
Barrett, Edd and King, Andy (1992) Range Analysis of Binaries with Minimal
Effort. In: Formal Methods for Industrial Critical Systems. Lecture Notes
in Computer Science, 7437 . Springer, pp. 93-107. ISBN 978-3-642-32468-0.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/41116/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/978-3-642-32469-7_7

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/41116/
https://doi.org/10.1007/978-3-642-32469-7_7
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Range Analysis of Binaries with Minimal Effort

Edd Barrett and Andy King

School of Computing, University of Kent, CT2 7NF, UK

Abstract. COTS components are ubiquitous in military, industrial and
governmental systems. However, the benefits of reduced development and
maintainance costs are compromised by security concerns. Since source
code is unavailable, security audits necessarily occur at the binary level.
Push-button formal method techniques, such as model checking and ab-
stract interpretation, can support this process by, among other things,
inferring ranges of values for registers. Ranges aid the security engineer
in checking for vulnerabilities that relate, for example, to integer wrap-
ping, uninitialised variables and buffer overflows. Yet the lack of struc-
ture in binaries limits the effectiveness of classical range analyses based
on widening. This paper thus contributes a simple but novel range anal-
ysis, formulated in terms of linear programming, which calculates ranges
without manual intervention.

1 Introduction

Where once reverse engineering was the preserve of the black-hat, now binaries
are routinely inspected members of the intelligence community, military organ-
isations and employees of security firms. For these parties, an area of concern is
the security of commercial off-the-shelf software (COTS) such as linkable code
libraries [30]. COTS is increasingly deployed since it reduces development times,
but such code is written by third-parties, typically with an eye towards function-
ality rather than security and reliability [11]. COTS could corrupt the system on
which it is running or, more insidious still, introduce a trojan horse. The threat
posed by COTS is significant motivating security audits which, since the source
code is unavailable, are necessarily conducted at the binary level.

Surprisingly, buffer overflow deficiencies are still very popular targets for
cyber-criminals [1]. Programs with buffer overflow deficiencies may fall victim
to (amongst others) privilege escalation or code injection attacks. Often range
information can help in identifying such deficiencies by, for example, assert-
ing that an array index may be out of bounds. Whilst it is recognised that
range information can aid the security engineer in the auditing process [12],
industrial decompilers do not currently infer ranges for the values stored in ba-
sic data-types (though one commercial tool vendor recently mentioned this on
its wish list). Range analysis is the pedagogical example that is used to illus-
trate the need for the widening and narrowing in program comprehension [10].
Even for finite-precision integers, the domain of ranges (also known as intervals)
D = {∅} ∪ {[l, u] | −231 ≤ l ≤ u ≤ 231 − 1} admits long ascending chains such as

2

d0 = ∅ and dn+1 = [0, n] where n ∈ [0, 232 − 1]. The force of this is that fixpoint
acceleration aka. widening need be applied to compute an over-approximation
of the ranges for registers that arise in loops. The idea behind widening is to
accelerate convergence by leap frogging over intermediate points in the chain. To
illustrate, observe that the lower bound in the chain d0, d1, d2 is stable after d1
whilst the upper bound is strictly increasing. Widening would typically enlarge,
literally widen, d3 to [0, 231− 1] to preserve the lower bound of 0 whilst relaxing
the upper bound to the maximum representable signed integer. This side-steps
the generation of the intermediates d4, . . . , d231−2.

One does not need to relax an unstable bound to the largest, or conversely
the smallest, representable number in a single step. Instead, one can prescribe a
set of increasing thresholds which are widening to in a series of steps. If relaxing
a bound to one threshold is not sufficient for stability then, at the next step,
the bound is related the next threshold, and so on. This is called widening with
thresholds [6] yet it requires the thresholds to be specified a priori. With a
view towards automation, widenings [14, 25] have been suggested that infer the
thresholds based on the structure of a program, in particular, where a transition
in a chain from one interval to the next flips an inequality from unsatisfiable to
satisfiable. The inequalities in question are those that occur in a control structure
such as a conditional branch or a loop condition, the intuition being that the
larger interval enables a new path through the program to be reached. However,
quite apart from reasoning about the satisfiability of systems of inequalities, such
widenings rely on extracting inequalities from the program, a problem that is
straightforward for a source program, but difficult for its binary counterpart.

Iterative methods based on widening are sound in that they infer ranges
which enclose any value that can reside in a register. Such analyses actually
compute a post-fixpoint, though the most desirable solution is the least fixpoint
which presents the best over-approximation of the intervals. This raises the ques-
tion of whether least fixpoint can be found directly, dispensing with the need for
iteration and widening. Different responses to this question are represented in
the works of [15, 22, 26] that compute ranges by, respectively, mixed integer pro-
gramming, parametric linear programming, and a mixture of transformation and
chaotic iteration. The latter approach, in effect, proposes a constraint solver for
a class of range constraints that can be solved in polynomial time. The former
approaches, attempt to exploit existing mathematical or linear programming
packages, though this presents the problem of how to express the fixpoint as an
optimisation problem. This is not straightforward and indeed the way branch-
ing conditions are encoded in [22] is unsound for some classes of loop. (In the
spirit of the call for papers, this shortcoming is discussed in Sect. 5 as well as
its relationship to follow-on work [29]). Whether by design or by accident, the
mathematical programming formulation, which is subsequently linearised, seems
to avoid this problem but the encoding is not straightforward and it is not easy
to validate the method due to its conceptual complexity. In this paper we extend
existing techniques by, paradoxically, stripping them down. In doing so, we make
the following contributions:

