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Formally verifying Exceptions for Low-level code with
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Abstract

Exceptions in low-level architectures are implemented as synchronous interrupts:

upon the execution of a faulty instruction the processor jumps to a piece of code

that handles the error. Previous work has shown that assembly programs can

be written, verified and run using higher-order separation logic [14]. However,

execution of faulty instructions is then specified as either being undefined or

terminating with an error. In this paper, we study synchronous interrupts and

show their usefulness by implementing a memory allocator. This shows that it

is indeed possible to write positive specifications of programs that fault. All of

our results are mechanised in the interactive proof assistant Coq.

Keywords: Formal Verification, Separation Logic, Assembly, Coq, Exceptions,

Step-indexed models, Interactive Theorem Proving

1. Introduction

Assembly code is difficult to prove correct. When verifying imperative

programs, standard Hoare-logics often make implicit assumptions about the

control flow of programs and assume that the code c in a triple {P}c{Q} has

one entry point and one exit point, even though it may internally contain loops

and method calls. In assembly programs we cannot make this assumption as the

control flows of these languages are inherently unstructured.

Control flow is altered primarily by two mechanisms – jump commands and

interrupts. Jump commands allow developers to execute code stored nearly
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anywhere in memory; their use is an active choice, much like writing a loop or

calling a method. Interrupts, on the other hand, occur either when something has

gone catastrophically wrong (such as dividing by zero or reading from unmapped

memory) or when an action from the environment requires processing (such as

the user pressing a key, a change to the file system is made, or the processor

clock ticks).

While some aspects of interrupts might resemble those of function calls, there

are substantial differences: synchronous interrupts are not called explicitly, but

trigger as a result of a particular operation on a particular state, e.g. division

by zero. Interrupts that trigger as a result of an error are typically referred to

as synchronous, while asynchronous interrupts are external requests. Another

name for synchronous interrupts is exceptions, due to their similarity with the

exceptions encountered in languages like Java or ML, and we will use the terms

interchangeably.

We build on the existing Coq [22] formalisation of the x86 instruction set [11]

by Jensen et al. [15]. The memory model (explained in Section 3.1) is very close

to that of the actual x86 chipset – control flow is implemented using jumps

which are inherently unstructured and code is stored in memory. This allows

for self-modifying code. Secondly, their program logic [14] is able to handle non-

structured control flow through jumps in a clean and concise manner (explained

in Section 3.2).

In this paper, we present a monadic semantics and a program logic to

verify x86-assembly programs that feature synchronous interrupts. Although we

cannot ensure verified assembly can be run on real hardware as in the previous

formalisation, we are able to model synchronous interrupts very closely to the

way they run on real processors.

Whenever an interrupt fires – be it synchronous or asynchronous – the

machine jumps to a piece of code to handle the event. On x86 architectures,

the machine operates by using an Interrupt Description Table (IDT). The IDT

is stored in memory and contains, for every type of interrupt, a pointer to the

handler for that interrupt. When an interrupt is fired, the processor’s state
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is saved, the address of the interrupt handler is retrieved from the table and

the code of the handler is executed. Barring catastrophic failure, the original

processor state is then typically restored and its execution is resumed. Similarly

to how Jensen et al. store code in memory, we store the IDT and the interrupt

handlers in memory, which opens up the possibility for programs to update the

various handlers dynamically.

In this work, we initiate an exploration of the formalisation of interrupts

for assembly machines. We do this by formalising synchronous interrupts. We

believe the experience gained here gives valuable insights for extending this work

to asynchronous interrupts, and this discussed further in Section 7.

Our contributions are the following.

• We extend the semantics of Jensen et al. to support synchronous interrupts,

(Section 4.1). Jensen’s model is formalised under the assumption that the

machine runs in Protected Mode and we follow their design decisions.

• We add rules to the program logic to cover cases where synchronous

interrupts are thrown, for example when reading from unmapped memory

(Section 4.2), allowing users to verify programs that use interrupts.

• We verify a small memory allocator that uses synchronous interrupts

(Section 5). To do this, some technical, but crucial, lemmas (Section 5.1)

have been proven. (Section 5.2).

• All of our results are mechanised in Coq.

The source code for our mechanisation can be found at http://www.itu.

dk/people/mpav/downloads/coqdev.zip. The additional work with respect to

the previous development amounts to 1084 lines of code including the allocator,

which comprises 182 lines of code. The work took approximately four months.

The code is compiled with coqc version 8.4pl3 with OCaml 4.00.1.
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allocImp(info, n, fail) , mov ESI, info;
mov EDI, [ESI];
add EDI, n;
jc fail ;
cmp [ESI+ 4], EDI;
jc fail ;
mov [ESI], EDI.

Figure 1: Standard Allocation mechanism

2. Memory allocation using exceptions

We use the standard AT&T syntax for assembly notation. For this example,

‘mov r, v’ stores the value v in the register r, ‘[r]’ dereferences a pointer stored in

r, ‘add r, v’ adds the value v to the value stored in the register r – if the result

to be stored in r exceeds the capacity of the register (232 − 1) the carry flag is

set. The instruction ‘jc a’ jumps to address a if the carry flag is set. Finally,

‘cmp r u’ compares the value stored in register r with the value stored in u and

sets the carry flag if the former is greater than the latter.

Jensen et al. [14] implemented and verified a simple bound-and-check memory

allocator, whose behavior and code are depicted in Figure 1. It takes three

arguments, info, n and fail, where info is a pointer to an information block of

two cells pointing to the beginning and the end of the storage respectively; n is

the number of bytes to be allocated, and fail is an address that the allocator

jumps to if n bytes are not available. The program does two comparisons – the

first checks if adding n to the memory start address causes the register value

to wrap around (by resulting in a value greater than 232 − 1) and the second

checks if that number is outside the memory available to the allocator. In both
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cases, the allocator jumps to fail if the test succeeds.

