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1 IntroductionExtended ML (EML) is a framework for the formal development of modular Standard ML(SML) software systems that are correct with respect to a speci�cation of their requiredbehaviour. The long-term goal of work on EML is to provide a practical framework forformal development together with an integrated suite of computer-based speci�cation anddevelopment support tools and complete mathematical foundations to substantiate claimsof correctness. The complete formal de�nition of the EML language [KST94b] constitutesan important milestone in this programme, necessary to provide a basis for further researchon foundations and tools. The length and requisite formality of the de�nition renders itrather di�cult to penetrate. Accordingly, this paper provides an informal overview of thede�nition, explaining most of the main issues involved and justifying some of the choicestaken.SML is a widely-used functional programming language. Apart from useful features itshares with a number of similar languages (a 
exible type system with polymorphic types,function de�nition by patterns, etc.) it has two special characteristics that make it verywell-suited to the enterprise set out above. First, it provides powerful modularisation facil-ities for building large software systems by de�ning and combining self-contained genericprogram units. Such facilities seem to be a prerequisite for the use of formal developmentmethods on examples of signi�cant size. The main emphasis of EML is on development\in the large", relying heavily on linguistic support from the SML module facilities andincorporating ideas from foundational work on speci�cation and formal development ofmodular systems [Sch87], [ST88], [SST92], [ST92], backed up by a large body of work onalgebraic speci�cation and the theory of formal software development (see [BKLOS91] fora comprehensive presentation of the related literature). Second, the syntax and semanticsof SML is formally de�ned [MTH90]. This makes it possible | at least in principle |to reason formally about the behaviour of SML programs, as required for proofs of cor-rectness with respect to a speci�cation of requirements (provided that the speci�cationitself is given a formal meaning as well). The size and complexity of the semantics is suchthat fully formal use of it, e.g. to prove correctness of an optimizing transformation, wouldbe quite a di�cult task. An encouraging start in this direction, using the HOL theoremprover, is described in [VG94], [MG94].The idea of building a fully-
edged speci�cation and formal development frameworkaround a \real" programming language seems to be novel to EML. Somewhat related iswork on the Anna language for annotating Ada programs with assertions concerning theirintended behaviour [LHKO87]; but this is not intended for formal development of softwarefrom speci�cations (although see [Kri90]), and as far as we are aware there is no formalsemantics of Anna nor any intention to formally relate Anna to the semantics of Ada[Ast86]. Similar comments apply to Larch [GH93], which has been used in connectionwith various programming languages having no existing formal semantics. An attempt toapply Larch to the speci�cation of SML modules is reported in [WRZ93], but many di�cultproblems remain to be solved there. Real programming languages are inevitably complex,and any serious attempt to give a formal treatment of such a language and a development2



framework based on it is an ambitious goal bringing a host of problems that do not arisewhen considering toy programming languages or when considering speci�cation and formaldevelopment in abstract terms.A related novelty of this work is in its treatment of the speci�cation of a number of\di�cult" facets of computation, all of which arise in SML. These include polymorphictypes, higher-order functions, exceptions and non-termination. In spite of the fact thatthese are common features of modern programming languages, they are rarely addressedby approaches to speci�cation. There have been attempts to treat each of these featuresin isolation, but not in combination with one another. It is precisely in the interactionbetween such features that some of the most di�cult issues arise.The structure of the paper is as follows. Section 2 gives a short introduction to themain features of SML and EML in order to set the scene for the rest of the paper. Wehave resisted the temptation to dwell at length on aspects of EML that are not directlyrelevant to the topic at hand; for more information, see the papers cited there. Section 3brie
y discusses the way in which EML relates to and extends SML. The main body of thepaper is Section 4, an overview of the semantics of EML which attempts to give the readeran overall impression of its structure without the need to study the details of [KST94b],while touching on the ideas behind many of the most interesting and important points.Section 5 summarizes some of the decisions involved in the design of EML and concludeswith remarks about the trials and tribulations involved in writing such a semantics.2 An overview of EMLThe main aim of this section is to provide enough background concerning EML to makethe paper self-contained. The �rst subsection is a summary of the features of the SMLprogramming language, which is the target of EML formal program development and onwhich EML is based. The next subsection gives an overview of the EML language andformal development framework. A small example is given to