7 Unification tools in Generic Formaliser

Eerke Boiten*

Computing Laboratory, University of Kent,
Canterbury, CT2 7NF, U.K.
(Phone: +44 1227 827553,

Email: E.A.Boiten@ukc.ac.uk)

April 1997

Abstract
We describe some prototype tools for performing unification (i.e. deriving the least com-
mon refinement) of simple Z specifications. The techniques used are those described in earlier
research papers on viewpoint specification in Z; the tools have been implemented in Generic
Formaliser (a product of Logica UK Limited).

1 Problem definition

In earlier research papers [BDBS96, BDBS97] we described techniques for constructing a least
common refinement, also called wnification, of two Z [Spi89] specifications in the states-and-
operations style. These techniques are mostly of a syntactic nature, so it was clear that they
could in principle be automated. We have developed some prototype tools for this purpose.

For an overview of Z unification (and its purpose in viewpoint specification), see our papers
[BDBS96, BDBS97], which are also available from the project’s WWW site!. This note describes
only what the prototype tools do — not why they do it. For a quick impression of the tools, the
reader is advised to have a glance at the examples in sections 3 and 4. The next section describes
the system used for implementing them — Logica UK’s Generic Formaliser. The remaining
sections deal with the tools themselves. A final section lists some conclusions, including ideas on
extending these prototypes.

2 Generic Formaliser

Generic Formaliser is a product of Logica UK Limited?. It was developed as a generalisation of
a tool for Z written by Logica, called (Z Specific) Formaliser. We chose Generic Formaliser as
our development framework, since it includes a complete Z grammar that we can modify.
Generic Formaliser is essentially an environment for generating syntax-directed editors. It
runs on top of Smalltalk/V for Windows, i.e. only on PCs. Generic Formaliser is actually a
syntax-directed editor itself, for the grammar which is appropriately called Grammar Grammar.
Grammars (and the production rules in grammars) consist of three parts: an abstract syntax,

*This work was funded by the U.K. Engineering and Physical Sciences Research Council under grant number
GR/K13035.

Inttp://alethea.ukc.ac.uk/Dept/Computing/Research/NDS/consistency

2See http://public.logica.com/formaliser/.

various concrete syntaxes (called unparsings), and rules for attributes. Functions for computing
and checking the attributes are specified in a Z-like syntax, which Generic Formaliser translates
into calls of Smalltalk methods. These methods would in general have to be written by grammar
writers and added to the Smalltalk environment.

2.1 Implementation techniques

Our purpose was not in the first place to generate syntax directed editors for Z viewpoint spec-
ification, thus any use of Generic Formaliser we made was going to be non-standard. What we
needed to do was more an issue of syntactic manipulation: transduction or translation of syntax
trees. On first thought, the attribute grammar aspect seemed most appropriate for specifying
this in. Attribute grammars have the power of a programming language, and an attribute gram-
mar for Z was already provided. However, the final result of manipulations was going to be some
representation of a parse tree — but since an editor does not create parse trees for anything but its
input grammar, it would have to be returned either as an attribute, or as an unparsing. Having
parse trees as attributes would have been possible, but it would have implied the addition of a
lot of Smalltalk machinery for actually generating these trees. To reduce the amount of work, we
chose for the manipulated tree to appear as a textual (WTEX) representation in an alternative
unparsing (concrete syntax) of the root of the input tree. The grammars for our small tools are
based on the Z grammar that comes with Generic Formaliser (Z2), but they do not utilise any of
the type checking done through attributes in the Z2 grammar. This is because the Z2 grammar
uses Smalltalk shortcuts for delivering attribute values from the root of the parse tree to the
leaves, which we would have to recode for our modified grammars.

