
Z Uni�cation tools in Generic FormaliserEerke Boiten�Computing Laboratory, University of Kent,Canterbury, CT2 7NF, U.K.(Phone: +44 1227 827553,Email: E.A.Boiten@ukc.ac.uk)April 1997AbstractWe describe some prototype tools for performing uni�cation (i.e. deriving the least com-mon re�nement) of simple Z speci�cations. The techniques used are those described in earlierresearch papers on viewpoint speci�cation in Z; the tools have been implemented in GenericFormaliser (a product of Logica UK Limited).1 Problem de�nitionIn earlier research papers [BDBS96, BDBS97] we described techniques for constructing a leastcommon re�nement, also called uni�cation, of two Z [Spi89] speci�cations in the states-and-operations style. These techniques are mostly of a syntactic nature, so it was clear that theycould in principle be automated. We have developed some prototype tools for this purpose.For an overview of Z uni�cation (and its purpose in viewpoint speci�cation), see our papers[BDBS96, BDBS97], which are also available from the project's WWW site1. This note describesonly what the prototype tools do { not why they do it. For a quick impression of the tools, thereader is advised to have a glance at the examples in sections 3 and 4. The next section describesthe system used for implementing them { Logica UK's Generic Formaliser . The remainingsections deal with the tools themselves. A �nal section lists some conclusions, including ideas onextending these prototypes.2 Generic FormaliserGeneric Formaliser is a product of Logica UK Limited2. It was developed as a generalisation ofa tool for Z written by Logica, called (Z Speci�c) Formaliser. We chose Generic Formaliser asour development framework, since it includes a complete Z grammar that we can modify.Generic Formaliser is essentially an environment for generating syntax-directed editors. Itruns on top of Smalltalk/V for Windows, i.e. only on PCs. Generic Formaliser is actually asyntax-directed editor itself, for the grammar which is appropriately called Grammar Grammar.Grammars (and the production rules in grammars) consist of three parts: an abstract syntax,�This work was funded by the U.K. Engineering and Physical Sciences Research Council under grant numberGR/K13035.1http://alethea.ukc.ac.uk/Dept/Computing/Research/NDS/consistency2See http://public.logica.com/formaliser/. 1

various concrete syntaxes (called unparsings), and rules for attributes. Functions for computingand checking the attributes are speci�ed in a Z-like syntax, which Generic Formaliser translatesinto calls of Smalltalk methods. These methods would in general have to be written by grammarwriters and added to the Smalltalk environment.2.1 Implementation techniquesOur purpose was not in the �rst place to generate syntax directed editors for Z viewpoint spec-i�cation, thus any use of Generic Formaliser we made was going to be non-standard. What weneeded to do was more an issue of syntactic manipulation: transduction or translation of syntaxtrees. On �rst thought, the attribute grammar aspect seemed most appropriate for specifyingthis in. Attribute grammars have the power of a programming language, and an attribute gram-mar for Z was already provided. However, the �nal result of manipulations was going to be somerepresentation of a parse tree { but since an editor does not create parse trees for anything but itsinput grammar, it would have to be returned either as an attribute, or as an unparsing. Havingparse trees as attributes would have been possible, but it would have implied the addition of alot of Smalltalk machinery for actually generating these trees. To reduce the amount of work, wechose for the manipulated tree to appear as a textual (LATEX) representation in an alternativeunparsing (concrete syntax) of the root of the input tree. The grammars for our small tools arebased on the Z grammar that comes with Generic Formaliser (Z2), but they do not utilise any ofthe type checking done through attributes in the Z2 grammar. This is because the Z2 grammaruses Smalltalk shortcuts for delivering attribute values from the root of the parse tree to theleaves, which we would have to recode for our modi�ed grammars.The use of unparsings as the transduction mechanism has some implications for the (formal)power of what transductions can be described. First, most of the desirable non-context freefeatures of the input grammar could not be described in this way. Thus, part of the functionalityof our tools is of the \garbage-in, garbage-out" type, because certain undesirable inputs have notbeen excluded. One aspect that is modelled using unparsings is equality between \subtrees",for example to ensure that the state which is modi�ed by an operation is the state de�ned inthe previous schema. The technique for doing this is to represent such a tree only once in theabstract syntax, and make the unparsings of any further occurrences retrieve this. This has oneodd side e�ect in the generated editors, namely that the user sometimes ends up editing what isconceptually the \copy" of the tree, even if (s)he started out editing the original3.2.2 Overview of generated toolsThe ideal would of course be to have one single uni�cation tool for the entire Z speci�cationlanguage. However, our theoretical research indicates that the essential aspect of this (in thetraditional style of using Z) would be the handling of states and operations. Most other syntacticalentities would be included in the uni�cation without change, or at most using simple conjunctions.Thus, our tools deal with state schemas and operation schemas only.Furthermore, we decided to only write the essential parts of a uni�er for those constructs. Afull unifying tool would have the following tasks:1. Collect the state schemas of each viewpoint; compare these lists or use some other criterionto decide which state spaces should be matched up between the viewpoints; ensure that acorrespondence is de�ned for each matching pair.2. For each such pair of states, generate the uni�ed state space using the appropriate corre-spondence. (\State uni�cation".)3This has been reported, and may be changed in a future Formaliser release.2