demonstrate some of thefeatures of the language, and a �nal subsection summarizes the main features of the logicused to write axioms.2.1 SMLThe following is necessarily very brief. Readers with no prior knowledge of SML or relatedlanguages (Hope, Haskell, etc.) will probably �nd it necessary to consult e.g. [Har89] or[Pau91].SML consists of two sub-languages: the core language and the module language. Thecore language provides constructs for programming \in the small" by de�ning a collectionof types and values (including functions) of those types. The module language providesconstructs for programming \in the large" by de�ning and combining self-contained pro-gram units coded using the core. To a large extent, these sub-languages can be understoodseparately from each other, both because the dependency is only one-way (modules containcore constructs, but not vice versa) and because the constructs available in the module3



language are applicable to the organization of declarations of any kind. SML is an inter-active language in which top-level declarations are typechecked, compiled and evaluatedone at a time.The SML core language is a strongly typed functional programming language with a
exible type system including polymorphic types, disjoint union, product and (higher-order) function types, recursive types, and user-de�ned abstract and concrete types. Con-ceptually, all values in SML (except those of certain special built-in types, such as realand function types) are represented as �nite ground terms built from uninterpreted con-structors. A function is de�ned by a sequence of equations, each of which speci�es thevalue of the function over some subset of the set of possible argument values. This sub-set is described by a pattern (a term containing constructors and variables only, withoutrepeated variables) on the left-hand side of the equation, which serves both for case se-lection and variable binding. Certain types are designated by SML as equality types;roughly, these are types whose de�nitions do not involve abstract types or function types.The built-in equality function = has type ''a * ''a -> bool; the type variable ''a canonly be instantiated to equality types (in contrast to 'a which can be instantiated to anytype), preventing values of non-equality types from being tested for equality. Exceptions,possibly carrying values, may be raised by built-in functions (e.g. division by zero), byfailure of pattern matching, or by user code. Once raised, an exception propagates untilit is trapped by a surrounding handler or reaches top level. Typed references are availablewith dereferencing and assignment operations. Input/output is handled via streams; inputstreams are associated with producers (e.g. a keyboard or a �le) and output streams areassociated with consumers.The SML module language provides mechanisms that allow large SML software sys-tems to be structured into self-contained program units with explicit interfaces. Underthis scheme, interfaces (signatures) and their implementations (structures) are de�nedseparately. Structures contain de�nitions of types, values and exceptions, and may alsocontain de�nitions of lower-level structures (substructures). Signatures may be attachedto structures; this imposes a requirement for the structure to match that signature, mean-ing that the structure must de�ne types, values, exceptions and substructures with thenames indicated by the signature, and the types of values and exceptions as well as thesignatures of substructures must correspond to those given in the signature. Functors are\parameterized" structures; the application of a functor to a structure yields a structure.A functor has an input signature describing structures to which it may be applied, andan optional output signature describing the structure that results from such an applica-tion. It is possible, and sometimes necessary to allow interaction between di�erent partsof a program, to declare that certain substructures (or just certain types) are identical orshared. Structures and functors collectively are referred to as modules.Signatures serve both to impose constraints on the bodies of modules and to restrictthe information that is made available externally about the components of module bodies.Roughly speaking, only the information that is explicitly recorded in the signature(s) of amodule is available externally. (In fact, this statement is not accurate for SML, but it isaccurate in the context of EML. See Section 3 for more on this point.) Such information4



hiding is vital to allow parts of a large software system to be developed and maintainedindependently.2.2 EMLEML is a vehicle for the formal development of programs from speci�cations by means ofindividually-veri�ed steps. EML is a wide-spectrum language (cf. [Bau85]) since it allowsall stages in the formal development process to be expressed in a single formalism, fromthe initial high-level speci�cation to the �nal program and including intermediate stages inwhich speci�cation and program are intermingled. The target of the formal developmentprocess is a modular program in SML, and thus (a large subset of) SML is an executablesub-language of EML. Earlier stages in the development of such a program are incompletemodular programs in which some parts are only speci�ed by means of axioms rather thande�ned in an executable fashion by means of SML code.Syntactically, the main di�erence between SML and EML is that EML permits axioms tobe included in signatures and in module bodies. Axioms in a signature