A Proof of the S]" Theorem in Coq

Vincent Zammit

March 1997

Abstract

This report describes the implementation of a mechanisation of the theory of computation in the
Coq proof assistant which leads to a proof of the S;* theorem. This mechanisation is based on a
model of computation similar to the partial recursive function model and includes the definition of
a computable function, proofs of the computability of a number of functions and the definition of
an effective coding from the set of partial recursive functions to natural numbers. This work forms
part of a comparative study of the HOL and Coq proof assistants.

1 Introduction

This report illustrates the mechanisation in Coq of the theory of computation leading to the S]* theorem.
This work is a case study using Coq and is part of a comparative study of the theorem proof assistants
Coq and HOL. The definitions and proofs of even the most trivial results of computability tend to be
of a very technical nature much similar to the proofs of theorems one finds in mathematical texts, and
thus this theory offers an extensive case study for the analysis of the two approaches of mechanical
verification.

The implementation illustrated in this report is based on a model of computation similar to the
definition of partial recursive functions found in the literature on computation (see for instance [3, 10, 12].)
The next section introduces the definition of partial recursive functions and section 3 gives a brief
overview of the Coq theorem prover. A model of computation based on partial recursive functions and
its formalisation in Coq is then given in section 4. In section 5, the key notion of a computable function
is defined, and several functions are proved to be computable according to this definition. The result
given in this section are then used in section 6 in the definition of an effective coding of partial recursive
functions and the proof of the S}* theorem. Conclusions are finally given in the last section of this report.

A different mechanisation of the theory of computation has also been implemented in HOL. This
mechanisation is based on the URM model of computation and includes a proof that partial recursive
functions are URM computable. This mechanisation is illustrated separately in [13]. The results of the
comparative study will be published in [14].

2 Partial Recursive Functions

The set of partial recursive functions is defined in the literature (see for instance [3, 10]) as the smallest
set of n-ary partial functions on natural numbers which contains the three basic types of functions:

e the zero functions: Vn,xo, ... ,Tn—1-Zn(x0,. . ;Tn—1) =0,

e the successor function: Vio.S(xo) = xo + 1,

e and the projection functions: Vn,i < n,xo, ... ,Tn_1.U.(T0,.-. ,Tn_1) = T4
and which is closed under the operations of:

Substitution Given a k-ary function f, and k n-ary functions § = (go, ... ,gx—1), the substitution fog
is defined as the function which maps a vector & = (o, ... ,Z,—1) into the application of f on the

result of the application of the functions in § on &:

f62(330; s 7mn71) =

f(gO($0;--- 7$Tl*1)7"' 7gk*1(w07"' 7wn*1))‘

Recursion Given an n-ary base case function # and an (n + 2)-ary recursion step function o, the
(n + 1)-ary primitive recursive function R(f; o) is defined as follows:

R(ﬂ;a)(O,azg,... 7mn71) = 6(3307"' 7$n71)
R(B;0)(x+ 1,20, ,Tp—1) o(x, R(B;0)(x, @0, ,Tn—1),T0,--- »Tn—1)-

Minimalisation Given an (n + 1)-ary function f, its unbounded minimalisation is the n-ary function

given by:
the least = s.t. f(z,zo,...,2,—1) =0, and for
o all o' <, f(«', 20, ,Tp-1)
,uw(f(ﬂ?,ﬂ?(),... 7wn*1) _0) - is defined
undefined if no such z exists.

It is shown that the set of partial recursive functions is equal to the set of computable functions defined
according to any proposed model of computation [3, 10, 12]; and a mechanisation in HOL [5, 6] of the
result that any partial recursive function is computable according to the URM model of computation is
illustrated in [13]. The mechanisation described in this report is based on a model of computation which
is very similar to the above definition of partial recursive functions. As a result proofs that particular
functions are computable are relatively straightforward.

3 An Overview of Coq

The Coq system is an implementation in CAML of the Calculus of Inductive Constructions (CIC) [1], a
variant of type theory related to Martin-Lof’s Intuitionistic Type Theory [7, 8] and Girard’s polymorphic
A-calculus F,, [4]. Terms in CIC are typed and types are also terms. Such a type theory can be treated
as a logic through the Curry-Howard isomorphism (see [11, 8] for introductions of the Curry-Howard
isomorphism) where propositions are expressed as types. For instance, a conjunction AA B is represented
by a product type A x B, and an implication A = B is represented by a function type A — B. Also,
a term of type 7 can be seen as a proof of the proposition represented by 7, and thus theorems in the
logic are nonempty types. For example, the function

curry = Af Az \y. f(z,y)

which has type (AxB) — C) -+ A — B — C is a proof of the theorem ((AAB) = C) = (A = B = ().
Objects which have the same normal form according to Bdi-conversion are called convertible, and are
treated as the same term by the logic. d-conversion involves the substitution of a constant by its defining
term and ¢-conversion is automation of inductive definitions. The CIC implemented in Coq differs from
that of LEGO [9] by having two sorts of universes, an impredicative universe for sets in which functions
are computable, and a predicative universe for types and propositions in which functions (predicates)
need not be computable (decidable).