The use of unparsings as the transduction mechanism has some implications for the (formal)
power of what transductions can be described. First, most of the desirable non-context free
features of the input grammar could not be described in this way. Thus, part of the functionality
of our tools is of the “garbage-in, garbage-out” type, because certain undesirable inputs have not
been excluded. One aspect that is modelled using unparsings is equality between “subtrees”,
for example to ensure that the state which is modified by an operation is the state defined in
the previous schema. The technique for doing this is to represent such a tree only once in the
abstract syntax, and make the unparsings of any further occurrences retrieve this. This has one
odd side effect in the generated editors, namely that the user sometimes ends up editing what is
conceptually the “copy” of the tree, even if (s)he started out editing the original®.

2.2 Overview of generated tools

The ideal would of course be to have one single unification tool for the entire Z specification
language. However, our theoretical research indicates that the essential aspect of this (in the
traditional style of using Z) would be the handling of states and operations. Most other syntactical
entities would be included in the unification without change, or at most using simple conjunctions.
Thus, our tools deal with state schemas and operation schemas only.

Furthermore, we decided to only write the essential parts of a unifier for those constructs. A
full unifying tool would have the following tasks:

1. Collect the state schemas of each viewpoint; compare these lists or use some other criterion
to decide which state spaces should be matched up between the viewpoints; ensure that a
correspondence is defined for each matching pair.

2. For each such pair of states, generate the unified state space using the appropriate corre-
spondence. (“State unification”.)

3This has been reported, and may be changed in a future Formaliser release.

3. For each modified state space, replace all the operations defined on it by their adaptations
to the unified state space. (“Operation adaptation”.)

4. For each pair of operations on the same (unified) state space that represent the same
operation, generate their operation unification to replace both operations.

The italicised parts have actually been implemented in tools — clearly the remaining aspects are
of a purely book-keeping nature, and their implementation in any programming language would
pose no interesting problems. The restriction to these essential steps was also made for very
practical reasons: it keeps the grammars relatively small, and allows the use of an (in principle)
restricted technique like unparsing. (To put it differently: grammar transformation through
unparsings is not a full programming language.) The ideal solution for this would not be a single
syntax tree transformation tool in any case — it might be a series of such transformations with
additional control defined over it.

The next two sections describe the tools that have been implemented. Each consists basically
of a grammar with three different unparsings. The first two, Base and LaTeX, have been taken
directly or modified from the Z2 grammar. Base provides a nice graphical display of schemas
which is convenient for entering specifications; LaTeX provides the IWTEX (oz.sty) representation
of the input. The third unparsing, called LaTeXQut, provides the “output” of the tree trans-
formation. Based on this, it would not be too hard to also generate a graphical version of the
output.

3 State unification (and operation adaptation)

In this section we will illustrate the operation of the state unification and operation adaptation
tool by showing relevant parts of the grammar for it, and by giving an example.

3.1 Grammar

Formaliser grammar for UnifierPhaseland2

Version: Based on Z2; version of March 1997 as described in document
Start symbol: Specificatiomns

Schemes: Base LaTeX LaTeX0ut

The header of the grammar. The “Schemes” declaration tells us that for each grammar construct,
three unparsings exist, viz. the ones we described earlier. We have not listed every unparsing
of every rule below. The grammar is called “UnifierPhaseland2” because it covers both state
unification and operation adaptation.

Specifications := <Specification>1

A restriction of Formaliser grammars is that the rule for the start symbol should always be a
“List1” rule, i.e. it should generate a non-empty list of descendants. We are in principle only
interested in one “specification”.

Specification := Viewpoint Viewpoint Correspondence

Unparse scheme Base is ’State unification & adaptation@n@n@1@n@2@nCorrespondenc
e@ne3’

Unparse scheme LaTeX is ’@102@3

A specification consists of two viewpoints (see below for what a viewpoint is in this context) and
a correspondence linking the state schemes of these viewpoints. This also illustrates unparsing

schemes. The LaTeX unparsing is simply the sequence of the LaTeX unparsings of the three
sons (@1, @2, @3). The Base unparsing contains a little syntactic sugar and a few blank lines (@n).
Most of the actual work in the grammar is done in the LaTeXOwut unparsing of Specification, as
can be seen below. This generates the definitions of types with bottoms, the unified state space,
and a consistency condition which needs to hold. Strings like @ciccicl * refer to LaTeXOut
unparsings (which at that level are no different from the LaTeX unparsings) of nodes deep down
in the tree.