3

assume (m ∈ {5, 20});
(1) i := 10;
(2) while (i ≥ m)
(3) m := m + 1;
(4) end
(5)

1

2

3

4

5

S1 = {〈i,m〉 | −231 ≤ i ≤ 231 − 1 ∧m ∈ {5, 20}}
S?
2 = {〈10,m〉 | 〈i,m〉 ∈ S1}
S2 = S?

2 ∪ S4

S3 = {〈i,m〉 | 〈i,m〉 ∈ S2 ∧ i ≥ m}
S4 = {〈i,min(m+ 1, 231 − 1)〉 | 〈i,m〉 ∈ S3}
S5 = {〈i,m〉 | 〈i,m〉 ∈ S2 ∧ i < m}

Fig. 1: (a) Program code (b) CFG and (c) collecting semantics

– We show how range analysis can be formulated, in the words of the title
“with minimal effort”, using systems of min and max constraints;

– We show how systems of such constraints can be solved by repeatedly calling
a linear programming package;

– We show how the number of calls to the package can be significantly reduced
by solving the linear programs in a propitious order.

The structure of the remainder of this paper is as follows. Sect. 2 shows a
worked example of our analysis over a program, then in Sect. 3 we detail how
we solve systems of inequalities containing disjunctions using repeated linear
programming (LP). Experimental results of our analysis applied to several small
programs are presented in Sect. 4 and in Sect. 5 we discuss some shortcomings in
existing work that influenced the design of our analysis. Related work is discussed
in Sect. 6 before we conclude the main body of the paper in Sect. 7.

2 Worked Example

In this section we explain how ranges can be derived without resorting to widen-
ing. Although our work is targeted at the binary level, we will introduce the
ideas in terms of a generic high-level program so as to aid comprehension.

2.1 Collecting Semantics

Fig. 1a shows a small program with the program points annotated (1) through
to (5). Our problem is how to summarise the program state at each of these
points without actually running the program. We start by considering a natural
set representation of all possible values of i and m at each program point. We
aim to compute the smallest hyper-rectangle (a tuple of intervals) summarising
all possible i and m combinations for each program point. To this end, the state
at a single program point is expressed as a 2-dimensional vector 〈i,m〉, thus the
states that can possibly arise at these 5 program points is described by 5 sets
of vectors, namely Sk ⊆ [−231, 231 − 1]2. Each set Sk is finite, though possibly
large, since we suppose that i and m are represented by 32-bit signed integers.

4

Fig. 2: (a) S = {〈2, 2〉, 〈5, 3〉, 〈1, 5〉, 〈6, 6〉, 〈8, 9〉} (b) α(S) = [1, 8]× [2, 9]

Fig. 1c presents a system of recursive equations that define and relate the
sets S1, . . . , S5. The dependencies between the program points, hence the sets,
are illustrated in Fig. 1b. Note S2 is defined in terms of S4 and S∗2 which, in
turn, is defined in terms of S1. This is because control passes from (1) and (4)
to program point (2). The set S∗2 is merely introduced as a calculational device
(an intermediate set) that is used to decompose S2 into an update operation
and a merge operation, that define S∗2 and S2 respectively. Note too that the
increment operation at line (3) can potentially overflow, though it does not in
this example. Instead of separately modelling the two modes of the increment:
the exact mode when the increment does not wrap, and the overflow mode,
and then distinguishing between these two modes with a guard, we simplify
the presentation by modelling the overflow with a min operation. Together these
equations can be considered as defining a collecting semantics [9] for the program;
a semantics over sets that provides a basis for abstraction.

2.2 Abstract Semantics

Every set S ⊆ [−231, 231 − 1] can be described by an interval drawn from the
abstract domain D = {∅}∪ {[l, u] | −231 ≤ l ≤ u ≤ 231− 1}. Moreover, an n-ary
tuple of intervals can describe a set of n-ary vectors, an idea that is formalised
with an abstraction α mapping and a concretisation γ mapping [9]. The latter
map explains how to interpret an n-tuple of intervals and the former specifies
how best to describe a set S ⊆ [−231, 231 − 1]n. These maps are defined thus:

γ : Dn → ℘([−231, 231 − 1]n)
γ(∅) = ∅
γ(S′) = S′

α : ℘([−231, 231 − 1]n)→ Dn

α(∅) = ∅
α(S) = ∩{S′ ∈ Dn | S ⊆ S′}

Note how an n-tuple of intervals 〈d1, . . . , dn〉 ∈ Dn is interpreted as its cartesian
product d1 × . . .× dn which defines an hyper-rectangle in n-dimensional space.
Thus the subset ordering on D naturally lifts to Dn by 〈d1 . . . dn〉 ⊆ 〈e1 . . . en〉
iff di ⊆ ei for all i ∈ {1, . . . , n}. Observe too how α(S) is defined as the least
hyper-rectangle that encloses S. Fig. 2 illustrates α(S) for a set S that is planar.