Due to the Curry-Howard isomorphism, theorem proving corresponds to the construction of well
typed terms and the core inference engine of Coq is basically a type checking algorithm of CIC terms.
Terms whose type is a theorem are usually called proof objects and are stored in Coq theories. The
Coq system provides the specification and proof language Gallina in which users perform the actual
interactive theorem proving. Gallina constructs include commands for specifying definitions and for
tactic based theorem proving and Coq users can extend the Gallina language by implementing new
contructs in CAML. The files which Gallina accepts during theorem proving are usually called scripts
(or proof scripts).

4 Partial Recursive Functions as a Model of Computation

The following section illustrates the syntax and semantics of PRF.

4.1 The Syntax of PRF

The syntax of the language PRF is defined such that each language construct corresponds to one of the
three basic functions or to one of the three operators which build up partial recursive functions:

prf ::= Zero: prf

| Succ: prf

| Proj: nat — prf

| Sub: prf — prf — nat — nat — prf
| Rec: prf — prf — prf

|

Min: prf — prf

It should be noted that a particular PRF program represents a different partial function for each
arity. For example, although Succ is defined in order to represent the successor function S, it also
represents the n-ary functions which return the successor of the first number of their input:

Ao, @1, Tp—1)-S(x0).

The semantics of PRF programs is described in detail in the next section.

The only major difference between the above syntax and that of the partial recursive functions
described in the previous section is the construct Sub which denotes the substitution of a single function
rather than of a vector or list of functions. However it is shown (Sec. 4.3) that this construct can be
used to define a function Subl: prf — list prf — prf whose syntax and behaviour correspond to the
substitution of a list of functions into a function.

This syntax is defined in Coq as the inductive set prf.

4.2 The Semantics of PRF

As it was stated above, programs in PRF are defined in order to compute n-ary partial functions which
map natural numbers to natural numbers; and the semantics of such programs is given through the
definition of a relation | C (PRF x list N x N). Given a program p, a list [and a natural number x
such that (p,l,z) €], we say that p converges to x having the list [as its input, and we use the notation
p{ly | z. Since a program p in PRF corresponds to some partial function fIS”) for each arity n, the
behaviour of p is defined such that

p() Lo if "o =,

where vl(") denotes the vector with n components which corresponds to the list {. If the length of [,
denoted by fl, is greater or equal to n, then vl(n) consists of the first n elements of [, otherwise it consists
of all the elements in [followed by (n — #l) zeros.

The predicate converges_to: prf — list nat — nat — Prop is inductively defined in Coq to repre-
sent the relation |, and thus in this text | is no longer assumed to be a subset of the tuple (PRF x list Nx
N), and the symbol ‘]’ is used only in the notation p(l) | = as an abbreviation for converges_to p [v.

The semantics of PRF is illustrated below:

Zero For any list [, Zero converges to 0.
Zero(l> 40

Successor Given any non-empty list x : [, Succ converges to the successor of z. In order that Succ
converges for all lists, its semantics is defined such that it converges to (s 0) if its input is an
empty list.

Succ([]) } (5 0) Succ(x : 1) | (S x)

Projections Given a list [, the projection Proj ¢ converges to zel ¢ . The function zel is defined such
that zel i [returns the (i + 1)th element in [if ¢ < §I, otherwise it returns 0.

(Proj i)(l) | (zel i D)

Substitution The substitution of two functions Sub f g n m is based on the notion of function com-
position f’ o g’ where the output of ¢’ is given as the input of f’. However in the substitution
Sub f g m m part of the input of g as well as its output is given as the input of f, If [is the input
of g then the sublist having the m elements starting at offset n of the list [is given as input to g
together with the output z where g(l) | . The program Sub f g n m converges to some value y
given the input list [, if and only if:

e The program g converges to some value x for the input I = [xg,z1,... ,Zy],
e f converges to y given the input [z}, 2], ,... , 2} ,,_1] ++[z], where
zp = x fi<=w
= 0 ifé>w.

The semantics of substitution is given by the rule:

g{l) l = f(pcombine n m I z) |y
(sub f g nm){l)ly

where pcombine n m [x represents the list made up by appending x at the end of the sublist of {
containing the m elements starting at offset n:

pcombine n m | x =[zel n l,zel (n+1) I,...,zel (n+m—1) [, z]
We use the notation f o]} ¢ as an abbreviation for Sub f g n m.

Recursion The behaviour of Rec 8 ¢ corresponds to the definition of the recursion operator described
in section 2. If the empty list is given as the input of Rec 3 o then it is treated as the singleton
list containing 0 such that if 8 and o are total functions then so is Rec 3 o.