3. For each modi�ed state space, replace all the operations de�ned on it by their adaptationsto the uni�ed state space. (\Operation adaptation".)4. For each pair of operations on the same (uni�ed) state space that represent the sameoperation, generate their operation uni�cation to replace both operations.The italicised parts have actually been implemented in tools { clearly the remaining aspects areof a purely book-keeping nature, and their implementation in any programming language wouldpose no interesting problems. The restriction to these essential steps was also made for verypractical reasons: it keeps the grammars relatively small, and allows the use of an (in principle)restricted technique like unparsing. (To put it di�erently: grammar transformation throughunparsings is not a full programming language.) The ideal solution for this would not be a singlesyntax tree transformation tool in any case { it might be a series of such transformations withadditional control de�ned over it.The next two sections describe the tools that have been implemented. Each consists basicallyof a grammar with three di�erent unparsings. The �rst two, Base and LaTeX , have been takendirectly or modi�ed from the Z2 grammar. Base provides a nice graphical display of schemaswhich is convenient for entering speci�cations; LaTeX provides the LATEX (oz.sty) representationof the input. The third unparsing, called LaTeXOut , provides the \output" of the tree trans-formation. Based on this, it would not be too hard to also generate a graphical version of theoutput.3 State uni�cation (and operation adaptation)In this section we will illustrate the operation of the state uni�cation and operation adaptationtool by showing relevant parts of the grammar for it, and by giving an example.3.1 GrammarFormaliser grammar for UnifierPhase1and2Version: Based on Z2; version of March 1997 as described in documentStart symbol: SpecificationsSchemes: Base LaTeX LaTeXOutThe header of the grammar. The \Schemes" declaration tells us that for each grammar construct,three unparsings exist, viz. the ones we described earlier. We have not listed every unparsingof every rule below. The grammar is called \Uni�erPhase1and2" because it covers both stateuni�cation and operation adaptation.Specifications := <Specification>1A restriction of Formaliser grammars is that the rule for the start symbol should always be a\List1" rule, i.e. it should generate a non-empty list of descendants. We are in principle onlyinterested in one \speci�cation".Specification := Viewpoint Viewpoint CorrespondenceUnparse scheme Base is 'State unification & adaptation@n@n@1@n@2@nCorrespondence@n@3'Unparse scheme LaTeX is '@1@2@3A speci�cation consists of two viewpoints (see below for what a viewpoint is in this context) anda correspondence linking the state schemes of these viewpoints. This also illustrates unparsing3