We verify an alternative version of this memory allocator using our new

semantics and program logic for exceptions, whose behaviour and code are

depicted in Figure 2. In our allocator we use the exception mechanism to jump

to a handler in case of failure, thus there are no checks for overflow or memory

bounds. Instead, we mark the end of the available memory with an unmapped

location.

The unmapped memory can be implemented via the paging system of the

Intel x86 machine, which is a mechanism to allow the machine to see more

memory than is physically available. This is implemented using a virtual address

space, namely a table with records pointing to the physical memory. A very

useful additional feature of paging is the ability to mark a single page with

security permissions. In this way, user processes can read and write only in their

own allocated space, thus implementing process isolation at the hardware-level.

An operating system can choose to set up some virtual memory for a process

and mark the end of it with a read-only memory cell. We implement an allocator

that makes use of this strategy.

Our allocator has three arguments, v1, v2 and info. The first two are double

word values to be written in the memory and the third is a pointer to the start

of the memory. Thus, we allocate two double words and write the data at the

same time. By virtue of this write to memory an exception is triggered whenever

that memory is unmapped, i.e. when the end of the memory available to the

allocator has been reached. It is then up to the interrupt handler to catch the

exception, but by jumping to the fail address it will mimic the behaviour of the

handler in Figure 1.

The reasons behind this design of the allocator are twofold. First, the memory

needs to be ‘touched’ somehow in order to trigger the exception. If we chose

not to write into the allocated space, as in Figure 1, we would allow a client

to circumvent the exception mechanism as the pointer to the next cell might

go beyond the unmapped memory region. and since this region is not touched

the allocator will succeed. Secondly, we can only allow the user to allocate a
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allocImpExp v1 v2 info , mov ESI, info; ;
mov EDI, [ESI]; ;
mov [EDI], v1; ;
add EDI, 4;
mov [EDI], v2;
add EDI, 4;
mov [ESI], EDI.

Figure 2: Allocation mechanism with exceptions

fixed number of cells. If we allowed an arbitrary number of cells, since this

memory region has to be initialised as mentioned above, we would need to either

generate a corresponding amount of writes into memory – which would render

the allocator less efficient w.r.t. Figure 1 – or let the user pass on the data to be

written in the store. In the latter case, the client would be already in possession

of a chunk of memory containing the source data and thus, the allocator would

be a mere memory-copy routine.

For our own purpose it suffices to allocate two cells, since this enables data

structures such as linked lists, e.g. a client can store the address of its callback

routine into the IDT and then use the allocator as a cons routine.

A variant of this allocator with any other fixed number of cells can be verified

if needed.

2.1. Interrupt mechanism

Every interrupt is identified by a unique number which is an index into a

table of pointers to the handlers. This table is commonly referred to as the

Interrupt Descriptor Table (IDT) and it is a chunk of memory pointed to by the
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IDT Register (IDTR) and further divided into records. Every record of the IDT

contains a pointer to an interrupt handler.

In Intel Protected mode, when segmentation is used, every address is uniquely

calculated by giving a pair of addresses called the base and offset respectively.

For example, the pair CS:EIP is the address of a piece of code with offset EIP

inside the segment indicated by the value of CS.

When an interrupt triggers, the CPU looks up the number of the interrupt,

saves the values of CS, EIP and any flags to the stack, and jumps to the

appropriate handler. In most operating systems, only one segment is used so we

chose not to worry about the segment selector – in particular the code selector –

as it would be easy to formalise if needed. The reader can safely skip this detail

as we will not use it in this paper.

While the CPU is in charge of saving the return address to the stack and

jumping to the handler, it is the responsibility of the programmer to implement

a “safe” handler, i.e. one that leaves the machine in a state from which the

original program can continue without faulting.

An interrupt handler is called transparent when it leaves no trace of its

execution in memory, i.e. the memory looks the same before and after the

interrupt fired. This kind of handler saves the CPU state by pushing all the

registers to the stack, handles the interrupt, and then restores the state as it

was before it was interrupted. Finally, it executes the IRET instruction (Return

from Interrupt). This signals the CPU to restore the triple CS:EIP and FLAGS,

thus performing a far jump back to where the program was interrupted.

The exception mechanism is slightly different in the presence of a faulty

handler. If the handler produces an error the machine raises a Double Fault

exception, which behaves the same as the other exceptions. Should this handler

fail, the whole machine reboots. This situation is called Triple Fault.

In the following section we will present the semantics of this behaviour.

However, we do make some simplifications such as avoiding mentioning seg-

ments. This is because, despite the fact that segmentation is a useful security

mechanism, in many operating systems it is not used. Segmentation is achieved
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by mapping every segment, be it code, data or stack segment, to the whole

range if physical memory. Implementors argue that the segmentation system in

the Intel’s protected mode is very expensive and thus the old paging system is

preferred. When an address is referred to inside the same segment the code is

in, the Intel specification states that we can avoid mentioning it.