B Lo B() Ja
(Rec # o)) vz (Rec B 0)(0: 1) b

(Rec B a)(h:1)|r olh:r:l)]x
(Rec B a){((s h): 1)l x

Minimalisation The behaviour of the minimalisation Min f is also defined such that it corresponds to
the definition of the minimalisation operator described in section 2.

minl (Ah.converges_to f h:l) z

(tin F)(1) @

The term (Mh.converges_to f h:l) denotes the binary relation between natural numbers such
that h relates with y if f(h : [} | y. The predicate minl: (nat — nat — Prop) — nat — Prop
is defined such that given a relation R and a natural number n, and using the notation z ~g y
to denote that (R z y) holds, then minl R n holds if n ~g 0 holds and that for all m < n there
exists a 7 > 0 such that m ~g j.

A relation allsucs is first defined such that allsucs R n holds if for all m < n, there exists some
k such that m ~g (S k)

0~pg (S k) (s m) ~g (S k) allsucs R m
allsucs f 0 allsucs R (S m)

and then minl is defined by the following two rules:

0~gr0 (S n) ~p 0 allsucs R n
minl R 0 minl R (S n)

If R is a single-valued relation then minl R n holds if n is the smallest number such that n ~g 0
and for all m < n, there exists a unique j (depending on m) such that m ~g j. The predicate
minl R is single-valued if R is a single-valued relation; and for any two relations, R and @, if
they are equivalent (Vz,y.(x ~¢ y) & (x ~g y)) then so are the predicates minl @ and minl R.
The first result is proved by rule induction on minl and the second one is proved by applying the
principle of mathematical induction on the proposition (Vn.minl @ n < minl R n) assuming that
() and R are equivalent.

The language PR.F is proved to be deterministic (i.e. the relation converges_to is single-valued) and
in the next section it is shown how a function Subl: prf — list prf — prf which corresponds to the
substitution of a list of functions is constructed in terms of Sub. It should be noted that the set prf
cannot be defined such that it contains the construct Subl because the term prf does not occur strictly
positively in prf — list prf — prf (see [2] page 74).

4.3 Substitution of a List of Functions

Given a program f and a list of programs gl = [go,91,-.- ,gk—1], Subl f gl should be a program such
that for all lists of natural numbers [and values (zo, 21, ... ,Zg—1), (Subl f gl)(l) | y if:

e forall i <k, g;(I} | x;, and

L] f([:l?o,.’l,'l, . ;xk—1]> J, Y.

Given f and gl, the value y can be computed by substituting (using Sub) the programs go, g1, - .- , gk—1
into each other so that the output of each program g,, is passed, together with its input, to the next
program ¢,,+1. Thus the input of each program g; is made up of the original input of gy and all the
outputs of the previous programs g; for j < ¢; finally the outputs of all the programs in gl are given as
the input to f. If for any program p, one can find a number n, such that the behaviour of p depends
only on the first n, elements of the input list, then the required substitution can be constructed by:

Subl f gl =(---(f 025_1 Je—1) O?ngrkfz O?zg+1 91) ogg 9o

where n, is max(ng,,. .. ,ng,_,) so that the behaviour of each program g; is not altered by appending
the outputs of the substituting programs appended at the end of its input.

The value of n, can be given by a function n(p), which we call the natural arity of p. This function
is defined in Coq by:

Fgep natarity Zero = 0
Succ = (S 0)
Proj i = (S 1)
Sub f g n m = max (natarity g) (n + m)
Rec b s = max (S (natarity b) (pred (natarity s))
Min f = pred (natarity f)

and its significance is given by the theorem

FVp .
(length nat [) = (natarity p) =
V. (converges_to p |l z) &
(convergesto p (I ++ lp) =)

The function Subl is then defined recursively

FgerSublin f m [| n = Sub f Zero 0 0
fmg] n =Sub f g mmn
fmgr:iga:gl n =Sub (Subliin f m (g2:9l) (Sn)) ¢1 0 (m+n)

Fgep Subl f gl = (Subl_in f (maxarity gl) gl 0)

F e maxarity [go, ..., gz] = max (natarity go, ..., natarity g,)

and it is proved that its behaviour is as required.

FVYfgllew.
(converges_to (Subl f gl) | z) &
(Jzl. (mapR prf nat (Azl. converges_to g I) gl zl) A
(converges_to f zl x))

The relation mapR corresponds to the standard map function over lists, in the sense that given a relation
R and two lists | = [zo, 21,... ,2n—1] and ' = [z{,2},... ,2}),_;], mapR R I I’ holds (or, ~(mapR R) "
if and only if §l = #I’ and all corresponding pairs of elements in [and I’ are related to each other, i.e.
Vi < n.x; ~g x}.
a~pRr b k N(mapR R) l

I ~(mapR R) I (a:k) ~(mapR R) (b:10)

5 PRF Computability

In this section we illustrate how PRF programs are used as a model of computation through the definition
of the notion of a computable function. The type of functions which are considered for computability
are represented as single-valued relations between vectors of natural numbers and natural numbers. We
first describe how vectors have been defined in Coq, then we illustrate the definition of a computable
function and how particular functions can be proved to be computable.