specify propertiesthat are required to hold of any structure matching that signature. The general ideais similar to that of providing types of values in signatures in addition to their names;the di�erence is that types (and sharing constraints) can be checked mechanically, whilechecking that axioms are satis�ed requires proof. One reason for including types of valuesin an SML signature is to provide enough information about the module it describes toenable subsequent code that refers to it to be typechecked and compiled without makingreference to the details of the code in the module body.1 This is essential for purposesof separate compilation. Similarly, a reason for including axioms in an EML signatureis to provide enough information about the module it describes to enable properties ofsuch subsequent code to be proved without reference to the module body. This separationof an interface from its implementation permits di�erent implementations (satisfying theaxioms in the interface) to be developed and used later without a�ecting the correctness ofthe rest of the system, and enables implementations for di�erent modules to be developedindependently.Axioms in module bodies may be used to describe components for which executablede�nitions (in the form of SML code) are not yet available. Syntactically, one gives adeclaration containing the place-holder expression \?", followed by axioms referring to theunde�ned object. For example:val x:int = ?axiom x>7 andalso isprime xModule bodies containing axioms may be regarded as un�nished or incomplete abstractprograms in which some decisions have already been taken but others, such as choice ofalgorithms, remain open. The intention is that at a later stage in the development of the1This aim is not fully achieved in SML because SML signatures are \transparent", so details of therepresentation of types in a module body that are not mentioned in its signature can be exploited byclients | cf. e.g. [Ler94]. EML signatures are \opaque", see Section 3, so this is not a problem there.5



program, the question mark will be replaced by code that satis�es the axioms. A questionmark may also be used in place of the type expression on the right-hand side of a typedeclaration, or even as a placeholder for the entire module body in a structure/functordeclaration.In EML, each structure comes equipped with a signature (this is optional in SML)containing the information that is available externally concerning the structure body. As inSML, the body is required to match this signature. In addition to the name/type matchingrequired in SML, the body must be correct: the axioms in the signature must be satis�edby any model of the body (that is, by any structure containing the code in the structurebody and satisfying any axioms it includes). Obviously, a proof is generally required toestablish correctness. Similar remarks apply to functors, which must be equipped withboth an input signature (also required in SML) and an output signature (optional in SML).Formal development of a system typically begins with an initial high-level speci�cationof the problem to be solved, in the form of an EML module declaration having a questionmark in place of its body. If the module is parameterized (i.e., is a functor) the input signa-ture speci�es the facilities (types, values, exceptions, and structures) to be taken as given,in addition to the built-ins of SML. The output signature of the module speci�es the ad-ditional facilities required. These signatures will normally contain axioms. At later stagesof development, this module declaration will be re�ned by providing it with a body that iscorrect in the sense described above. This may contain axioms, and may make reference tofurther structures or functors that are themselves not yet de�ned in an executable fashion.The development process is �nished once all functor and structure bodies on which theoriginal \goal" module depends are complete, meaning that all question marks and axiomsin module bodies have been replaced by executable SML code. At this point, erasing allaxioms from signatures (or, much more usefully, regarding them as complete and formallychecked documentation) yields an executable SML program. This is correct with respectto the initial speci�cation since correctness is maintained by each development step.2The EML formal development methodology de�nes a number of ways of graduallyre�ning an un�nished module declaration towards a complete and correct version. Acommon way to proceed is to decompose the problem into simpler problems by specifyinga number of new modules and de�ning the module at hand as a composition of these. Thetask of providing a body for each of these new modules becomes a re�nement task in itsown right that can be tackled separately from the others. Such steps give rise to proofobligations that must be discharged in order to ensure that correctness is preserved; theseproof obligations can be generated mechanically from the \before" and \after" versions ofthe module at hand. See [ST89], [ST91], [Kaz92a] and [San93] for further details, and see[ST89], [San91] and [SdS95] for examples of EML-style formal software development.2To be completely accurate, it must be mentioned that the compilation of the resulting program is notguaranteed to terminate: EML copes gracefully with non-terminating functions, as explained below, butnot with non-terminating declarations. The guarantee of correctness is subject to this proviso.6