3. Assembly semantics and logic

3.1. Semantics

In this section we present the Coq semantics from Jensen et al. [14]. The

semantics of the assembly language operates on a total state consisting of all

registers, flags, and memory, as follows:

S , (reg→ DWORD)×

(flag→ {true, false, undef})×

(DWORD→ (BYTE ] {unmapped}))

(1)

Here, S is made of three total functions: the register state, mapping each register

to a DWORD (a 32-bit value); the flag state, mapping each flag to a boolean

value or bottom; and the memory, mapping each 32-bit address to a BYTE

(an 8-bit value), plus an unmapped value. The unmapped value stands for an

inaccessible byte of memory. For example, it can be used when the memory is

protected for some reason or inaccessible, e.g. some parts of the BIOS [11]. Let

E be the set of numbers from 0 to 255. These represent the errors that can

occur, e.g. Division By Zero, General Protection and so on.

The result of a computation is either an error in E, an unspecified behavior

or a result of type X along with the updated state:

RX , error E | unspecified | update S X

The semantics of the machine are monadic: programs are functions that

takes a state S and produce a result. The type of a computation is the following:

ST X , S→ RX
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ST is a state monad with the usual return (η : A → ST A) and bind

operations >>= : ST A → (A → ST B) → ST B. We use let x ← c;c′ for

c >>= λx.c′ and do c;c′ for c >>= λ .c′. For each field of the state, we have read

and write operations: readFlags, readReg and readMem to read the value of flags,

registers and memory locations respectively, and write operations setFlags, setReg,

setMem to write to that state. Note, the monad is defined on a general type X.

This is because we also need computations that return instructions and pointers,

as described later in this section.

The instruction set Instr is inductively defined. The interpretation function

maps an instruction instr onto an element JintrK of the monad ST unit, i.e. a

function that takes a state and returns the unit value along with the modified

state or an error. For example the interpretation of the jmp instruction is defined

as:

Jjmp iK , setReg(EIP := i)

That is, a jump instruction is a computation that updates the EIP register with

the address specified by the instruction.

The semantics of the machine make use of a step function of type ST unit

which fetches, decodes and executes an instruction as follows:

step , let eip← readReg(EIP);

let (instr, neweip)← decode(eip);

do setMem(EIP := neweip);JinstrK

where decode is a function that takes a 32-bit address and decodes the value it

contains into an instruction and the new instruction pointer, or returns an error.

If the decoding fails, the entire step-function fails with the same error.

The semantics are defined by means of a function run of type N× ST unit→

ST unit together with the step function defined above. run is defined recursively

on its first argument and takes as input a natural number n and a computation,

and executes that computation for n steps.
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3.2. Separation Logic for low-level code

In this section we give some background on the program logic we use for

reasoning about low-level code [14].

A specification for the assembly language is given in continuation-passing

style and has the following form:

` (safe⊗ EIP 7→ j ∗Q⇒ safe⊗ EIP 7→ i ∗ P )� i..j 7→ c (2)

which states that a program c stored in the memory between the address i and

address j is safe to run from a state P provided that there is a continuation that

runs safely from Q, where P and Q are separation logic formulas [19, 20, 18,

13, 7, 6] and safe is predicate in the specification logic. The tensor operator ⊗

takes a specification S and an assertion formula P and forms a new specification

S ⊗ P . The read-only tensor operator � has the same type as ⊗, but it is used

to compose specifications with chunks of memory that contain code that ought

not to be modified.

The ⊗ operator is an invariant extension operator in the following sense

(safe⊗P ⇒ safe⊗Q)� i..j 7→ c⊗R a` safe⊗ (P ∗R)⇒ safe⊗ (Q∗R)� i..j 7→ c

where R is the assertion that is preserved by the computation. This can be shown

by distributing R over the implication and using the rule S⊗P⊗R a` S⊗(P ∗R).

If c is a block, the specification in (2) can be read as a standard Hoare triple

` {P}c{Q} for partial correctness.

In the assertion logic, besides the separating conjunction ∗, there are points-to

relations for registers and flags, 7_, and for the memory, 7→. As code is data,

code can be specified in the assertion logic by using the 7→ relation, e.g. i..j 7→ c

means the memory between i and j contains the program c. We are going to use

the question mark r?, where r is a register, as syntactic sugar for ∃v, r 7_ v and

similarly for the memory. Separation logic entailments are solved conveniently

within Charge! [3, 4] – a library of Coq tactics for program verification.

As an example, the mov instruction can be specified using the rule format
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(2) by instantiating as follows:

Q , r1 7_ pd ∗ pd 7→ v2 ∗ r2 7_ v2

P , r1 7_ pd ∗ pd 7→ v1 ∗ r2 7_ v2

c , mov [r1], r2

(3)

If the machine is safe to run from a state where EIP points to j, r1 is a register

containing a memory region that contains v2 and r2 is a register containing the

value v2, then the machine is safe to execute a mov instruction located at address

i with register r1 pointing to a different value.

Another example is the assembly program that sits in a tight loop forever:

` safe⊗ EIP 7_ i� i..j 7→ jmp i (4)

In order to prove this statement, however, we need to prove the same statement

after one step of computation, i.e. after the jump has been made. A convenient

way to express this inside the logic is to use the . modality, pronounced “later”.

To prove the statement above it suffices to prove that if it holds “later” then it

holds now. This proof technique goes under the name of Löb Induction [1, 17, 5].

Finally, it is possible to compose specifications of programs in a modular way.