Abstraction and concretisation relate sets of vectors to hyper-rectangles.
With this relationship in place, we can relax the collecting semantics given pre-
viously, to a system of recursive equations that operate over hyper-rectangles

5

rather then arbitrary sets. Each S′k is designed to faithfully characterise Sk in
that Sk ⊆ γ(S′k). This relationship can be shown to hold inductively when:

S′1 = {〈i,m〉 | −231 ≤ i ≤ 231 − 1 ∧ 5 ≤ m ≤ 20}
S′∗2 = {〈10,m〉 | 〈i,m〉 ∈ S′1}
S′2 = α(S′∗2 ∪ S′4)
S′3 = α({〈i,m〉 | 〈i,m〉 ∈ S′2 ∧ i ≥ m})
S′4 = α({〈i,min(m+ 1, 231 − 1)〉 | 〈i,m〉 ∈ S′3})
S′5 = α({〈i,m〉 | 〈i,m〉 ∈ S′2 ∧ i < m})

When incrementing m (S′4) the resulting upper bound of may saturate. It is
possible to obtain a more faithful model of integer overflow using integer linear
programming, but in the interest of brevity we refrain from presenting this idea
here. Since the above semantics is derived as an abstraction of the collecting
semantics, henceforth it will be referred to as the abstract semantics.

2.3 Direct Calculation of the Abstract Semantics

The abstract semantics can be evaluated by iteratively by applying the above
equations, with widening, until stability is achieved. This does not necessarily
give the least (best) solution due to the approximation introduced by widen-
ing. However, the hyper-rectangles can be found directly by solving systems of
equations. Let S′1 = [li,1, ui,1]× [lm,1, um,1], . . . , S′5 = [li,5, ui,5]× [lm,5, um,5]. The
solution to the following reformulation (as an optimisation problem) is the least
fixed point of the abstract semantics:

Minimise :

5∑
j=1

(ui,j − li,j) +

5∑
j=1

(um,j − lm,j)

subject to the (non-linear) constraints:

li,1 = −231 ∧ ui,1 = 231 − 1 ∧
li,2∗ = 10 ∧ ui,2∗ = 10 ∧
li,2 = min(li,2∗ , li,4) ∧ ui,2 = max(ui,2∗ , ui,4) ∧
li,3 = max(li,2, lm,2) ∧ ui,3 = ui,2 ∧
li,4 = li,3 ∧ ui,4 = ui,3 ∧
li,5 = li,2 ∧ ui,5 = min(ui,2, um,2 − 1) ∧
lm,1 = 5 ∧ um,1 = 20 ∧
lm,2∗ = lm,1 ∧ um,2∗ = um,1 ∧
lm,2 = min(lm,2∗ , lm,4) ∧ um,2 = max(um,2∗ , um,4) ∧
lm,3 = lm,2 ∧ um,3 = min(ui,2, um,2) ∧
lm,4 = min(lm,3 + 1, 231 − 1) ∧ um,4 = min(um,3 + 1, 231 − 1) ∧
lm,5 = max(lm,2, li,2 + 1) ∧ um,5 = um,2

The cost function asserts that the desired solution is the least (best) hyper-
rectangle that satisfies all of the constraints. Of particular note are the con-
straints li,2 = min(li,2∗ , li,4) and ui,2 = max(ui,2∗ , ui,4) which assert that [li,2, ui,2]

6

is the smallest interval that encloses both [li,2∗ , ui,2∗] and [li,4, ui,4]. Likewise
lm,2 = min(lm,2∗ , lm,4) and um,2 = max(um,2∗ , um,4) assert tight bounds on m.
In combination, these four constraints symbolically define S′2 as the merge of the
hyper-rectangles S′1 and S′∗2 . Modelling the loop condition i ≥ m is a particular
subtlety. Note how li,3 = max(li,2, lm,2) and ui,3 = ui,3 strengthen (not weaken)
the lower bound of i but preserve its upper bound. Conversely lm,3 = lm,2 and
um,3 = min(ui,2, um,2) refine the upper bound of m but preserve its lower bound.
An analogous construction is used to model the loop exit condition.

Solving the above (with the technique outlined in the following section) we
find the following ranges:

S′1 = [−231, 231 − 1]× [5, 20]
S′2 = [10, 10]× [5, 20]
S′3 = [10, 10]× [5, 10]

S′4 = [10, 10]× [6, 11]
S′5 = [10, 10]× [11, 20]

3 Solving Minimum and Maximum Constraints

The min and max terms in our system of inequalities are non-convex, yet convex-
ity is a prerequisite of classical linear programming. We overcome this through
repeated linear programming, which we overlay with heuristics.