2.3 An example in EMLThe example in Figure 1 illustrates some of the language features of EML. It is an imple-mentation of evaluation for a rewrite system, based on some simple abstract propertiesone would expect for arbitrary rewrite systems, (enriched) �-calculi, etc. This takes theform of a functor, where properties required of the argument and properties of the resultare speci�ed by EML axioms. The functor itself is coded in the executable subset of EML,so this is an example of what might emerge from a formal development that began with aspeci�cation of the problem consisting of the same functor with its body replaced by theplace-holder \?".The idea of the example is as follows. Rewrite systems operate on some set of terms;each term is either a normal form (NF) or contains a redex that can be contracted. A (one-step) strategy picks a redex in a term and returns the redex together with the context of itsoccurrence in the term, given as a function. The functor Reduce provides a function evalthat repeatedly contracts redexes selected by the given strategy until a term in normalform is obtained. A copy of the argument structure L is included as a substructure T of theresult in order to provide convenient access to the type of terms. T inherits the signatureof L (TERMSIG).The signature TERMSIG imposes certain requirements on the behaviour of contract,NF and strategy: the axiom forall t => (NF t) proper is true if for all terms t theevaluation of NF t neither fails to terminate nor raises an exception; the second axiomrequires that strategy t raises an exception if and only if t is in normal form, andthat the redex selected by strategy otherwise can be properly contracted. Typical forEML is here the mixture of logical connectives and programming language constructs.Incidentally, the arrow => appears in a formula like forall t => (NF t) proper for thesame reason as it appears in a functional expression like fn x => x+1, which is SML'ssyntax for �x:x+ 1.The functor Reduce gives us an evaluation function eval, as speci�ed in the \included"signature EVAL, for any rewrite system given as a structure matching TERMSIG. From theparameter interface TERMSIG and the implementation of eval we can show that it willnever raise an exception (although it may fail to terminate). The sharing equation, anSML feature, is needed to ensure that the type T.term used in the type of eval is the sameas the type L.term provided by the argument of Reduce, so evaluation is for the kind ofterms de�ned by the argument and not for some other kind of terms. It also makes evalapplicable to terms other than the ones that can be built using structure T only. This isimportant, as structure T contains no functions for building terms, except by contractionof other terms; normally, the argument of Reduce (or structures on which it depends) willcontain such functions, in addition to those required by TERMSIG.2.4 The language of EML axiomsThe syntax used to write axioms in the above example should have been su�ciently self-explanatory to make the intended meaning clear. However, the logical system used is nota conventional one; it is necessarily much more complex than (for example) many-sorted7



signature TERMSIG =sig type termval contract: term -> termval NF: term -> boolaxiom forall t => (NF t) properval strategy: term -> term * (term -> term)exception noredexaxiom forall t =>if NF t then (strategy t) raises noredexelse ((strategy t) proper andalsolet val (u,f) = strategy tin f u == t andalso(f (contract u)) properend)end;signature EVAL =sig structure T: TERMSIGval eval: T.term -> T.termaxiom forall t =>((eval t) terminates implies T.NF(eval t))end;functor Reduce (L: TERMSIG) :sig include EVAL; sharing L=T end =struct structure T = Lfun eval t =if L.NF t then telse let val (redex,context) = L.strategy tin eval (context (L.contract redex))endend; Figure 1: An example: evaluation for a rewrite system8



equational logic or �rst-order predicate logic because of the need to deal with all thefeatures of SML programs. For example, consider an equation asserting that the valuesof two expressions, exp and exp 0, are equal. What if either exp or exp 0 (or both) fail toterminate? What if one raises an exception (or in the terminology of the SML de�nition,evaluates to a packet)? What if exp and exp 0 are of a function type? And in the caseof universally and existentially quanti�ed formulae, what is the meaning of quanti�cationover a polymorphic type?The syntax of EML axioms is designed to be a natural extension of the syntax ofSML boolean expressions, with the meaning of the new constructs chosen to be as simpleand natural as possible under the circumstances. Within the limits imposed by theseconstraints, we have attempted to maximize expressive power and to avoid making certaincommon speci�cation idioms unduly awkward to write.Any expression of type bool may be used as an axiom in EML. Such use amounts toan assertion that the expression evaluates3 to the value true rather than evaluating tothe value false, or evaluating to a packet, or failing to terminate. The basic connectivesare those of SML: andalso, orelse, and not, with the additional connective implies.The �rst two of these have the same \sequential" interpretation as they do in SML (andanalogously for implies), so for example the expression true orelse exp evaluates totrue even if exp produces a packet or fails to terminate.The identi�cation of logical formulae used as axioms with boolean expressions of EMLwas a major design decision of the language of EML axioms. An alternative would be tointroduce an