of reader intervention are not included. In order to illustratethese latter points, we now present two additions to the Beethoven problem,though these additions will not form part of the formal Mexitl speci�cation tobe presented in Section 5.1. The reader may interrupt and stop the audio occurring at the beginning ofthe presentation (introduced in Part 2 above) and proceed directly to thestart of the �rst movement.2. The reader may stop and rewind the tape containing any movement. Thereader may then replay that movement, and at any subsequent point mayfast-forward to the end of that movement.3 Introduction to MexitlWe present a core language for Mexitl , which contains the primitive constructs ofthe notation. Then we describe the model theory underlying the language; thistheory is based upon �nite sequences of states (called intervals) and we de�nethe satisfaction relation, which characterises the intervals that satisfy a logicalformula.3.1 The Core LanguageExpressions The core language uses a simple expression notation. Expressionshave the following form:E ::= c j v j V j f(E) j mylenwhere c 2 N , v 2 Varstatic, the set of static variables, V 2 Varstate, the setof state variables, and f is in a set of assumed functions (in some areas ofthe literature static and state variables are called respectively rigid and
exiblevariables [15]). We also assume a set Var = Varstatic [Varstate of variables.In addition, mylen is a distinguished variable which denotes the length ofthe current interval. This operator re
ects the �niteness of models for Mexitl .The inclusion of mylen is a departure from standard interval temporal logic.We discuss the motivation for its inclusion in the next subsection.

The Logic The domain of logical propositions is denoted P and P 2 P isconstructed as follows:P ::= readX(V) j aX (E) j aX j p(E1; :::; En) j E = E j False j P) P jP ; P j P proj P j P �; P j (9x � E)P j P �lter PAmong the above propositions, read and a belong to the set Act of actions andX is a set of such actions. Also p is in a set of given predicates; V is a statevariable and E is an expression, as de�ned above.Much of this logic will be well known to a reader familiar with interval tem-poral logic.{ False and P) P are the familiar connectives of classical propositional logic.{ p(E1; :::; En) denotes application of a predicate to n expressions. In standardfashion, we will often write binary predicates in�x.{ E = E gives equality of expressions.{ ; is the sequencing operator, chop, familiar from [16]. An interval satis�esP ; Q if the interval can be divided into two contiguous sub-intervals, suchthat P holds over the �rst subinterval and Q holds over the second.{ proj is the projection operator, also described in [16]. An interval satis�esP proj Q if it can be sub-divided into a series of sub-intervals each ofwhich satis�es P - we call P the projection formula - and the new intervalformed from the end points of these sub-intervals satis�es Q, which we callthe projected formula.The reader who requires a more detailed discussion of these operators is referredto [16]. The remainder of our operators are not standard, and thus, require alittle more explanation.Actions.Actions inMexitl are atomic, in the sense that they cannot be analysedinto simpler components. Time is discrete, and an action is thought of as takingplace in a single state; composite actions are built as Mexitl combinations ofatomic actions using operators such as ;.read(V), a(E) and a de�ne the forms that actions can take. read(V) is adistinguished action; it is the only input action. read(V) enables new values tobe bound to the variable V in the current state. User-de�ned actions, over whicha ranges in the syntax above, will be de�ned in the separate abstract data typ-ing notation, with their associated type information. Simple non-parametrisedactions can be speci�ed by referencing an action, a say, without any data pa-rameter. Thus, this action can occur at a state without accessing the bindings atthat state. In contrast, when actions of the form a(E) occur at a state, the valueof E with respect to the bindings at that state is associated with the occurrence.One example of such an action is the output of the value of an expression.From a logical point of view we can think of an action a as an atomic propo-sition and of a(E) as an application of an atomic predicate.

An action can appear a number of times in an interval; however, each ofthese represents a di�erent instance of the action. In particular, action occur-rences cannot span two states in an interval. Thus, at the level of interval states,actions do not have duration. However, durational behaviour can be obtained byde�ning composite actions, which are a shorthand for the occurrence of multipleprimitive actions. In particular, primitive actions may correspond to indexinginto a composite action. For example, an action playFrame[500] might be aconstituent of the composite action playV ideo.Although actions do not have duration, sets of (distinct) actions can occurat the same state. Such sets re
ect simultaneous lock-step occurrence of theactions. In this sense, the model employs synchronous parallelism.Framing of actions. One aspect which distinguishes our usual perception oflogical propositions and actions is the idea of framing. An assertion of a, wherea is a particular action, is often interpreted as `a and no other action happens'whereas a logical interpretation simply reads this as a happening. The formerinterpretation, in which the action a is \framed", would lead to a non-monotoniclogic were we to adopt it.Instead of this in our system we subscript the actions with sets X of actions.aX is interpreted as `a happens and none of the other actions in X happens'.The set X thus provides an explicit frame within which the action a takes place.Logically the interpretation of aX is the conjunction of a and :b for all b inX � fag.We add a distinguished action { null { to the set of actions. This action hasnull e�ect, but can be used for framing purposes thus: nullX .The reason for adding this local framing as primitive is that it supportsthe composition of separate channels in a modular way as will be seen in theexamples below.A restriction of our model is that it does not support auto-concurrency , i.e.multiple instances of the same action occurring at the same state. This slightlyrestricts generality, however the extra expressiveness obtained does not seem tobe needed in our particular area of application.Length and Next. In contrast to the standard approach to ITL we have notincluded the next operator,
, directly in Mexitl . However, standard length op-erators and
 can be derived from the expression mylen, as follows:lesseq(E) � mylen � Elen(E) � mylen = E
P � (mylen = 1) ; PThus, only intervals whose length is less than or equal to the value of E will sat-isfy lesseq(E), while only intervals of length E will satisfy len(E). The latter of