3.1 Constraint Decomposition

First we decompose our system of constraints into a set of linear constraints L
and a vector of non-convex complementary constraints C. Note that the con-
straints in C must be disjunctions of linear terms and not arbitrary non-convex
terms. Constraints containing min or max terms are rewritten using the following
equivalence:

x = min(y, z) ≡ (x ≤ y) ∧ (x ≤ z) ∧ (x = y ∨ x = z)
x = max(y, z) ≡ (x ≥ y) ∧ (x ≥ z) ∧ (x = y ∨ x = z)

For example, the constraint um,3 = min(ui,2, um,2) is decomposed into the
linear system L = {um,3 ≤ ui,2, um,3 ≤ um,2} which is complemented with the
system C = 〈(um,3 = ui,2 ∨ um,3 = um,2)〉. The decomposed constraints for the
worked example are show in figure 3.

3.2 Constraint Solving

Although the disjuncts of C preclude LP from being directly applied, the com-
plementary constraints can be supported by repeatedly solving LPs. To see this,
observe that the complementary constraint lm,6 = lm,5 ∨ lm,6 = li,5 + 1 has one
of two states, according to whether the first or the second equality holds. The
disjuncts of C thus prescribe a search space of 2|C| combinations. In principle
each of these combinations could be enumerated and combined with the linear
component L to form an LP. Each LP could then be independently solved and

7

L = { li,1 = −232, ui,1 = 231 − 1,
li,2∗ = 10, ui,2∗ = 10,
li,2 ≤ li,2∗, li,2 ≤ li,4, ui,2 ≥ ui,2∗, ui,2 ≥ ui,4

li,3 ≥ li,2, li,3 ≥ lm,2, ui,3 = ui,2,
li,4 = li,3, ui,4 = ui,3

li,5 = li,2, ui,5 ≤ ui,2, ui,5 ≤ um,2 − 1,
lm,1 = 5, um,1 = 20,
lm,2∗ = lm,1, um,2∗ = um,1,
lm,2 ≤ lm,2∗, lm,2 ≤ lm,4, um,2 ≥ um,2∗, um,2 ≥ um,4,
lm,3 = lm,2, um,3 ≤ ui,2, um,3 ≤ um,2

lm,4 ≤ lm,3 + 1, lm,4 ≤ 231 − 1 , um,4 ≤ um,3 + 1 , um,4 ≤ 231 − 1
lm,5 ≥ lm,2, lm,5 ≥ li,2 + 1, um,5 = um,2 }

C = 〈 (li,2 = li,2∗ ∨ li,2 = li,4), (ui,2 = ui,2∗ ∨ ui,2 = ui,4)
(li,3 = li,2 ∨ li,3 = lm,2), (ui,5 = ui,2 ∨ ui,5 = um,2 − 1)
(lm,2 = lm,2∗ ∨ lm,2 = lm,4), (um,2 = um,2∗ ∨ um,2 = um,4)
(um,3 = ui,2 ∨ um,3 = um,2), (lm,4 = lm,3 + 1 ∨ lm,4 = 231 − 1)
(um,4 = um,3 + 1 ∨ um,4 = 231 − 1), (lm,5 = lm,2 ∨ lm,5 = li,2 + 1 〉

Fig. 3: Worked example constraints decomposed.

then compared to find the least value of the objective function overall. However,
we suggest an alternative strategy.

The boilerplate of our algorithm is shown in Algorithm 1. Before the algo-
rithm commences, we augment L with:∧

1≤k≤5

(−231 ≤ li,k ∧ ui,k ≤ 231 − 1) ∧ (−231 ≤ lm,k ∧ um,k ≤ 231 − 1)

so as to ensure that all the LPs are bounded. This augmented system will hence-
forth be denoted L̄. The search starts at the root node of the search space with
τ = true. At each stage in the search L̄ ∧ τ is tested for satisfiability with a
solver, where τ is the conjunction of equalities selected thus far from C (as illus-
trated in Fig. 4). If L̄∧ τ is unsatisfiable, then there is no solution for this choice
of τ . Furthermore, augmenting τ with additional equalities from C would fur-
ther constraint the LP rather than relax it. However, if L̄∧ τ is satisfiable, then
another equality is selected from C from a disjunct that has not already been
considered. This is the role of ChooseNextDecision. If exactly one equality
has been selected from each disjunct of C and L̄ ∧ τ is still feasible, then a
solution is recorded. The search terminates when the search space is exhausted,
at which point the solution with the least objective function value is reported as
the overall minimum.

The benefit of this strategy is that if inconsistency is detected when τ contains
relatively few equalities from C then many branches through the search space
can be discarded simultaneously. The effectiveness of this pruning strategy is
dependent upon the ordering of decisions, and in particular the equalities that

8

Algorithm 1 Binary search algorithm.

1: function BinSearch(L̄, F , C, τ)
2: r ← MinimizeLp(F , L̄ ∧ τ)
3: if ¬ Sat(r) then
4: return [] // No solutions here, prune.
5: else if AllDecisionsMade(C, τ) then
6: return [(r, τ)] // Found a leaf with a solution
7: end if
8: (e1 ∨ e2)←ChooseNextDecision(C, r, τ)
9: sl ← BinSearch(L̄, F , C, τ ∧ e1)

10: sr ← BinSearch(L̄, F , C, τ ∧ e2)
11: return Append(sl, sr)
12: end function

C7

C3

C9

um,3 = ui,2

li,3 = li,2

um,4 = um,3 + 1

um,3 = um,2

li,3 = lm,2

um,4 = 231 − 1

L̄x Relaxation (L̄ ∧ τ)

1 L̄

2 L̄ ∧ (um,3 = ui,2)

3 L̄ ∧ (um,3 = ui,2) ∧ (li,3 = li,2)
...

...