additional type for logical formulae, subsuming boolean expressions via acoercion amounting semantically to the \evaluates to true" judgement, with additionallogical connectives separate from those supplied by SML for booleans. This would seemto put us on familiar territory with a clear separation between the layer of computationsand the layer of logical assertions, but the resulting system would be far from standard.The complications introduced by exceptions and potential non-termination would still bepresent, albeit at a lower level, and the intricacies involved in quanti�cation (see below)would not disappear.This identi�cation requires EML to extend the language of SML boolean expressionswith constructs corresponding to logical equality, assertions about the outcome of evalu-ating expressions, and quanti�cation. The syntax of these and (a sketch of) their meaningis as follows | see Section 4.3.1 for some further details concerning their semantics.The \logical" equality predicate == complements the \computational" equality =provided by SML. The expression exp==exp 0 is well-formed whenever exp and exp 0 have thesame type, in contrast to exp=exp 0 which also requires this to be an equality type. If bothexp and exp 0 produce values, then the result of exp==exp 0 is true if and only if insertingthese two values into the same expression always yields the same result. In particular,logical equality on function types is intended to be extensional in \logical-relation style"[Mit90]. Thus, if f; f 0 are both of type � ! � 0 then f==f 0 entails43Actually, veri�cates | see Section 4.3.4For obscure technical reasons this is not absolutely true for logical equality as de�ned in [KST94b].An alternative de�nition of logical equality, to be included in the next version of the EML de�nition, will9



forall (x:�,x':�) => x==x' implies (f x)==(f 0 x')| see below for the meaning of quanti�cation. But the opposite entailment might fail iff; f 0 involve locally-declared exceptions [PS93]. Logical equality is also \extensional" forpackets and non-termination, i.e. exp==exp 0 is true if exp and exp0 both fail to terminate,or both produce the same packet.The following additional constructs are provided for building axioms that constrain theoutcome of computing the value of an expression exp:exp terminates, which is true if exp produces a normal value or a packet, and false ifit fails to terminate;exp proper, which is true if exp produces a normal value, and false if it produces apacket or fails to terminate; andexp raises excon,5 which is true if exp raises the exception excon and false if it pro-duces a normal value or raises a di�erent exception. If exp fails to terminate then sodoes exp raises excon.Universal and existential quanti�cation is provided over all SML types; function typesare included here so this gives a form of higher-order logic, although since quanti�cationranges over values that are expressible in SML, it is not true higher-order quanti�cation.The meaning of quanti�cation over polymorphic types is a tricky issue. An \easy" choicewould be to require explicit quanti�cation of type variables, as in System F [GLT89], butthis seems contrary to the spirit of SML in which all such quanti�cation is implicit. Thebest balance seems to be struck by viewing a quanti�ed expression as having a de�nedvalue only if it has that value for all instances (including polymorphic instances) of thetype of the bound variable. More explicitly, this amounts to the following four cases:1. In order for forall x:� => exp to be true: for every instance � 0 of � , the expressionexp[x := v] must be true for every expressible value v of type � 0.2. In order for exists x:� => exp to be true: for every instance � 0 of � , the expressionexp[x := v] must be true for some expressible value v of type � 0. (Typically6 it isenough to provide such a v of type � itself. Ditto for case 3.)3. In order for forall x:� => exp to be false: for every instance � 0 of � , the expressionexp[x := v] must be false for some expressible value v of type � 0.4. In order for exists x:� => exp to be false: for every instance � 0 of � , the expressionexp[x := v] must be false for every expressible value v of type � 0.repair this defect.5In fact, this is a special case of a slightly more general form.6In [KST94b] we made the mistake of assuming that this is always the case, even though it need notbe when the value of exp[x := v] depends on the type variables in � . This error will be corrected in thenext version of the EML de�nition. 10



Note that the third and fourth cases above are obtained from the second and �rst casesrespectively using the de Morgan laws (8x:' = :9x::', and 9x:' = :8x::'). The valueof a quanti�ed expression is left unde�ned if none of the above applies, so for exampleforall x:� => exp has no value if exp[x := v] is false for some expressible value v ofsome instance of � , but there is no expressible value v0 of some other instance of � suchthat exp[x := v0] is false.An example of an expression involving polymorphic quanti�cation that is true forsome type instances but false for others is the following:forall (x,xs) => [x] @ xs == xs @ [x]where @ is concatenation of lists and [x] is a singleton list containing x. One might expectthe value of this expression to be false, since this is what happens when (for example)x:int and xs:int list. But when x:unit (unit is a built-in type having just one value,written ()) and xs:unit list, the value of the expression is true since lists of typeunit list are uniquely