Unparse scheme LaTeXOut is ’\begin{zed}@n@s+\\\tl +@cccic2_{\bot} @::= bot@ccci
c2 | just@cccic2\lang Qcccic2 \rang@s------ @n\end{zed}@n\begin{zed}@nds+\\\t1
...... \end{zed}’

The dots actually stand for 10 more lines of this kind. . .

Viewpoint := SchemaBox Operations
Unparse scheme Base is ’Viewpoint@n@1@n@2’
Unparse scheme LaTeX is ’@102’°

Unparse scheme LaTeXOut is ’0102°

Operations := <0OperationBox>
Unparse scheme LaTeX is ’@0@deQe’
Unparse scheme LaTeXOut is ’@0@dQe’

A viewpoint, in the context of this grammar, consists of a state space (using the Z2 grammar
concept SchemaBox) and a (possibly empty) sequence of operations. Again the Base (on-screen)
representation contains a little syntactic sugar. @0@d@e is the unparsing scheme syntax for list
nodes which simply lists them all without separators or a special representation for the empty
list.

OperationBox := SchemaNameFormals OptDeclPart AxiomPart DeltaXi

Unparse scheme LaTeX is ’\begin{schemal}{@1}@n@s+\\+@4@ppc10203Qs--0@n\end{schema
}en’

Unparse scheme LaTeXOut is ’\begin{schema}{Ad@1}@n@s+\\+@4@pppcclUn@pppcicl@2\w
here @ppccicl@ppccicl \in \ran just@ppccic2@n @ppccicl@ppccicl’’ \in \ran just@
ppccic20n@s-- \LET\M Q@ppccicl == just@ppccic2\inv @ppccicl@ppccicl;@k @ppccicl’
’ == just@ppccic2\inv @ppccicl@ppccicl’’ \dot @k@3\0@n\end{schemal}@n’

DeltaXi := Delta | Xi

The definition of OperationBox is very similar to that of SchemaBox in the Z2 grammar, but
this is specialised to be an operation on the state just defined. That state is not part of the
abstract syntax, but it is listed in every unparsing (@ppc1). All that needs to be said additionally
is whether this state is changed (Delta) or only used (Xi). The LaTeXOut unparsing of this does
the actual operation adaptation, for example by prefixing the operation name with Ad.

Correspondence := AxiomPart

Unparse scheme LaTeXOut is ’\begin{schema}{Corresp}@n@s+\\+Q@pcc2@n @pcic2@n\whe
re ©10@s--@n\end{schema}@n’

Unparse scheme LaTeX is ’\begin{schemal}{Corresp}@n@s+\\+@pcc20@n@pcic20n@1@s--0On
\end{schemal}@n’

The correspondence is represented as a schema in all unparsings. In the abstract syntax it is just
the AxiomPart of that schema - the declaration part is made up of the declarations of the two
viewpoint state schemas (@pcc2 and @pcic2).

4¢ is first child, ci is second child node; since 1 also refers to a child, this is 5 levels deep in the tree.

3.2 Example

This is the LaTeX unparsing of a document presented to this tool. Nothing which occurs twice
in this input has had to be entered twice, as explained above with the grammar rule for Corre-
spondence. The first viewpoint has one operation, the second has none.

___Statel
z:S

z+17 <31

__Opl
AStatel;
y?: S

z=x —y?