A program is composed by one instruction and another program as follows:

` (safe⊗ EIP 7_ i1 ∗Q1⇒ safe⊗ EIP 7→ i ∗ P1)� i..i1 7→ c1

P ` P1 ∗RP

` (safe⊗ EIP 7→ j ∗Q⇒ safe⊗ EIP 7_ i1 ∗Q1 ⊗RP)� i1..j 7→ c1; c

` (safe⊗ EIP 7→ j ∗Q⇒ safe⊗ EIP 7_ i ∗ P )� i..j 7→ c1; c

(5)

The code snippet c1; c is the composition of the first instruction c1 and the rest

of the program c. In order to prove the whole program is safe to start from the

beginning with memory in P we have to prove that P satisfies the precondition

required by the first instruction c1. Secondly, we have to prove the rest of the

program is safe to execute from the part of the memory modified, namely Q1 and

part of P left untouched, namely RP . Note that the code part of the specification

is left unchanged. What changes is the program pointer to the memory where

the code lies.
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3.3. Memory representation

As mentioned in the introduction our model differs from the x86 in terms

of a small implementation detail that means our formalisation is not runnable

on real hardware. However, we want to stay as close as possible to the original

formalisation which allowed a user to write actual x86 assembly code, verify it,

extract it as machine code and run it. To do this we chose to inherit the original

memory representation where values are encoded as vectors of booleans (lists of

a set length), representing binary numbers.

Definition BITS (n: nat) := list n bool.

here n is the length of the list. Double words are defined similarly, using the

previous definition, as a list of 32 bits:

Definition DWORD := BITS 32.

The definition of these types and their functions use modulo 2n arithmetic in

Coq. This is not suitable for points-to predicates in separation logic. Consider

the predicate p..q 7→ v for p and q of type DWORD. Assuming this predicate it

is not possible to infer that p ≤ q in arithmetic modulo 232 as p+ 4 might wrap

around. A work-around consists in defining an additional type dependent on n

that adds a top element representing the end of the memory:

Inductive Cursor (n: nat) := mkCursor (p: BITS n) | top.

A cursor is either a list of bits or the memory beyond the last representable

address.

This representation of bit values pervades the whole framework and some

challenges arise when trying to reason about points-to relations, particularly

when reasoning about lists of memory cells. We defer this issue to Section 5.1.

4. Semantics and logic for exceptions

4.1. Semantics for exceptions

We lift the semantics from Section 3.1 to model the exceptions. We do not

expect that any useful handler could throw an exception, but for the sake of
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completeness we define the semantics such that when an exception is thrown

inside a handler a double fault triggers. If this happens inside the double fault

handler the machine reboots (triple fault).

First, we define throwexp which takes as input the interrupt level and the

number of the interrupt to throw.

throwexp(intl, n) , do setRegINTL := (intl + 1);

let idt← readReg(IDTR);

let eip← readReg(EIP);

do push(flags);

do push(EIP);

let new ← readMem(idt+ n ∗ 4);

setReg(EIP := new)

This routine works as follows. The semantics looks up the address of the IDT

by reading it from the IDTR and then saves the address and flags of the current

execution point – denoted by push(eip) and push(flags) – by pushing them to

the stack pointed to by ESP İt then fetches the address of the corresponding

exception by looking up the value of the nth record inside the IDT, and saves

this value (the address of the interrupt handler) to the EIP register.

We next define the double fault exception as a particular case of the former,

namely an exception that occurs at interrupt level 1 and that throws a double

fault exception.

doublefault , throwexp 1 ExnDF
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Finally, we define the throw function which throws the exception number n.

throw(n : nat) , let level← readRegINTL;

if (level=0) then throwexp intl n

else if(level=1) then doublefault

else halt

The above routine can be read as follows: if the INTL register is zero the machine

raises it to one and throws the corresponding exception. If the INTL register is

one, we raise a double fault exception. Otherwise, we are in the third level of

interruptions and the machine halts.

In order to catch the error and throw an exception we define a catch function

of type catch : ST unit → ST unit which takes a computation and gives a

computation such that if the former ends up in a fault it throws an exception

and otherwise returns the same result:

catch (c : ST unit)(s : S) , case (c s) of

| error(n)⇒ throw(n)

| x⇒ x

end

Whenever we have a computation c, we obtain a computation catch c of type

ST unit which turns errors into exceptions. We can then use the catch function

with the interpretation function for instructions from Section 3.1: if instr ∈ Instr

then catch(JinstrK) is the computation that throws an exception whenever the

instruction instr fails to execute.

We substitute this term in the definition of step as follows:

step , let eip← readReg(EIP);

let (instr, neweip)← decode(eip);

do setMem(EIP := neweip); catch(JinstrK)
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Note that the only difference between this step function and the one from

the previous section is in the final command where we change JinstrK to

catch(JinstrK).

Whenever the instruction just fetched from the memory raises an exception,

the machine jumps to the respective handler by updating the EIP register and

the machine continues executing from there.

We could have modified each instruction to throw an exception instead of

generating an error and then trapping it. This would result in a simpler monadic

semantics. However, our approach is essentially equivalent and it makes sure

pre-existenting code is left untouched thus remaining faithful to the previous

formalisation.

4.2. Specification logic for exceptions

In order to be able to reason about these exceptions we need assertions

describing the state of the memory in which these events can be triggered. Such

assertion allows reasoning about read and write operation to unmapped memory

regions. We define a predicate l 7→ !! that denotes the set of states such that the

location l maps to an unmapped location.

Every instruction that tries to read or write from an unmapped location now

becomes a jump into the exception handler, provided that the IDT is present in

memory.

We present the additional rule for a mov instruction that accesses an un-

mapped memory region. Thus, we make a jump-like variant of (3) using the

later-operator. The rule has the following shape:

` (.safe⊗Q⇒ safe⊗ P )� i..j 7→ mov [r1], c⊗ Inv (6)

where P is a precondition that states the code will run from a state where r1

points to an unmapped memory location and where no interrupts have occurred;

Q is the postcondition after one step, describing the state after the interrupt

triggered as a result of reading the memory pointed to by r1; and where Inv

contains the IDT table. Informally, if the machine is “later” safe to run from
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inside the handler, where the interrupt level is set to 1 and the stack pointer

points to the top of the stack where the return address j is stored, then it is safe

to run from a state where the interrupt level is zero and the stack pointer points

to a cell of memory such that the next cell is mapped.