schemes. The LaTeX unparsing is simply the sequence of the LaTeX unparsings of the threesons (@1, @2, @3). The Base unparsing contains a little syntactic sugar and a few blank lines (@n).Most of the actual work in the grammar is done in the LaTeXOut unparsing of Speci�cation, ascan be seen below. This generates the de�nitions of types with bottoms, the uni�ed state space,and a consistency condition which needs to hold. Strings like @ciccic1 4 refer to LaTeXOutunparsings (which at that level are no di�erent from the LaTeX unparsings) of nodes deep downin the tree.Unparse scheme LaTeXOut is '\begin{zed}@n@s+\\\t1 +@cccic2_{\bot} @::= bot@cccic2 | just@cccic2\lang @cccic2 \rang@s------@n\end{zed}@n\begin{zed}@n@s+\\\t1......\end{zed}'The dots actually stand for 10 more lines of this kind. . .Viewpoint := SchemaBox OperationsUnparse scheme Base is 'Viewpoint@n@1@n@2'Unparse scheme LaTeX is '@1@2'Unparse scheme LaTeXOut is '@1@2'Operations := <OperationBox>Unparse scheme LaTeX is '@0@d@e'Unparse scheme LaTeXOut is '@0@d@e'A viewpoint, in the context of this grammar, consists of a state space (using the Z2 grammarconcept SchemaBox) and a (possibly empty) sequence of operations. Again the Base (on-screen)representation contains a little syntactic sugar. @0@d@e is the unparsing scheme syntax for listnodes which simply lists them all without separators or a special representation for the emptylist.OperationBox := SchemaNameFormals OptDeclPart AxiomPart DeltaXiUnparse scheme LaTeX is '\begin{schema}{@1}@n@s+\\+@4@ppc1@2@3@s--@n\end{schema}@n'Unparse scheme LaTeXOut is '\begin{schema}{Ad@1}@n@s+\\+@4@pppcc1Un@pppcic1@2\where @ppccic1@ppccic1 \in \ran just@ppccic2@n @ppccic1@ppccic1'' \in \ran just@ppccic2@n@s-- \LET\M @ppccic1 == just@ppccic2\inv @ppccic1@ppccic1;@k @ppccic1'' == just@ppccic2\inv @ppccic1@ppccic1'' \dot @k@3\O@n\end{schema}@n'DeltaXi := Delta | XiThe de�nition of OperationBox is very similar to that of SchemaBox in the Z2 grammar, butthis is specialised to be an operation on the state just de�ned. That state is not part of theabstract syntax, but it is listed in every unparsing (@ppc1). All that needs to be said additionallyis whether this state is changed (Delta) or only used (Xi). The LaTeXOut unparsing of this doesthe actual operation adaptation, for example by pre�xing the operation name with Ad.Correspondence := AxiomPartUnparse scheme LaTeXOut is '\begin{schema}{Corresp}@n@s+\\+@pcc2@n @pcic2@n\where @1@s--@n\end{schema}@n'Unparse scheme LaTeX is '\begin{schema}{Corresp}@n@s+\\+@pcc2@n@pcic2@n@1@s--@n\end{schema}@n'The correspondence is represented as a schema in all unparsings. In the abstract syntax it is justthe AxiomPart of that schema - the declaration part is made up of the declarations of the twoviewpoint state schemas (@pcc2 and @pcic2).4c is �rst child, ci is second child node; since 1 also refers to a child, this is 5 levels deep in the tree.4

3.2 ExampleThis is the LaTeX unparsing of a document presented to this tool. Nothing which occurs twicein this input has had to be entered twice, as explained above with the grammar rule for Corre-spondence. The �rst viewpoint has one operation, the second has none.State1x : Sx + 17 � 31Op1�State1;y? : Sx = x 0 � y?State2y : Twellchosen yCorrespx : Sy : Tx loves yThe following output (i.e., LaTeXOut unparsing) results from this:

5

S? := botS j justS hhS iiT? := botT j justT hhT iiCorrespx : Sy : Tx loves yState1UnState2xx : S?yy : T?(9 x : S ; y : T �xx = justS x ^ yy = justT y ^ Corresp_yy = botT ^ 9 x : S � (xx = justS x ^ (8 y : T � :Corresp))_xx = botS ^ 9 y : T � (yy = justT y ^ (8 x : S � :Corresp)))8 x : S � xx = justS x) x+17 � 318 y : T � yy = justT y) wellchosen yAdOp1�State1UnState2;y? : Sxx 2 ran justSxx 0 2 ran justSlet x == justS�1xx ; x 0 == justS�1xx 0 � x = x 0 � y?Consistency condition:x loves y) (x + 17 � 31, wellchosen y)3.3 RestrictionsThere are a few restrictions which the grammar does not enforce, but which are necessary ifone wants sensible output. Most importantly, any state scheme should have only one variable,whose type should be given by an identi�er (rather than a general expression). This is so thelists of variables in the uni�ed state can easily be characterised, and so the type-with-bottomhas a sensible name already. Also, the names of the variables should be di�erent between theviewpoint state schemas.5Additionally, the input schemas cannot be checked for the Z static semantics (names being5This restriction is similar to the one usually imposed (but rarely mentioned) for data re�nement in Z: for anabstraction schema to make sense, it should be between variables with di�erent names.6

de�ned, type-correctness, etc.). The attribute rules for doing so are identical or almost similar tothe corresponding rules from Formaliser's standard Z Grammar, but would need some Smalltalkcoding in order to reimplement e�ciency shortcuts used in that grammar.4 Operation uni�cationThis section is structured similarly to the previous one: aspects of the grammar explained, anexample, and a short list of restrictions on the input.4.1 GrammarFormaliser grammar for UnifierPhase3Version: March 1997, based on Z2, as described in documentStart symbol: SpecificationsSchemes: Base LaTeX LaTeXOutSpecifications := <Specification>1Unparse scheme LaTeX is '@0@n@d@e'Unparse scheme LaTeXOut is '@0@n@d@e'As in the previous section, there are three unparsings: screen, LATEX input and LATEX output.Also the top level rule is the same, with \speci�cation" denoting the unit we are actually interestedin.Specification := FirstOp SecondOpUnparse scheme Base is 'Operation unification: two representations of@none operation in different viewpoints.@n@nIn viewpoint 1:@n@1@nIn viewpoint 2:@n@2'Unparse scheme LaTeX is '@1@2'Unparse scheme LaTeXOut is '@1@2\begin{schema}{UnOp}@s+\\ +@n@c4@c5@c2@ci2\where@n\pre @c1 \Rightarrow @c3@n \pre @ci1 \Rightarrow @ci3@s---@n\end{schema}@n@n{\bf Consistency condition:}@n\begin{zed}@n \pre @c1 \wedge \pre @ci1 \Rightarrow @c3 \wedge @ci3@n\end{zed}@n'A speci�cation this time consists of two operations on the same state space that need to be uni�ed.The output is generated mostly in the LaTeXOut unparsing of this rule, including a consistencycondition that needs to be satis�ed for the uni�cation to be a least common re�nement of theinput operations. The rules below demonstrate why di�erent nonterminals need to be used forthe �rst and second operation.FirstOp := SchemaNameFormals OptDeclPart AxiomPart DeltaXi SchemaNameUnparse scheme LaTeX is '\begin{schema}{@1}@n@s+\\+ @4@5 @2 @3@s--@n\end{schema}@n'Unparse scheme LaTeXOut is '\begin{schema}{@1}@n@s+\\+ @4@5 @2 @n@b@b\where@n@b@b@3@s--@n\end{schema}@n'SecondOp := SchemaNameFormals OptDeclPart AxiomPartUnparse scheme LaTeX is '\begin{schema}{@1}@n@s+\\+@pc4@pc5 @2 @3@s--@n\end{schema}@n'Unparse scheme LaTeXOut is '\begin{schema}{@1}@n@s+\\+ @pc4@pc5 @2 @n@b@b\where@n@b@b@3@s--@n\end{schema}@n' 7