5.1 Vectors
A vector of a set A is defined by the inductively defined set:

vector A ::= Vnil: (vector A 0)
| Vcons: (n: nat) - A — (vector A n) — (vector A (S n))

We use the notation () to represent the empty vector Vnil A and (z,#"™), or simply (z,7), to
represent Vcons A n x ¥. Since the set vector A n depends on n, in general an expression of type
vector A e; cannot be defined to have the type vector A es even if it can be proved that e; = e;. For
example although for all n, m, one can prove that (n+m) = (m+mn), a vector of type vector A (n+m)
cannot be used as having type vector A (m +n). However a function Change_arity has been defined
such that given a vector #: (vector A n) and a proof ¢ of (n = m), then Change_arity n m t A @ has
type (vector A m); and it is proved that:

I Change arity_eq =
Vn (t: (n=n)) A ¥. (Changearity nnt A ¢) =7

For instance, if #("+™) is a vector of type vector nat (n -+ m) then the term
Change arity (n + m) (m + n) (plus_sym n m) nat #"+™

has type vector nat (m +n); and by rewriting with any theorem of type ((n +m) = (m + n)) and then
by Change_arity_eq, one can substitute the above term with @™ in any expression. The theorem
plus_sym represents the commutativity of addition and has type Vn,m.(n +m) = (m + n).

The head, tail and any element of a vector is given by the relations:

Vhd A (S n) (h,%) h Vtl A (S n) n (hi) T

Vel Ainta
Vel A 0 (S n) (h,{) h Vel A (S i) (S n) (h{) =

as well as by functions:
e vhd: (A: Set) — (n: nat) — (vector A (S n)) — A,
e vtl: (A: Set) — (n: nat) — (vector A (S n)) — (vector A n) and
e vel: (A: Set) — (i, m: nat) — (Hl: i < n) — (vector A n) — A.

In general, properties of vectors are easier to prove if they are specified using the above relations,
although terms written using the respective functions are more readable and are sometimes more useful
in the proof of theorems requiring rewriting. Thus, both sets of definitions are implemented in Coq and
are proved to be equivalent, so that either one is used in making the mechanisation in Coq more elegant
and less laborious.

Finally a function vzel: (i, n: nat) — (vector nat m) — nat which corresponds to the function
zel over lists is also defined, and vectors are mapped into lists and vice-versa through the functions

e listify: (A: Set) — (n: nat) — (vector A n) — (list A) and

e vectrify: (A: Set) — (I: 1list A) — (vector A (length A I)).

5.2 Partial Functions

The type of partial functions of arity n mapping vectors into natural numbers, pfunc:nat — Type is
defined as the dependent product type of single-valued relations between vectors and numbers. This is
given by the definition of the dependent record!

Fgep pfunc arity := mk_pfunc
{ reln : (Rel (vector nat arity) nat);
One_valued: (one_valued2 (vector nat arity) nat reln)}

where Rel A B is the type of the relations between the sets A and B.

The field reln represents a relation between vectors having arity components and natural numbers,
and the field One_valued is a proof that reln is single-valued.

The type of all partial functions is then defined as the dependent product

Fies pfuncs ::= Pfuncs: (n: nat) — (pfunc n) — pfuncs

A function g: (vector nat n) — nat defined in Coq can be used to specify an object of type pfunc n
since f obviously describes a single-valued relation R such that V¥, 2.7 ~r = < ¢(¢) = x. This is achieved
through a function pfuncize: (arity: nat) — ((vector nat arity) — nat) — (pfunc arity).

5.3 Computable Functions

A PRF program p is said to compute an n-ary partial function f:(pfunc n) if for all vectors ¥ and
natural number z, the relation in f holds if and only if the program p converges to x with input
lz = listify nat n 7.

Fdes computes p n f =
V0 . (relnn f ¥ z) &
(converges_to p (listify nat n ¢) z)

LA record f of type pfunc n, is constructed by mk_pfunc R H where R has type Rel (vector nat m) nat and H
has type (one_valued2 (vector nat m) nat R). The functions reln and One_valued select R and H respectively
from f.

and a function is said to be computable if there is some program which computes it.
Fdes computable n f = Jp. computes p n f
A predicate P is proved to be decidable by showing that its characterstic function fp given by:

fp(@) = 1,if P(9)

= 0, otherwise

is computable.
Given a single-valued relation R; which constructs the partial function f: pfunc n, a proof that f
is computable involves the construction of a PRF program p: prf such that:

VU, z.p(listify 0) | v & 0 ~g, ©.