First, the precondition must ensure that the program is starting from i with

interrupt level 0 and with the necessary space in the stack to allocate the return

address:

P , (EIP 7_ i ∗ INTL 7_ 0 ∗ ESP 7_ sp ∗ ((sp− 4)..sp)?) (7)

Secondly, we need the post-condition to assert that it is safe to jump into

the handler. Thus, at this point in time the program pointer will be the fail

address with interrupt level set to 1 and the return address on top of the stack:

Q , EIP 7_ fail ∗ INTL 7_ 1 ∗ ESP 7_ (sp− 4) ∗ (sp− 4)..sp 7→ j (8)

Finally, we need an invariant asserting that the IDT is in the memory. For

a natural number n and a 32-bit address y, we denote by IDT[n/y] the IDT in

which the nth record contains the address y. Thus, the following definition,

IDT[ExnGP/fail] stands for the IDT table where the record associated with the

general protection exception is updated with the address fail, namely, the address

to the handler. Moreover, the location l points to the unmapped region and

more precisely, the bytes from l to l + 4 (excluding l + 4 itselft) are unmapped,

while r1 points to l. Note that even though a complete IDT contains pointers to

all handlers we do not need all of them, just the pointer to the handler associated

with the general protection exception.

Inv , (r1 7_ l ∗ l..(l+4) 7→ !! ∗ IDT[ExnGP/fail ]) (9)

Any instruction that makes use of an unmapped cell turns into a jump. In

the Coq development we proved similar rules for the read version of mov and for

push and pop instructions.

We proved that the push instruction is safe to execute when the parameter
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refers to an unmapped location:

` ∀i : DWORD, j : DWORD.

(.(safe⊗ (EIP 7_ fail ∗ INTL 7_ 1 ∗ ESP 7_ (sp−4) ∗ (sp−4)..sp 7→ j))⇒

safe⊗ (EIP 7_ i ∗ INTL 7_ 0 ∗ ESP 7_ sp ∗ (sp−4)..sp 7→ v))

�(i..j 7→ push[r])

⊗(r 7_ l ∗ l..(l+4) 7→ !! ∗ IDT[ExnGP/fail])
(10)

The structure of this rule is the same as in rule (6), but here we read from an

unmapped memory address and the destination is the top of the stack.

It may be worth noting that a variant of this rule where the memory pointed

to by the stack pointer is unmapped would be unsound. More precisely, whenever

the stack memory is unmapped a push instruction will generate a cascade of

exceptions that will cause the machine to reboot (Triple fault). The first exception

is triggered by the push instruction writing to the top (unmapped) stack; the

second exception is triggered by the interrupt mechanism trying to store the

address of the last executed instruction on the top of the stack (Double Fault);

and, similarly, the third exception will be generated by the interrupt mechanism

trying to handle the second exception (Triple Fault).

The pop rule, similarly, reads from the stack and puts the value in the cell

pointed to by the register r:

` ∀ij : DWORD.

(.(safe⊗ (EIP 7_ fail ∗ INTL 7_ 1 ∗ (sp− 4)..sp 7→ j ∗ ESP 7_ (sp− 4)))

⇒ safe⊗ (EIP 7_ i ∗ INTL 7_ 0 ∗ (sp− 4)..sp 7→ spv ∗ ESP 7_ sp))

�(i..j 7→ (pop[r]))

⊗IDT[ExnGP/fail] ∗ r 7_ l ∗ l..(l + 4) 7→ !!

(11)

the structure of the rule is again similar to the previous ones, and again the

rule would be unsound if we tried to pop a value from a stack whose memory is

unmapped.
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5. Memory allocation using exceptions

In this section we show how to prove the memory allocator presented in

Figure 2 correct. We first show how to reason about predicates that talk about

chunks of memory with boundaries. More specifically, we need to be able to

decide whether the current cell in the memory is available or not. Secondly, we

use this result to prove the allocator correct.

5.1. The memory datatypes in Coq

As explained in Section 3.3, 32-bit binary addresses are represented by the

DWORD type. On the other hand, the points-to relation is a function from

Cursor 32× Cursor 32 to an assertion logic formula such that for all p, q of type

Cursor 32 and v of type DWORD, p..q 7→ v ` p ≤ q. The type Cursor 32 is making

sure that p is actually smaller that q and that no wrap-around has occurred.

When p and q are DWORDs there is a coercion into a Cursor 32.

For convenience, many instruction rules use syntactic sugar like p 7→ v as

a notation for ∃(q : Cursor 32), p..q 7→ v. This is unfortunate as it implies that

if we had more information about q by using these rules we would lose it. For

example, assume we have a rule of the form {p 7→ } mov[p], v {p 7→ v} and that

we want to prove {p..q 7→?} mov[p], v {p..q 7→ v}. By applying the assumption

we would have to prove that {p 7→ v} entails {p..q 7→ v}, which is not provable,

unless we extract some information about q before applying the assumption.

In particular, there are two things we need to know. The first is that q was a

DWORD and that q = p+ 4, and the second is that q has not wrapped around.

In order to retrieve these two pieces of information from p..q 7→ v we need to do

some non-trivial Coq hacking.