___State2
y: T

wellchosen y

__Corresp
z:S
y: T

z loves y

The following output (i.e., LaTeXOut unparsing) results from this:

S = botS | justS (S

T, :=botT | justT{(T))

__Corresp
z:S
y: T

z loves y

—_Statel UnState2
zr: S|
yy - To
(Fz:S;y:Te
xx = justS x A yy = justT y A Corresp
Vyy = botT ANz : S e (zz = justS z A (Vy : T e ~Corresp))
Vazr = botS ATy : T e (yy = justT y A (Vz : S e ~Corresp)))
Va:S ezr=justS v = x
+17 <31
Vy: T eyy=justT y= wellchosen y

— AdOp1
AStatel UnState2;
y?: S

xx € ran justS
xx' € ran justS
let 2 == justS 'ax; 2’ == justS 'az' e x =1z’ — y?

Counsistency condition:

x loves y = (x + 17 < 31 & wellchosen y)

3.3 Restrictions

There are a few restrictions which the grammar does not enforce, but which are necessary if
one wants sensible output. Most importantly, any state scheme should have only one variable,
whose type should be given by an identifier (rather than a general expression). This is so the
lists of variables in the unified state can easily be characterised, and so the type-with-bottom
has a sensible name already. Also, the names of the variables should be different between the
viewpoint state schemas.?

Additionally, the input schemas cannot be checked for the Z static semantics (names being

5This restriction is similar to the one usually imposed (but rarely mentioned) for data refinement in Z: for an
abstraction schema to make sense, it should be between variables with different names.

defined, type-correctness, etc.). The attribute rules for doing so are identical or almost similar to
the corresponding rules from Formaliser’s standard Z Grammar, but would need some Smalltalk
coding in order to reimplement efficiency shortcuts used in that grammar.

4 Operation unification

This section is structured similarly to the previous one: aspects of the grammar explained, an
example, and a short list of restrictions on the input.

4.1 Grammar

Formaliser grammar for UnifierPhase3

Version: March 1997, based on Z2, as described in document
Start symbol: Specifications

Schemes: Base LaTeX LaTeX0ut

Specifications := <Specification>1
Unparse scheme LaTeX is ’@0@n@dQe’
Unparse scheme LaTeXOut is ’@0@ne@dee’

As in the previous section, there are three unparsings: screen, KTEX input and IXTEX output.
Also the top level rule is the same, with “specification” denoting the unit we are actually interested
in.

Specification := FirstOp SecondOp

Unparse scheme Base is ’Operation unification: two representations of@none oper
ation in different viewpoints.@nOnIn viewpoint 1:0n@1@nIn viewpoint 2:0n@2’
Unparse scheme LaTeX is ’@102’°

Unparse scheme LaTeXOut is ’Q10@2\begin{schema}{Un0p}@s+\\ +@n@c40c50@c2@ci2\wher
eOn\pre @cl \Rightarrow @c3@n \pre Q@cil \Rightarrow @ci3@s---@n\end{schema}@n@n
{\bf Consistency condition:}@n\begin{zed}@n \pre @cl \wedge \pre Qcil \Rightarr
ow @c3 \wedge @ci3@n\end{zed}@n’

A specification this time consists of two operations on the same state space that need to be unified.
The output is generated mostly in the LaTeXQut unparsing of this rule, including a consistency
condition that needs to be satisfied for the unification to be a least common refinement of the
input operations. The rules below demonstrate why different nonterminals need to be used for
the first and second operation.

FirstOp := SchemaNameFormals OptDeclPart AxiomPart DeltaXi SchemaName

Unparse scheme LaTeX is ’\begin{schema}{@1}@n@s+\\+ @405 @2 @3Q@s--@n\end{schema
}en’

Unparse scheme LaTeXOut is ’\begin{schema}{@1}0n@s+\\+ @405 @2 Qn@b@b\whereOn®
bO@b@3@s--0n\end{schema}@n’

SecondOp := SchemaNameFormals OptDeclPart AxiomPart

Unparse scheme LaTeX is ’\begin{schema}{@1}@n@s+\\+@pc4@pc5 @2 @3@s--@n\end{sch
ema}@n’

Unparse scheme LaTeXOut is ’\begin{schema}{@1}@n@s+\\+ @pc4@pc5 ©2 @n@bOb\whe
re@n@b@b@3@s--0n\end{schema}On’

DeltaXi := Delta | Xi

Both of these are variations on the standard SchemaBox. However, we needed to ensure here
that both operate on a common state. This is done by including DeltaXi and SchemaName in
the first operation (only); all unparsings of the second operation inherit those (@pc4 and @pc5)
from those of the first operation.