This proof is relatively straightforward if Ry is specified through some Coq function gy (in the sense
that f = pfuncize n g;) since obviously

VU,2.0 ~r, & reln n f 7 2 & gf(¥) =2
and the equivalence
V¥, z.p(listify @) | o & gf(0) =2

can be proved by showing that:
Vi.p(listify @) | g (7).

The required equivalence follows by applying the fact that Ry is total and that computes_to is a single-
valued relation.
The following tables list a number of functions which are proved to be computable.

5.4 Basic Functions

|| Function name | Definition | PRF program ||
Undefined Undef(l_f) =1 Diverges_all = Min Succ
Zero Z(@) =0 Zero
Successor Sx)=z+1 Succ
Projections U (zo, ... ,Zp_1) =5 Proj i, if i <mn
Diverges_all, if i > n

5.5 Rearrangement

The function Rarr: prf — list nat — prf is defined by

l_defR.aI‘I‘ f [io, il, ey Z-n,1] =
Subl f [Proj ig, Proj 41, ..., Proj ip—1]

such that if we define the list I; = [ig,%1,... ,%n—1] then, if f{[zo,z1,... ,Zm-1]) | r then Rarr f I;
converges to the same value r if it is given the list which is made up by rearranging the elements in
[0, 21, ... ,Tm—1] according to the values in I;:

Rarr f li<[.’1,'io,£l?,'1,. .. 7xin—1]> J,T'.

5.6 Arithmetic

Identity in(z) = Identity = Proj 0
Constants Cn(’l_f) =n Constant (0 = Zero
Constant (S n)
= Subl Succ [Constant n]
Addition O+z1 =21 Add = Rec Identity
8(1’0) +x = S(Z’g + 1’1) Rarr Succ [1]
Multiplication Oxz1 =0 Multiply = Rec Zero
8(1’0) Xxry =21 + (Z’O X 1’1) Rarr Add [2, 1]
Power .1:(1) =1 Power’ = Rec (Constant 1)
:L’f(m) =z X (Z’TO) Rarr Multiply [2, 1]
Power = Rarr Power’ [1, 0]
Note that Power’ ([xg, z1]) | 27°
Predecessor pred(0) =0 Pred = Rec Zero
pred(S(z)) = = Identity
Subtraction z1 — 0= Subtract’ = Rec Identity
1 — S(zo) = pred(z; — zo) (Rarr Pred [11)
Subtract = Rarr Subtract’ [1, 0]
Difference diff (0, 1) = o1 Difference
diff (S(zo),0) = S(zo) = Subl Add [Subtract, Subtract’]
diff (S(zo), S(z1)) = S(xo) Since diff(z,y) = (z —y) + (y — z)

5.7 Boolean Operations

Conditional

if 0 then z; else x5 = x4
if S(zo) then z; else zo =z

Cond = Rec (Proj 1)
(Proj 2)

Boolean identity 12(0) =0 Bid = Subl Cond [Identity,
1a(S(z)) =1 Constant 1, Zero]

Negation -n(0) =1 Neg = Subl Cond [Identity,
-n(S(z)) =0 Zero, Constant 1]

Conjunction OANz; =0 Conj = Subl Cond [Proj 0,
8(1’0) AN 1 = Lg(l'l) Rarr Bid [1],

Zero]

Disjunction 0VNzy = ta(xy) Disj = Subl Cond [Proj O,

S(xo)Vnzy =1 Constant 1,

Rarr Bid [1]1]

5.8 Predicates on Natural Numbers

Is zero is0(0) =1 Is0 = Neg
50(S(x)) = 0
Non zero non0(0) = Non0O = Bid
non0(S(z)) =1
Equality 0=n0=1 Equal = Subl IsO [Difference]
0 =n S(Cﬂl) =0
S(xg)=n0=0 Since z =y y = is0(diff (x, y))
S(z1) =n S(x1) = 0 =n 21
Inequality 0#v0=0 Different = Subl NonO [Differencel
0 751\] 8(321) =1
S(xo) # v 0 =1 Since = #n y = non0(diff (z, y))
S(z1) #n S(x1) = 0 #n 71
Less than 0<n0=0 Less = Subl NonO [Subtract’]
0 <y 8(321) =1
S(xo) <y 0=0 Since z <y y = non0(z — y)
S(Cﬂl) <N S(Z’l) =29 <N 21
Greater than To >N T1 =21 <N Lo Greater = Rarr Less [1, 0]
Less or equal o <y &1 = n(To >N T1) Less_eq = Subl Neg [Greater]
Greater or equal To >N T1 = —|N(:c0 <N :cl) Greater_eq = Subl Neg [Less]

5.9 First Occurence

Given a partial function f, (first f) is defined as the first natural number n such that f(n) > 0 and for
all m < n, f(m) is defined. If no such number exists, (first f) is undefined. If fp is the characteristic
function of some unary predicate P, then (first fp) returns the first number n such that P(n) holds.