We would like to point out that the only way to avoid this would have been

to reformulate all the assembly rules with the explicit offset as above in the

points-to relation. However, the problem arises again when the chunk of memory

is represented by list. For example, assume that p..q 7→ s where s is a list of

DWORDs. If we perform a case analysis on the list the first case is typically

s = a :: l for some a : DWORD and some list l. As a result we get that there
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exists a cursor q′ such that p..q′ 7→ a and here we get into the same trouble

again. Although this time we know q′ is not top we still need a lemma in order

to retrieve the piece of information that says that q′ = p + 4. The lemma is

stated as follows:

Lemma 1. Let p, q be two DWORDs and v a value also of type DWORD, p..q 7→
v ` q = p+ 4

This lemma it is somewhat easier than recovering that q has not wrapped

around. However, it still required some non-trivial effort. The reader should note

the subtlety of this lemma. In the above, p and q are cursors that came from

a DWORD. Hence their value cannot be top. This means that the predicate

p..q 7→ v is implicitly saying that p+ 4 is not wrapping around since p and q are

cursors and that in this datatype the addresses are sequential.

All in all, our hunch for a possible solution would be to define the points-to

relation in such a way that it carries the information about what the second

cursor is and to formulate a theory about cursors that allows us abandon the

use of DWORDs.

By virtue of this effort we can now decide whether a chunk of memory is at

the end of the memory address space or not:

Lemma 2. Let base and limit be of type Cursor 32 and let buf be a list of
memory cells of type DWORD. If base..limit 7→ buf ∗ limit ..(limit +4) 7→ !! then
either

∃s1.base..(base+4) 7→ s1∗∃s2.(base+4)..limit 7→ s2∗limit ..(limit+4) 7→ !! (12)

or
base = limit (13)

Proof. The proof is by case analysis on buf . If buf is the empty list then this
implies base is equal to limit , thus satisfying (13).

If buf is composed of a cell a and a list l then there exists a p of type Cursor
such that base..p 7→ a and p..limit 7→ l. We proceed by case analysis on p. If p
is a DWORD by Lemma 1 then p is equal base + 4, thus satisfying (12). If p is
> then base..> 7→ a is false. Since this was an assumption the case is vacuously
true.
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5.2. Specification for the allocator

The specification for the example in Figure 2 has the following pattern,

allocSpec , ` ((safe⊗Q1 ∧ safe⊗Q2)⇒ safe⊗ P )� i..j 7→ c⊗ Inv

Two continuations, namely Q1 and Q2, are defined to state what happens

upon success and failure, a pre-condition P together with an invariant Inv

specifying that there exists a storage whose ends are bounded by an unmapped

memory region and that there exists an IDT containing the pointers to the

handlers.

More precisely, the precondition is defined as follows:

P , EIP 7_ i ∗ INTL 7_ 0 ∗ EDI? ∗ ESP 7_ sp ∗ (sp−4..sp)? (14)

The EIP points to the beginning of the code, INTL is the register keeping track

of the level of interruptions, EDI is a temporary register and ESP is the stack

pointer.

Upon failure the machine will jump to the handler, hence we have to ensure

that the machine will be safe to run whenever this jump will be performed. This

is expressed by the first of the two post-conditions:

Q1 , EIP 7_ fail ∗ INTL 7_ 1 ∗ EDI? ∗ ESP 7_ (sp−4) ∗ (sp−4..sp)? (15)

which states that there exists a handler which is going to take on the computation

from the address fail with the INTL set to 1 and the stack pointer containing

the return address to the original code.

Also, we make sure the machine will be safe upon success. We do this by

defining the other post-condition to be:

Q2 ,EIP 7_ j ∗ INTL 7_ 0 ∗ ESP 7_ sp ∗ ((sp−4)..sp)?∗

∃p,EDI 7_ (p+4) ∗ (p..(p+ 4))?
(16)

which states that there is a program which is safe to run from the address j

with the EDI register pointing to the end of the allocated memory and with the

interrupt level set at zero in case the allocator succeeds.
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Furthermore, we have the following invariant:

Inv , ∃base count .infoBlock 7→ base ∗ ∃s, base..count 7→ s

∗ count ..(count + 4) 7→ !! ∗ IDTR 7_ idt

∗ Flags ∗ IDT[exn.ExnGP ] 7→ fail

(17)

which states that the information block infoBlock points to a chunk of memory

bounded at the top end by the unmapped region, and the Interrupt Descriptor

Table is properly set up in the memory.

5.3. Proof of the specification

We prove the following theorem showing that implementation of the allocator

respects the specification:

Theorem 1. Let P , Q1, Q2 and Inv as respectively in (14), (15), (16) and (17).
Moreover, let c be the code in Figure 2. The specification

` ((safe⊗Q1 ∧ safe⊗Q2)⇒ safe⊗ P )� i..j 7→ c⊗ Inv

is sound. [Coq proof]

Proof. (Sketch). By unfolding the definition of the program there exists i1, i2, i3,
i4, i5 and i6 of type DWORD pointing at each single instruction of the program:

i..i1 7→ mov ESI, info ∗
i1..i2 7→ mov EDI, [ESI] ∗
i2..i3 7→ mov [EDI], 0 ∗
i3..i4 7→ add EDI, 4 ∗
i4..i5 7→ mov [EDI], 0 ∗
i5..i6 7→ add EDI, 4 ∗
i6..j 7→ mov [ESI],EDI

Proving the first two instructions correct is only a matter of applying the proper
rules using the composition rule (5).