Fig. 4: First three linear relaxations of the worked example program.

are selected from C. For the search to be effective, inconsistencies need to be
found early in the search, at a shallow depth in the tree, in order to maximise
the effect of pruning. If an inconsistency is found later, then it is likely to be
duplicated down alternative paths, nullifying the effect of pruning. Like many
combinatoric search problems, the worst case complexity is high (worst case
number of linear programs is 2|C|+1 − 1), but in practice performance can be
significantly improved with the use of heuristics.

3.3 Heuristics

In order to improve upon the worst case complexity of our search space, we
implement the following heuristics:

H1: Prune Inconsistencies Early. This heuristic suggests which disjunct Cn ∈ C
is a good candidate from which an equality should be selected. Suppose solving
L̄ ∧ τ returns a solution for which (um,3 = −231) ∧ (ui,2 = 10) ∧ (um,2 = 20).
Observe that the disjunct C7 = (um,3 = ui,2∨um,3 = um,2) is unsatisfiable under

9

Algorithm 2 Heuristic 1

1: function ChooseNextDecision(C, r, τ)
2: v ← GetViolatedCCs(C, τ)
3: if |v| > 0 then
4: let n ∈ v
5: else
6: n← ChooseArbitraryNextDecision(C, r)
7: end if
8: return n
9: end function

this assignment. Then the heuristic suggests that τ should next be extended
with an equality from C7. If all complementary constraints are satisfied, then
an arbitrary Cn ∈ C is chosen for selecting an equality; the selected Cn is
literally chosen at random, thus introducing non-determinism into the algorithm.
The intuition behind this selection strategy is that if C7 is unsatisfiable for one
solution to the LP, then extending τ with one of its equalities is likely to detect
an inconsistency thereby pruning the search space. Algorithm 2 provides an
implementation of ChooseNextDecision using this heuristic.

H2: Block Weak and Duplicate Solutions. A solution is found once an equality
is selected from each disjunct of C such possible to satisfy that L̄ ∧ τ remains
satisfiable. There is only one minimal solution, but it is possible for other solu-
tions to exist which, whilst they satisfy the min/max constraints, yield less tight
intervals. It is also possible for both sides of the disjunct of a complimentary con-
straint to evaluate true (eg. (li,3 = li,2 ∨ li,3 = lm,2) where li,2 = li,3 = lm,2 = 1),
thereby introducing ineffectual decisions in C and ultimately duplicate solu-
tions. Because there is no value in finding a solution if it does not improve the
objective, we propose adding an extra linear constraint to the system that en-
sures that any solution that is subsequently found improves on the least value
of the objective. Suppose that we analyse the worked example program and a
solution is found whose objective function value we call omin. Subsequent lin-
ear programs are solved in conjunction with an additional blocking constraint:∑5

j=1(ui,j − li,j) +
∑5

j=1(um,j − lm,j) < omin. Through this construction only
solutions yielding a strictly smaller objective are feasible, thus further pruning
the search space and in turn the number of LPs the analysis must perform.

4 Experimental Results

Our tooling, given a control flow graph and a description of CFG edge opera-
tions, generates 〈L̄, C〉 and proceeds to perform the binary search as described
in Sect. 3. The binary search uses the lpsolve solver which we interface us-
ing Python language bindings. Individual search heuristics (H1 and H2) may
be switched on and off, allowing performance comparisons to be drawn under
different heuristics configurations. Evaluation of the complimentary constraints

10

Interval
m1 ∈

[2, 2] [63, 71] [5, 20]

m2∗ [2, 2] [63, 71] [5, 20]
m2 [2, 11] [63, 71] [5, 20]
m3 [2, 10] [63, 10] [5, 10]
m4 [3, 11] [64, 11] [6, 11]
m5 [11, 11] [63, 71] [11, 20]

i1 [0, 255] [0, 255] [0, 255]
i2∗ [10, 10] [10, 10] [10, 10]
i2 [10, 10] [10, 10] [10, 10]
i3 [10, 10] [63, 10] [10, 10]
i4 [10, 10] [63, 10] [10, 10]
i5 [10, 10] [10, 10] [10, 10]

(a) Intervals determined by the
analysis.

m1 ∈ H1 H2 Mean #LPs Mean Time (s)

[2, 2]

7 7 208 0.2
3 7 183 0.9
7 3 152 0.1
3 3 38 0.2

[63, 71]

7 7 200 0.2
3 7 125 0.6
7 3 105 0.1
3 3 45 0.2

[5, 20]

7 7 207 0.2
3 7 211 1.0
7 3 143 0.1
3 3 44 0.2

(b) Mean number of LPs and time required
to find the best solution (sample size=10,
H1/H2 show heuristics enabled).

Fig. 5: Experimental results for the worked example program shown in Fig. 1.

(for heuristic 1) is performed by SymPy, a computer algebra library for Python.
Experiments were run on a 3GHz 64-bit Intel machine running OpenBSD.