First that first f First_that p
=minl (Am,n.isO(f(n)) =m) = Min (Subl IsO [pl)

5.10 Division

The quotient and remainder of a division operator can be defined by the partial functions div : N> — N
and mod : N> = N such that:

div(n,m) = q¢ifIr<mgm-+r=n
mod (n,m) = rifr<mand Iggm+r=n

Otherwise, one can define total, primitive recursive functions:
modt (0,m) = 0

modt (S(n),m) = 0,if modt(n,m)+1=m
= modt (n,m) + 1,if modt (n,m) + 1 #m

divt (0,m) = 0
divt (S(n),m) = divt(n,m)+ 1,if modt (n,m)+1=m
= divt (n,m),if modt (n,m) +1#m
such that divt (n,0) = 0 and modt (n,0) = n.
The partial functions div and mod are defined in Coq as the predicates div and mod respectively,

and the above total functions as the functions modt and divt. The predicates are then used to specify
the partial functions pf_div:pfunc 2 and pf_mod:pfunc 2. The program Divide:prf

Fgep Divide = Subl Pred [First (Subl Less [Proj 1, Rarr Multiply [0, 211)]

10

computes pf_div by calculating the predecessor of the first ¢ such that n < gm, given a list n: m : [as
input. Also, since
mod (n,m) =n — (m x div (n, m))

the program
Fgep Mod = Subl Subtract [Proj 0, Subl Multiply [Proj 1, Dividell

computes pf_mod.

6 Coding Programs and the S]' Theorem

6.1 Coding Domains

A coding of a set A can be obtained by defining two effective and injective functions @ : A — N and
B : N — A such that a is total, @ and 8 are inverses of each other and the predicate n is in the
range of a is decidable. By the term ‘effective’, it is meant that the function is computable in some
informal sense, and such notion is not defined in the implementation in Coq; although if one defines
a function f: A — nat, it can be assumed that f is an effective mapping. Also given two functions
f: A — Bandg: B — A, the predicate g is the inverse of f is defined such that it holds if and only
if Ya.g(f(a)) = a. Since functions in Coq are necessarily well formed, if g is the inverse of f, then f is
injective and g is surjective. The predicate b is in the range of f is then given by Ja.f(a) = b. This
predicate is specified in Coq by in_range: (A, B: Set) -> (A -> B) -> B -> Prop, and the range of f
is decidable if
Vb.{in_range f b} + {—in_range f b}.

The range of a function is obviously decidable if the function is surjective.

6.2 Coding Pairs

The bijection 7 : N> — N which maps pairs of natural numbers into natural numbers is represented in
Coq by the curried function pi: nat — nat — nat defined as follows:

l_def pi 0 0 =0
8n) 0O S (pin0 + n)
n (8m) =S (pinm + n + m)

The inverse of 7 is given by the two functions 7' : N - N and ;' : N — N defined mutually
inductively in Coq by

Fgep pil O =0
(8 n) = if_equal nat (pi2 n) 0 0 (S (pil n))
with
pi2 O =0
(8 n) = if_equal nat (pi2 n) 0 (S8 (pil n)) (pred (pi2 n))

where the term if_equal A n m a bis equal to ay if n =,4 m, and is equal to by if n #,4 m; and it
is proved that

F Vn. pi (pil n) (pi2 n)) =n

1
S

F Vn m. pil (pi n m)

F Vn m. pi2 (pi n m)

0
3

11

As a result, these functions are used to define the bijective functions vf_pi: (vector nat 2) -> nat
and vf_invpi: nat -> (vector nat 2) which represent an effective coding of the set vector nat 2. The
relation pfuncize vf_pi is computable, and so are the objects of type pfunc (S 0) which represent pil
and pi2.
Moreover, by nesting 7 (and m; L and Ty) it is possible to define effective codings for any size of
vectors. The function
§(w,z,y,2) = n(x(w,x)), (7(y,2)))

with inverse projections 51_1, 52_1, fg_land 54_115 used in the following section.