First, we apply the instruction rule for the first instruction by instantiating
it with the proper parameters:

`safe⊗ EIP 7_ i1 ∗ ESI 7_ info ⇒ safe⊗ EIP 7_ i ∗ ESI?
� i..i1 7→ mov ESI, info

For the second instruction we apply the following rule:

`safe⊗ (EIP 7_ i2 ∗ EDI 7_ v ∗ ESI 7_ info ∗ info 7→ base)

⇒ safe⊗ (EIP 7_ i1 ∗ EDI? ∗ ESI 7_ info ∗ info 7→ base)

� i1..i2 7→ mov EDI, [ESI]

21



We end up with the following precondition which we name P ′ with the
program pointer pointing to the third instruction:

P ′ = safe⊗ EIP 7_ i2 ∗ EDI 7_ base ∗ ESI 7_ info ∗ info 7→ base

∗ INTL 7_ 0 ∗ ESP 7_ sp ∗ (sp− 4)..sp 7→ spval ∗ Inv

The instruction in i2 is going to perform a write operation to the location
pointed to by base. By unfolding the invariant Inv we know there exists base
and limit of type DWORD bounding the memory:

info 7→ base ∗ base..limit 7→ s ∗ limit..(limit+ 4) 7→!! ∗ IDTR 7_ idt∗
Flags ∗ IDT[ExnGP] 7→ fail

on the other hand we do not know whether there is space left between them. So
we perform case analysis on the memory chunk by applying Lemma 2, resulting
in

base..(base + 4) 7→ s ∗ (base + 4)..limit 7→ s ∗ limit..(limit+ 4) 7→!!

∨ base = limit ∗ base..base + 4 7→ !!

This assertion is indeed part of P ′. Thus, when applying (5) we will have to
prove that P ′ implies the precondition of the instruction that we are going to
use. This means the disjunction above will appear in the negative position. So
we have to first split the disjunction into two sub cases. For the case in which
the memory has run out we will apply (6) and for the other we will apply (3).
In this case, we have that base = limit and the exception is thrown. The move
operation performs a write operation into the unmapped location. Let P ′′ be the
precondition obtained from P ′ where base = limit. We use rule (6) instantiated
as follows:

.(safe⊗(EIP 7_ fail ∗ INTL 7_ 1 ∗ ESP 7_ sp− 4 ∗ (sp− 4)..sp 7→ j))

⇒ safe⊗ (EIP 7_ i2 ∗ INTL 7_ 0 ∗ ESP 7_ sp ∗ (sp− 4)..sp 7→ spval)

� (i2..i3 7→ (mov[EDI], 0))

⊗ (EDI 7_ limit ∗ limit..(limit+ 4) 7→ !! ∗ IDTR 7_ IDT[ExnGP] 7→ fail)

This rule can be turned into a pattern suitable for applying (5) by commuting
⊗ with � and distributing ⊗ over the implication. Note that P ′′ entails the
precondition of the instruction rule above and Q2 entails the postcondition of
the instruction rule. Hence the case is completed.

The second case is when the program goes through and it makes another
write, after which there is a successful case and an unsuccessful one. These two
cases are similar to the previous one, only that when the write is successful we
have to prove the rest of the program correct, but this can be shown in the
standard way.
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6. Related Work

The work most closely related to ours is naturally the work by Jensen et al.

that we build on [14]. It allows specifications to be written in a clean and intuitive

manner even for code that does not follow a basic-block like structure with only

one entry and one exit point. It should be noted, however, that there are program

logics that use Hoare triples on code with multiple exit points, such as programs

containing break-statements from loops. One example is Appel’s mechanised

semantics library in Coq for C-minor [2] and the mechanisation in HOL4 of

x86 and ARM assembly by Myreen et al. [16]. Both of these mechanisations

have special postconditions that are used to handle unstructured control flow.

Other relevant work includes Chlipala’s Bedrock framework that allows assembly-

like programs to be verified in Coq [10]. Chlipala’s work focusses heavily on

automation. Its specification logic (XCAP) is an higher-order separation logic

which allows to prove properties about programs that pass around other programs

using code pointers. On the other hand, the logic and semantics do not support

code as data.

Our work has similarities with Crash Hoare Logic (CHL) [9]. In modern

operating systems, whenever a crash or a reboot occurs, a filesystem is able to

restore the data to a consistent state. CHL is a Hoare logic to prove correct

filesystems with recovery facilities of this kind. The specification logic has pre

and postconditions as in standard Hoare logic with an additional crash condition

which states that if a crash occurred the data stored on the disk is consistent.

We adopt a very similar idea in that we add an additional condition in case

an exception occurred. The advantage of having an unstructured specification

logic is that we can express the crash condition as an assertion composed with

the original postcondition by using the logical operator ∧ (and).

None of the work mentioned above currently support interrupts. Seminal

work on mechanising interrupts was made by Feng et al. [12]. They formalise

what they call an Abstract Interrupt Machine (AIM) in two layers. The first is a

machine in which programs are interrupt-aware, i.e. they have access to interrupt
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low-level instructions (e.g. sti, cli and iret). The second defines an extension

of the first by adding thread queues and extending the language with explicit

primitives for manipulating the thread queue. For the logic they employ a

rely-guarantee separation logic with preconditions only. The handler is specified

in such a way that the memory of the thread is guaranteed to be left untouched.

More recent work [8] focusses on certifying device drivers that use the interrupt

mechanism to communicate with the operating system.

On the other hand, our work focusses on handcrafted unstructured low-

level code whose semantics allow for self-modification. This presents additional

challenges as it prevents us to have more abstractions (unless we implement and

verify them on top of the existing formalisation) and automation to rely on, but

on the other hand, allows us to verify a wider class of programs.