DeltaXi := Delta | XiBoth of these are variations on the standard SchemaBox. However, we needed to ensure herethat both operate on a common state. This is done by including DeltaXi and SchemaName inthe �rst operation (only); all unparsings of the second operation inherit those (@pc4 and @pc5)from those of the �rst operation.4.2 ExampleThis is the LaTeX unparsing of a document presented to this tool.Op1�StatetrueOp2�State;x? : f1gfalseThe following output (i.e., LaTeXOut unparsing) results from this:

8

Op1�StatetrueOp2�State;x? : 1falseUnOp�State;x? : 1preOp1) truepreOp2) falseConsistency condition:preOp1 ^ preOp2) true ^ false4.3 RestrictionsAccording to the strict Z re�nement rules [Spi89], the OptDeclParts of the two operations shouldhave the same (i.e., both names and types) lists of inputs and outputs for both operations. Thisis not enforced by this grammar, also because we feel this might be too restrictive for viewpointspeci�cation.Like for the state uni�cation tool, static semantics of the input speci�cation is not checked.5 Concluding remarksThese prototype tools have shown that it is indeed possible to support viewpoint speci�cationin Z with tools for combining the viewpoints. Also, they are able to generate the consistencyconditions that need to hold, which can then serve as inputs to theorem provers, for example Z inIsabelle [KB95]. The generated output (LATEX for oz.sty) can (possibly after minor modi�cations)be fed into various systems for analysis of Z speci�cations.It has taken a relatively long time to produce these prototype tools. This is partially due tothe fact that the functionality of Generic Formaliser was being extended throughout this period,to match its speci�cations and to match our requests for extra functionality. In the end, manyfeatures of Generic Formaliser were left unused, unfortunately. One could imagine next versionsof these tools making use of attributes for checking static semantics (unused now because ofshortcuts mentioned before). Also, attributes containing strings or parse trees would allow a moremodular (and slightly more
exible) generation of uni�cations. Functions for manipulating parsetrees are already available with Generic Formaliser; one would have to add a few more of these,9

and/or functions for manipulating string attributes (this implies writing Smalltalk methods).Using the existing feature of attributes used in unparsings, such strings could easily be combinedinto unparsings, which would not be as complicated as the unparsing strings we now use.AcknowledgementsSusan Stepney of Logica Cambridge was extremely helpful with quick responses to questionson Formaliser, and quick �xing of bugs and extensions of Formaliser functionality. Despite thesometimes frustrating results of using Generic Formaliser in a way which was far from its originalpurpose, it was a pleasure to cooperate on this with her.More information on the project \Viewpoint Consistency in Open Distributed Processing", in-cluding papers on viewpoint uni�cation in Z, may be found on:http://alethea.ukc.ac.uk/Dept/Computing/Research/NDS/consistency.References[BDBS96] E. Boiten, J. Derrick, H. Bowman, and M. Steen. Consistency and re�nement forpartial speci�cation in Z. In M.-C. Gaudel and J. Woodcock, editors, FME'96: Indus-trial Bene�t of Formal Methods, Third International Symposium of Formal MethodsEurope, volume 1051 of Lecture Notes in Computer Science, pages 287{306. Springer-Verlag, March 1996.[BDBS97] E.A. Boiten, J. Derrick, H. Bowman, and M. Steen. Constructive consistency checkingfor partial speci�cation in Z. Extended version of [BDBS96]; submitted for publication,1997.[KB95] I. Kraan and P. Baumann. Implementing Z in Isabelle. In J. P. Bowen and M. G.Hinchey, editors, ZUM'95: The Z Formal Speci�cation Notation, 9th InternationalConference of Z Users, Limerick, Ireland, September 7-9, 1995, Proceedings, volume967 of Lecture Notes in Computer Science, pages 355{373. Springer-Verlag, 1995.[Spi89] J. M. Spivey. The Z notation: A reference manual. Prentice Hall, 1989.

10