6.3 Coding Programs
An effective coding of PRF programs can be given by the functions v : PRF — Nand P: N —» PRF:

Y : Zero — 0
Succ — 1
Proj i = i x44+2
sub f g nm = £(y(f),v(g),n,m) x4+3
Rec f g = m(y(f),7(9)) x4+ 4
Min f — y(f)x4+5
P: 0 — Zero
1 — Succ
n+2 +— Proj d, ifm=0
= Sub P& H(d) Pé'(d) &) &1(d), ifm=1
— Rec P(n;'(d)) P(x7'(d)), ifm =2
— Minl P(d), ifm=23
where d = div(n+2,4)
m = mod(n+2,4)

We use the notation P,, to denote the program P(n). The function + is clearly primitive recursive
and is defined in Coq by the function Godel: prf — nat. Also, since P is applied recursively to values
which are always less than the original value (note that for all n, 7, 'n < n and 7, 'n < n), then it is
well formed and is defined as follows:

Fgep Prog 0 = Zero
(s 0) = Succ
(8 8 n)) = (M, r.
if_equal prf r 0 (Proj d)
if _equal prf r 1 (Sub (calcProg n (pil (pil d)) (Prog n))
(calcProg n (pi2 (pil d)) (Prog n))
(pil (pi2 d)) (pi2 (pi2 d)))
if_equal prf r 2 (Rec (calcProg n (pil d) (Prog n))
(calcProg n (pi2 d) (Prog n)))
(Min (calcProg n d (Prog n))))
(divt n 4) (modt n 4)

with
calc_Prog 0 Tp=Dp
(S m) r p=if_equal prf r m (Prog m) (calcProg m r p)
such that

FVn m p. m < n) = (calcProg n m p) = Prog m

and

12

FVn mp. (n <m) = (calcProg n m p) = p

The function Prog is proved to be the inverse of Godel by induction on the structure of prf; and Godel
is proved to be the inverse of Prog by strong mathematical induction? on n and by case analysis over the
mutually exclusive cases:

Vn.(n=0)V(n=1)V(n=>2)A
((mod (n,4) = 0) V (mod (n,4) =1) vV
(mod (n,4) = 2) V (mod (n,4) = 3)))

The functions Godel and Prog constitute an effective coding for the set prf. Note that all the functions
used in the definition of these two functions are proved to be computable; the computability of these
functions is required for the proof of the S theorem.

We also define the function ¢)£;n) as the n-ary function which is computed by the program P.. Since
« is surjective, any n-ary computable function is equivalent to some function ¢§"). This is represented
in Coq by the partial function pf_compute_Prog: pfunc m e which is constructed from the single-valued
relation fcompute_Prog:

Fg4er fcompute Prog n e = AU. (converges_to (Prog e) (listify nat n ©))

6.4 The S]' Theorem

The S theorem, also called the parametrisation theorem, states that for any (m + n)-ary function

™™ one can find an equivalent n-ary function ¢\, such that s can be computed from m, n, e and

the first m parameters of ¢)£m+n)

function s* such that:

. In other words, for all m,n there is a total computable (m + 1)-ary

Ve, 7, .0 (E,) = 6L, 2 ().

Given the numbers m, n and e, and the vector & = (xo,x1,.-. ,Zm—1), then the function ¢§Z)(e 7)

can be computed by the program constructed by substituting the m constant programs Constant zo,
Constant w1, ..., Constant x.,,_1, and the projections Proj 0, Proj 1, ..., Proj n —1 into the program
coded by e, P.. This program is defined in Coq by:

Fgep smnprf m n e xl
= Subl (Prog e) ((comstants [xzlp, zl;, ... , zl,,—1]1) ++ (projections n)

where xl is the list listify & and zl; is the (i + 1)th element in zl. The functions constants and
projections are the lists of PRF programs defined such that:

constants [z9, 1, ..., Tm—1] = [Constant zy, Constant =z, , Constant z,,—11]

projections n = [Proj 0, Proj 1, :, Proj n— 1]
The function s is then defined as the function pf_smnprf: (pfunc m)
Faef vE_smnprf m n %)
= (Godel (smnprf m n (vhd nat m v) (listify nat m (vtl nat m v))))
Fies pf_smnprf = Am,n. (pfuncize (S m) (vf_smnprf m n))

This function is obviously total since it is defined using the function pfuncize. Also, by proving the
following theorems expressing the behaviour of constants and projections

F VI Im. (mapR prf nat (Ag.(converges_to g l)) (constants lm) Im)

FVin. $l = n =
(mapR prf nat (Ag.(converges_to g l)) (projections n) [)

2¥n.P(n) can be deduced from Vn.(Vm.m < n = P(m)) = P(n). This principle is given by the theorem 1t_wf_ind
proved in Wf_nat.v.

13

the function pf_smnprf m n is proved to be as required:

FAdmnedykz.
(reln (S m) (pf_smnprf m n) (Vcons nat m e Z) k) =
(reln (plus m n) (pf_compute Prog (plus m n) e) (Z,¥) z) <
(reln n (pf_compute Prog n k) ¥ z)

Since the functions used in the definition of Godel are proved to be computable, the function
pf_smnprf m n is also computable. The proof of this results is done as follows:

1. Since for all ¢, (Constant ¢) = 0; and for all ¢, n(Proj i) =i, it can be shown that
F Vm n. maxarity (pf_smnprf m n) =n

2. For any list I = [yo,y1,...,Yk—1], and natural numbers n,n’, there exists some PRF program
which computes the function

v(Subl_in P. n [Proj yo, Proj yi, ..., Proj yr—1l n').
for any number e. This is proved by induction on /.