7. Conclusions and Future Work

This is preliminary work towards formalising the interrupt mechanism which

was necessary to understand the potential of the proposed logic and ultimately

move towards the formalisation of timer handlers and schedulers in uniprocessor

machines like the Intel x86.

As a first step towards this goal, we have extended an existing mechanisation

of x86-assembly to support synchronous interrupts. By using Jensen’s model we

inherit a fairly concrete model of the Intel x86 machine to reason about mutable

code and we stay true to this design philosophy by storing the IDT and all

handlers in memory, allowing them to be dynamically updated by the processor.

Our extensions to the program logic are also very conservative. By allowing the

memory points-to predicate to state that certain memory is unmapped (and

not only what it contains), we obtain a logic that is expressive enough to verify

programs that use synchronous interrupts. In particular, our example proves

that the logic is suitable for formalising programs which generate a general

protection exception. By conservatively turning all errors into exceptions we

guarantee that sound rules in the old formalisation remain sound and that new
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rules can be added when needed to handle other kinds of exceptions with the

same pattern we used.

We believe that this is a testament not only to the validity of our design

decisions, but also of the quality of the original mechanisation.

As future work, we would like to formalise asynchronous interrupts, thus

ultimately being able to verify timer handlers, schedulers and concurrency.

However, when an interrupt fires at an unpredictable point in time it introduces

interference. This is true even for interrupts that do not share memory with

other threads. In fact, flags and registers in the model are treated as part of

the memory, and as a result, so is the stack. Indeed, there are many points

of inspiration from Feng et al.’s work, such as rely and guarantee separation

logic to ensure well-behaved handlers restore the stack and the flags correctly. A

more modular way of reasoning about shared mutable state would be that of

Svendsen and Birkedal’s work [21]. Indeed, it would be interesting to investigate

the connections of both logics with the tensor operator (⊗).

Finally, in this paper we proved the correctness of only one kind of exception,

which we deemed of most interest. We think verifying exceptions will be much

more useful once we assume concurrency – or implement it by means of a verified

scheduler as in Feng et al [12]. In particular, we could use our machinery to

verify that even if a thread throws an exception the machine continues running.

In particular, the process is killed by the operating system which then schedules

another one.
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Appendix A. Lemmas proved in Coq

This section is for review purposes only. Here, we report the contributions

we made to the Coq development.

The main example is contained in the Coq file allocexp.v: alloccases is

an auxiliary lemma, given a memory region either the cell pointed to is present
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in the memory or is unmapped; allocSpec is the specification of the allocator;

allocInv is the invariant that contains the IDT and the memory region.

----------------------

./coqdev/x86/allocexp.v

----------------------

Lemma alloccases

Lemma inlineAlloc_correct

Definition allocSpec

Definition allocImp

Definition allocInv

In cursor.v we added a couple of lemmas for reasoning about cursors.

----------------------

./coqdev/cursor.v

----------------------

Lemma inRange_tau

Lemma inRange_tau2

In pointsto.v we define the points-to relation for the unmapped memory. Points-

to relations for the memory are instances of the Type Class MemIs previously

defined in the same file.

----------------------

./coqdev/pointsto.v

----------------------

Program Instance memIsUnmapped: MemIs unmap

Notation "!!" := unMap.

Corollary memIsDWORD_range

Lemma memIsDWORD_no_wraparound_aux

Lemma memIsDWORD_no_wraparound

Lemma memIsDWORD_q_distance

This Coq file triple.v contains old-style Hoare Triples for reasoning inside

the instructions, in other words, to reason about micro-instructions. Since we

add a catch function to the semantics we need new triples to deal with it.

----------------------

./coqdev/triple.v

----------------------

triple_memIs_setDWORDSep
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memIsDWORD_q_distance

memIsDWORD_range

Lemma triple_catchLetGetReg

Lemma triple_catchLetGetFlag

Lemma triple_catchSetRegSep

Lemma triple_catchLetGetRegSep

Lemma triple_catchLetGetSepGen

Lemma triple_catchLetGetSep

Lemma triple_catchLetGetDWORDSep

Lemma triple_catchLetGetDWORDSepGen

Lemma triple_catchLetGetBYTESep

Lemma elim_catch: forall P Q c,

TRIPLE P c Q -> TRIPLE P (catch c) Q .

Corollary readMem_unmapped_BYTE

Corollary readMem_unmapped_DWORD

Corollary readMem_unmapped_DWORD_or_BYTE

Lemma setDWORD_unmapped

Lemma triple_catchRaiseDWORD

Lemma triple_catchRaiseDWORD_2

Lemma byteIsNotMapped

Lemma retrieve_distanceGen

Lemma retrieve_distance

Lemma triple_catchRaise

Lemma triple_raise

Lemma triple_catchDoSetDWORDInProcStateExp

Lemma triple_catchLetGetDWORDInProcStateExp

Lemma triple_catchLetGetDWORDorBYTEInProcStateExp

Lemma triple_catchSetDWORDInProcStateExp

triple_memIs_setDWORDSep

triple_memIs_setDWORDSep

The Coq file instrrules.v contains the instruction rules we added in the

specification logic. We modified some of the instructions that use the specification

i..j 7→ v instead of p 7→ v.

----------------------

./coqdev/x86/instrrules.v

----------------------

Lemma evalReg_rule_catch

Lemma getReg_rule_catch

Lemma evalMemSpec_rule_catch
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Lemma PUSH_M0_rule_exp_src

Lemma MOV_MC_rule_exp

Lemma MOV_RMb_rule_exp

Lemma MOV_MV_rule_memIs
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