The tables in Fig. 5 show some experimental results for the worked example
(Fig. 1) with varying initial values of m1 and heuristics configurations. Because
the algorithm is non-deterministic, each experiment configuration was run 10
times and averages were taken. We show the intervals inferred by our analysis, the
mean number of linear programs required (out of a possible worst case number of
210+1−1 = 2047) to find the best solution and the average amount of time spent
finding the solution (in seconds). The intervals of the best solution are precise
and in all cases, our heuristics reduced the number of LPs required to find the
best solution. Further, when m1 ∈ [63, 71], the loop body is not entered and
this is reflected in our results by the empty intervals at program points 3 and 4.
Interestingly run-times appear to be longer when heuristic 1 is enabled. Profiling
revealed that the evaluation of complimentary constraints (GetViolatedCCs)
accounts for a large portion of solving time for this small example.

A second program was analysed by our analysis, this time at the binary level.
Fig. 6 shows the disassembly of a defective implementation of memcpy(3) for the
x64 architecture. The function takes a pointer to a buffer to write to (rdi), a
buffer to read from (rsi) and a length argument (rdx). The r15 register is used
as both a loop counter and as an index into the source and destination buffers.
Let r151 ∈ [lr15,1, ur15,1] be the interval representing r15 at the program point
marked p1, where bytes are written into the destination buffer. In order to apply
our conditional semantics to binary programs, high-level predicates are extracted
from pairs of assembler instructions which define and use boolean flags within
the status register [5]. For example, cmp r15, rdx; jg return causes a control
flow despatch if r15 > rdx.

11

memcpy: xor r15 , r15 # loop counter
loop: cmp r15 , rdx

jg return
mov byte ptr cl , [rsi+r15] # read out src

p1: mov byte ptr [rdi+r15], cl # write in dest
inc r15
jmp loop

return: mov rax , rdi # return ptr to dest
ret

Fig. 6: A function to copy buffers.

rdx ∈ r151 H1 H2 MLP MT

[8, 8] [0, 8]

7 7 25143 75
3 7 18596 178
7 3 11940 45
3 3 69 1

[8, 4096] [0, 4096]

7 7 31045 116
3 7 18963 198
7 3 8989 45
3 3 62 1

[31, 66] [0, 66]

7 7 28639 107
3 7 18963 194
7 3 13885 55
3 3 68 1

(a) memcpy(3)

rdi ∈ rax2 H1 H2 MLP MT

[8, 8] [1, 8]

7 7 36621 219
3 7 20342 302
7 3 7891 34
3 3 85 1

[7, 13] [1, 13]

7 7 35856 151
3 7 19977 258
7 3 8701 37
3 3 99 1

[4, 128] [1, 128]

7 7 40352 166
7 3 19696 252
3 7 7948 34
3 3 105 1

(b) Endian swap

Fig. 7: Results for the second and third experiments (MLP is the mean number of
linear programs required and MT is the mean time in seconds). Means calculated
from a sample of 10 runs.

Fig. 7a shows the results of our analysis upon the memcpy(3) implementation.
If a buffer size of between 8 and 4096 is passed to this function, then our analy-
sis indeed infers r151 ∈ [0, 4096], thereby indicating that one byte is potentially
written outside of the allocated buffer. Again, the number of LPs the analysis is
required to solve is improved through the use of heuristics. Evaluation of compli-
mentary constraints is especially expensive when heuristic 1 alone is enabled, but
the overall time spent searching is vastly improved through the use of heuristics
1 and 2 combined. This experiment utilises 18 complimentary constraints, so the
theoretical worst case number of LPs required is 218+1 − 1 = 524287.

Fig. 8 shows an algorithm to byte-swap 16-bit words in a memory buffer.
The function takes a buffer length (rdi) and a pointer to a buffer to swap (rsi).
The register rax is being used as an index into the buffer pointed to by rsi. Let
rax1 ∈ [lrax,1, urax,1] and rax2 ∈ [lrax,2, urax,2] be the intervals of rax at marked
points p1 and p2 respectively. The results of the analysis of this program (Fig. 7b)
highlight an interesting deficiency in our analysis. If the function is called with
an odd buffer size argument, then the function indeed writes one byte outside its
allocated buffer. Yet if we pass our analysis a a buffer size argument of 8, then

12

endswap: xor r15 , r15 # loop counter
loop: cmp r15 , rdi

jge return
mov rax , r15 # rax is used as a write index
mov byte ptr dl , [rsi+r15]
inc r15
mov byte ptr cl , [rsi+r15]
inc r15

p1: mov byte ptr [rsi+rax], cl
inc rax

p2: mov byte ptr [rsi+rax], dl
jmp loop

return: ret

Fig. 8: A 16-bit byte swap.

we infer rax2 ∈ [1, 8]. This would suggest that a byte was written outside of the
allocated buffer, however, in reality this is untrue. Our analysis is unable to take
into account the strided nature of the loop count and thus over-approximates
the upper bound of rax upon entry to the loop. Nevertheless, the solution safely
over-approximates all possible register values. The solution is found quickly and
in a fraction of the worst case number of linear programs (222+1−1 = 8388607).