4.2 Example

This is the LaTeX unparsing of a document presented to this tool.

__ Opl
AState

true

—Op2
AState;
z?: {1}

false

The following output (i.e., LaTeXOut unparsing) results from this:

_ Opl
AState

true

—_Op2
A State;
z?:1

false

__UnOp
AState

)

z?7:1

pre Opl = true
pre Op2 = false

Consistency condition:

pre Opl A pre Op2 = true A false

4.3 Restrictions

According to the strict Z refinement rules [Spi89], the OptDeclParts of the two operations should
have the same (i.e., both names and types) lists of inputs and outputs for both operations. This
is not enforced by this grammar, also because we feel this might be too restrictive for viewpoint
specification.

Like for the state unification tool, static semantics of the input specification is not checked.

5 Concluding remarks

These prototype tools have shown that it is indeed possible to support viewpoint specification
in Z with tools for combining the viewpoints. Also, they are able to generate the consistency
conditions that need to hold, which can then serve as inputs to theorem provers, for example Z in
Isabelle [KB95]. The generated output (IMTEX for oz.sty) can (possibly after minor modifications)
be fed into various systems for analysis of Z specifications.

It has taken a relatively long time to produce these prototype tools. This is partially due to
the fact that the functionality of Generic Formaliser was being extended throughout this period,
to match its specifications and to match our requests for extra functionality. In the end, many
features of Generic Formaliser were left unused, unfortunately. One could imagine next versions
of these tools making use of attributes for checking static semantics (unused now because of
shortcuts mentioned before). Also, attributes containing strings or parse trees would allow a more
modular (and slightly more flexible) generation of unifications. Functions for manipulating parse
trees are already available with Generic Formaliser; one would have to add a few more of these,

and/or functions for manipulating string attributes (this implies writing Smalltalk methods).
Using the existing feature of attributes used in unparsings, such strings could easily be combined
into unparsings, which would not be as complicated as the unparsing strings we now use.

Acknowledgements

Susan Stepney of Logica Cambridge was extremely helpful with quick responses to questions
on Formaliser, and quick fixing of bugs and extensions of Formaliser functionality. Despite the
sometimes frustrating results of using Generic Formaliser in a way which was far from its original
purpose, it was a pleasure to cooperate on this with her.

More information on the project “Viewpoint Consistency in Open Distributed Processing”, in-
cluding papers on viewpoint unification in Z, may be found on:
http://alethea.ukc.ac.uk/Dept/Computing/Research/NDS/consistency.

References

[BDBS96] E. Boiten, J. Derrick, H. Bowman, and M. Steen. Consistency and refinement for
partial specification in Z. In M.-C. Gaudel and J. Woodcock, editors, FMFE’96: Indus-
trial Benefit of Formal Methods, Third International Symposium of Formal Methods
Europe, volume 1051 of Lecture Notes in Computer Science, pages 287-306. Springer-
Verlag, March 1996.

[BDBS97] E.A. Boiten, J. Derrick, H. Bowman, and M. Steen. Constructive consistency checking
for partial specification in Z. Extended version of [BDBS96]; submitted for publication,
1997.

[KB95] I. Kraan and P. Baumann. Implementing Z in Isabelle. In J. P. Bowen and M. G.
Hinchey, editors, ZUM’95: The Z Formal Specification Notation, 9th International
Conference of Z Users, Limerick, Ireland, September 7-9, 1995, Proceedings, volume
967 of Lecture Notes in Computer Science, pages 355-373. Springer-Verlag, 1995.

[Spi&9] J. M. Spivey. The Z notation: A reference manual. Prentice Hall, 1989.

10