3. For all ¢, the function y(Constant c) is computable. This result is proved by mathematical induction
on ¢ and is needed in the proof of the next step.

4. For any list of projections programs [,, and for any list of natural numbers !, and numbers n, n/,
there is some PRF program which computes the function

v(Subl_in P. n ((constants I) ++ [,) n').

for any number e. This is proved by mathematical induction on the length of [, the base case being
step 2 above.

5. The required theorem is a generalisation of the previous step, where

e [, =[Proj 0,Proj 1,...,Proj n —1]
e n/ = maxarity (pf_smnprf m n) =n (by step 1)

e [is the tail of the input of pf_smnprf m n
F Vm n. computable (S m) (pf_smnprf m n))

The proof of the S]* theorem, as well as all the proofs implemented in the mechanisation in Coq,
does not involve the axiom of the excluded middle. Other theorems in the theory of computation
are also expected to be constructive, although however, the literature of computability does contain
theorems whose proof requires classical reasoning. An example of this is the proof of the existence of an
uncomputable function given in Cutland [3].

7 Conclusions

The mechanisation illustrated above includes the defintion of computable function, the proof of the
computability of a number of particular functions, an effective coding of partial recursive functions on
natural numbers, and finally the proof of the S theorem. The proofs of the theorems derived in this
implementation tend to be quite elaborate and involve the consideration of details often omitted in proofs
given in mathematical texts. However, this mechanisation shows that the Coq theorem prover is a robust
system and is suitable for the mechanisation of mathematical and ‘real world’ theories.

An advantage of using a theorem prover based on a powerful type theory, like the calculus of con-
structions in Coq, over a theorem prover which is based on a simpler logic (for example HOL which
is based on a polymorphic version of Church’s simple theory of types) is the availability of dependent
types. In this report we have seen how dependent types are used in the definition of partial functions

14

as single valued relations (section 5.2) for instance, and in general, mathematical concepts can be nat-
urally defined as dependent objects (e.g., vectors, matrices, etc.). An apparent disadvantage of using
Coqover HOL is the difficulty needed in extended the Gallina language. HOL users can implement their
own tactics and inference rules easily, however the implementation of a new tactic in Coq requires the
non-trivial task of extending the Gallina language with a new construct. The effect of this disadvantage
is however relieved by the power of the calculus of constructions as the underlying logic of Coq. In
fact, during the implementation described in this report, no need was felt for implementing new tactics
which would somehow facilitate the mechanisation considerably. The results of the comparative study
of Coqand HOL will be published in more detail in [14].

References

[1] Thierry Coquand and Gérard Huet. The calculus of constructions. Rapport de Recherche 530,
INRIA, Rocquencourt, France, May 1986.

[2] C. Cornes et al. The Coq Proof Assistant Reference Manual, Version 5.10. Rapport technique
RT-0177, INRIA, 1995.

[3] N.J. Cutland. Computability: An introduction to recursive function theory. Cambridge University
Press, 1980.

[4] J.-Y. Girard. Interprétation fonctionelle et élimination des coupures dans l'arithétique d’ordre
supérieur. PhD thesis, Université Paris VII, 1972.

[5] M. Gordon. HOL a machine oriented formulation of higher order logic. Technical Report TR-68,
Computer Laboratory, Cambridge University, July 1985.

[6] M.J.C. Gordon and T.F. Melham. Introduction to HOL: a theorem proving environment for higher
order logic. Cambridge University Press, 1993.

[7] Per Martin-Lof. Intuitionistic Type Theory. Bibioplois, Napoli, 1984. Notes of Giowanni Sambin
on a series of lectues given in Padova.

[8] Bengt Nordstrom, Kent Petersson, and Jan M. Smith. Programming in Martin-Léf type theory: an
introduction. Clarendon, 1990.

[9] Robert Pollack. The Theory of LEGO: A Proof Checker for the Extended Calculus of Constructions.
PhD thesis, University of Edinburgh, 1994.

10] H. Rogers. Theory of recursive functions and effective computability. McGraw-Hill, 1967.
11] Simon Thompson. Type Theory and Functional Programming. Addison-Wesley, 1991.
12] G.J. Tourlakis. Computability. Reston Publishing Company, 1984.

13] Vincent Zammit. A mechanisation of computability theory in HOL. In Proceedings of the 9th
International Conference on Theorem Proving in Higher Order Logics, volume 1125 of Lecture Notes
in Computer Science, pages 431-446, Turku, Finland, August 1996. Springer-Verlag.

[14] Vincent Zammit. A comparative study of Coq and HOL. In Proceedings of the 10th International
Conference on Theorem Proving in Higher Order Logics, Lecture Notes in Computer Science, Bell
Labs, New Jersey, US, August 1997. Springer-Verlag.

15