5 Discussion

The analysis presented in this paper was mostly inspired by the pioneering work
by Rugina et al. [22]. Our extension to Rugina’s work diverges in some aspects
with response to some shortcomings that are not mentioned in the literature. In
this section we will discuss these aforementioned shortcomings thus providing
an insight into some of the design decisions of our analysis.

5.1 Conditional Semantics

It would appear that Rugina’s branching semantics are unable to model a class
of loop constructs correctly. One such example is the program:

assume(m < 10); B1: int i = 10; B2: while (i >= m){B3: m = m + 1;}

Following Rugina’s constraint generation scheme we reduce this program to
the following constraints, which are infeasible:

li,2 ≤ 10 ∧ 10 ≤ ui,2 ∧ lm,2 ≤ lm,1 ∧ um,1 ≤ um,2 ∧
li,3 ≤ lm,2 ∧ ui,2 ≤ ui,3 ∧ lm,3 ≤ lm,2 ∧ um,2 ≤ um,3 ∧
li,2 ≤ li,3 ∧ ui,3 ≤ ui,2 ∧ lm,2 ≤ lm,3 + 1 ∧ um,3 + 1 ≤ um,2

5.2 Junk propagation

In both our and Rugina’s analysis unreachable code causes the existence of empty
intervals (ie. an interval, [l, u], where l > u). Consider the following program
snippet, in which B3 is unreachable:

13

B1: int i = 12; B2: while (i <= 10) {B3: i = i + 1}

If we analyse this program via Rugina’s method, we infer the following in-
tervals: i2 ∈ [12, 15], i3 ∈ [12, 10]. The interval at i3 is empty, correctly indicat-
ing that this program point is unreachable. Unfortunately, the loop propagates
bounding information from B3 back to B2, thereby compromising the precision
of the upper bound of i2. We call this phenomenon “junk propagation”.

We overcome imprecision incurred through junk propagation by treating the
false branch of the loop check (or any conditional for that matter) as a condi-
tional whose predicate is a negation of the predicate of the true branch. For the
counter-example we have just presented, we insert a loop exit block B4 which is
a conditional edge asserting that i > 11, thereby retaining the precision of the
upper bound of i2.

6 Related Work

Range analysis has a long history in compilation and verification, dating back to
the seminal work of Harrison [16]. This work resonates with ideas in the widening
and narrowing approach to abstract interpretation [9], for instance, “this bound
may be fed back into the range analysis to revise the ranges” is reminiscent of
narrowing which classically following widening so as to tighten ranges. In this
work, “each range description describes an arithmetic sequence with a lower
bound, upper bound and an increment”, and thus the descriptions are actually
strided intervals [20], abstractions that are considered to be a recent invention.
Widening and narrowing is a research topic within its own right [6, 14, 25]; a
topic that is not confined to abstract interpretation either. Indeed, widening has
been applied in conjunction with SMT solving [18], to pose successively weaker
candidate loop invariants to the solver until an invariant is found that holds
across every iteration of the loop. Our paper, together with [15, 26], offer an
alternative way of handling loops that aspire to directly compute a fixpoint.

As already discussed, range analysis can be expressed as mathematical integer
programming [15], which, in turn, can be reduced to integer linear programming.
In this approach binary decision variables are used to indicate the reachability
of, among other things, guarded statements. This idea could be developed by
making use of the finite nature of machine arithmetic, and encoding a branch
condition x ≤ y as two inequalities x ≤ y +M(1− δ) and x > y +Mδ where δ
is the binary decision variable and M is a sufficiently large number [29].

Ideally ranges need be combined with the relational domain of congruences [7]
since then a range on one variable can be used to trim the range on another
and vice versa. Congruence relations, that is, linear constraints that respect the
modulo nature of computer arithmetic, can be computed prior to range analysis
which leaves the problem of how to amalgamate them into a system of linear
constraints. However the congruence x = y mod 2k holds iff there exists an
integer variable n such that x = y + n2k. This suggests that integer linear
programming could be the right medium for marrying congruences with ranges.

14

Iterative value set analyses have been proposed for binary code [5]. The
work, like ours, is predicated on extracting high level predicates from low level
conditional jumps. For example the instruction cmp eax, edx followed by a ja

instruction causes a jump if eax > edx. These authors argue that the predicates
can be extracted by pattern matching, a topic that is discussed elsewhere [7].

Interpolation has recently come to the fore in model checking [19] and tech-
niques have now emerged for constructing interpolants in linear arithmetic [23].
Such techniques could be applied with range analysis to find combinations of
range constraints that are inconsistent and hence diagnose unreachable code.

7 Conclusions

With an eye towards simplicity, we have shown how range analysis can be com-
puted, not as the solution to a system of recursive equations, but as the solution
of a system of constraints over min and max expressions. We have demonstrated
how such constraints can be reduced to linear constraints, augmented with com-
plementary constraints, and thus solved by repeated linear programming. The
method can be implemented with an off-the-shelf linear programming package
which can be used as a black-box. Furthermore, we have shown how the number
of the number of calls to the black-box can be reduced by using search heuristics.
The result is an analysis that does not depend on classical fixpoint acceleration
methods such widening since it is designed to compute the fixpoint directly.

References

1. National vulnerability database. http://nvd.nist.gov.
2. H. R. Andersen. An Introduction to Binary Decision Diagrams. Lecture notes,

available online, IT University of Copenhagen, 1997.
3. A. W. Appel. Modern Compiler Implementation in Java. Cambridge, 2002.
4. G. Balakrishnan and T. Reps. DIVINE: Discovering Variables in Executables. In

VMCAI, volume 4349 of LNCS, pages 1–28. Springer, 2007.
5. G. Balakrishnan and T. W. Reps. WYSINWYX: What You See Is Not What You

eXecute. TOPLAS, 32(6), 2010.
6. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,

and X. Rival. A Static Analyzer for Large Safety-Critical Software. In PLDI,
volume 38, pages 196–207. ACM, 2003.

7. J. Brauer, A .King, and S. Kowalewski. Range analysis of microcontroller code us-
ing bit-level congruences. In FMICS, volume 6371 of LNCS, pages 82–98. Springer,
2010.

8. L. Chen, A. Miné, J. Wang, and P. Cousot. Linear Absolute Value Relation Anal-
ysis. In ESOP, volume 6602 of LNCS, pages 156–175. Springer, 2011.

9. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL, pages
238–252. ACM, 1977.

10. P. Cousot and R. Cousot. Comparing the Galois connection and widening/narrow-
ing approaches to abstract interpretation. In PLILP, volume 631 of LNCS, pages
269–295. Springer, 1992.

15

11. D. Doan. Commercial Off the Shelf (COTS) Security Issues and Ap-
proaches. Master’s thesis, Naval Postgraduate School, Monterey, California, 2006.
www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA456996.

12. T. Durden. Automated Vulnerability Auditing in Machine Code. Phrack Magazine,
#64, 2007.

13. P. Godefroid, M. Y. Levin, and D. A. Molnar. Automated Whitebox Fuzz Testing.
In NDSS. The Internet Society, 2008.

14. D. Gopan and T. W. Reps. Lookahead Widening. In CAV, volume 4144 of LNCS,
pages 452–466. Springer, 2006.

15. E. Goubault, S. Le Roux, J. Leconte, L. Liberti, and F. Marinelli. Static Analysis
by Abstract Interpretation: A Mathematical Programming Approach. ENTCS,
267(1):73–87, 2010.

16. W. H. Harrison. Compiler Analysis for the Value Ranges of Varibles. IEEE Trans-
actions on Software Engineering, SE-3(3):243–250, 1977.

17. D. Kapur. Automatically Generating Loop Invariants using Quantifier Elimination.
In International Conference on Applications of Computer Algebra, 2004.

18. K. R. M. Leino and F. Logozzo. Using Widenings to Infer Loop Invariants Inside
an SMT Solver, Or: A Theorem Prover as Abstract Domain. In WING, pages
70–84, 2007.

19. K. L. McMillan. Applications of Craig Interpolants in Model Checking. In TACAS,
volume 3440 of LNCS, pages 1–12. Springer, 2005.

20. T. W. Reps, G. Balakrishnan, and J. Lim. Intermediate-Representation Recovery
from Low-Level Code. In PEPM, pages 100–111. ACM, 2006.

21. E. Rodriguez-Carbonell and D. Kapur. An Abstract Interpretation Approach for
Automatic Generation of Polynomial Invariants. In SAS, volume 3148 of LNCS,
pages 280–295. Springer, 2004.

22. R. Rugina and M. C. Rinard. Symbolic bounds analysis of pointers, array indices,
and accessed memory regions. TOPLAS, 27:185–235, 2005.

23. A. Rybalchenko and V. Sofronie-Stokkermans. Constraint Solving for Interpola-
tion. Journal of Symbolic Computation, 45:1212–1233, 2010.

24. B. Schlich. Model Checking of Software for Microcontrollers. ACM Transactions
in Embedded Computing Systems, 9:1–27, 2010.

25. A. Simon and A. King. Widening Polyhedra with Landmarks. In APLAS, volume
4279 of LNCS, pages 166–182. Springer, 2006.

26. Z. Su and D. Wagner. A class of polynomially solvable range constraints for interval
analysis without widenings. TCS, 345(1):122–138, 2005.

27. G. Weissenbacher. Program Analysis with Interpolants. PhD thesis, Magdalen
College, 2010. http://ora.ouls.ox.ac.uk/objects/uuid:6987de8b-92c2-4309-b762-
f0b0b9a165e6.

28. R. Wille, G. Fey, and R. Drechsler. Building Free Binary Decision Diagrams Using
Sat Solvers. Facta universitatis-series: Electronics and Energetics, 20(3):381–394,
2007.

29. A. Zaks, Z. Yang, I. Shlyakhter, F. Ivancic, S. Cadambi, M. K. Ganai, A. Gupta,
and P. Ashar. Bitwidth Reduction via Symbolic Interval Analysis for Software
Model Checking. IEEE TACAD, 27(8):1513–1517, 2008.

30. Q. Zhong and N. Edward. Security Control COTS Components. IEEE Computer
Society, 31:67–73, 1998.