determined by their length. As a consequence, this expressionhas no value whatsoever. Fortunately, such odd examples occur rarely! An example of aquanti�ed expression that is true isforall xs => exists ys => xs @ ys == ys @ xsbecause for any list type, the empty list has the property required for ys.3 The relationship between SML and EMLThe EML language was very deliberately designed as a language for specifying modularSML software systems. In contrast to much related work, the intention was not to createa completely general-purpose speci�cation language. One of the main guiding principlesof the design was to make EML a minimal extension to SML. The addition of axiomswas clearly necessary to enable module properties to be speci�ed, but we have attemptedto keep the syntax of axioms simple and have resisted the temptation to add featuresor to repair minor defects in the design of SML. For example, EML does not includeparameterised speci�cations (functions from signatures to signatures), despite the factthat these are commonly provided by other speci�cation languages. We have not yet seena compelling need to add parameterised speci�cations to EML. In fact, it has become clearto us [SST92] that what is really important in formal software development is the abilityto specify parameterised program modules (i.e. SML functors), and EML already has thisfacility: one uses an EML functor declaration having a question mark in place of a body.There are at least four senses in which EML is a minimal extension of SML. First, thesyntax of EML minimally extends the syntax of SML. As already stated, the main syntacticextension is the addition of axioms. Second, the semantics of EML is based directly onthe semantics of SML, as will be explained in detail in the next section. This is to ensureconsistency with SML \by construction" | the fact that signi�cant portions of the twosemantic de�nitions match would make a proof of consistency considerably simpler than11



otherwise. Our initial attempts to give a semantics of EML took quite a di�erent andmuch more \algebraic" route [ST86]; we have temporarily abandoned this approach, inpart because of the di�culty of ensuring consistency with the existing de�nition of SML(but see [Kaz92b]). A third and related point is that the extension to the semanticsof SML is such that the semantics of the SML fragment of EML is preserved, makingEML a \conservative" extension of SML. This is vital to ensure that the end-product ofEML formal development can be compiled and run using existing implementations of SMLwithout modi�cation. Finally, we have attempted to preserve the spirit of SML in theextensions insofar as this is possible. This is a necessarily vague statement, but there wasalready an example of this in Section 2.4 where we eschew the use of explicit quanti�cationof type variables in axioms because such quanti�cation is always left implicit in SML.In spite of the above, EML is not quite an extension of SML; it is an extension ofa large subset of SML. This subset is obtained by excluding the imperative features ofSML (references, assignment, and so-called imperative type variables) and input/output,by requiring structure declarations and functor declarations to include explicit signatures,and by adopting a more restrictive view of the role of signatures as interfaces. The �rstrestriction is made for the sake of simplicity, and for philosophical reasons which will befamiliar to devotees of functional programming [Bac78]. (In hindsight, the inclusion ofimperative features would seem to add less complexity than we originally anticipated,because the presence of exceptions leads to some of the same complications.) The secondrestriction seems appropriate in a speci�cation and formal development framework in whichinterfaces play a central role, in contrast to a programming language where the needto supply explicit interfaces may be viewed as an unnecessary inconvenience. The onlystructure declarations that are exempt from this restriction are those in which the signatureis already available from the structure used in the body of the declaration, as in the caseof the structure declaration in the body of Reduce in Figure 1. The �nal restrictionis to enforce the principle that only the information that is explicitly recorded in thesignature(s) of a module is available externally, as mentioned in Section 2.1. This isnecessary since the SML module system does not otherwise fully insulate the clients of amodule from choices in the representation of types in the body, and therefore does notproperly support separate development of the components of a modular system. See [ST89]for more on the methodological technicalities behind this restriction, and see [Tar92],[Ler94] and [HL94] for recent work having similar motivations.7 None of these changesmakes EML incompatible with SML, as any program in the SML fragment of EML (whichtherefore satis�es these restrictions) is a well-formed SML program. However, certain SMLprograms cannot be developed using EML.There is one additional restriction imposed by EML that causes certain pathologicalbut well-formed SML programs to be regarded as incorrect. This is demonstrated by thefollowing example:7The original design of the SML module system [MacQ86] proposed an additional kind of structure, a so-called abstraction, for which the stricter \opaque" interpretation of signatures taken in EML would apply.This was unfortunately not included in SML as de�ned in [MTH90] although some SML implementationsprovide it as a non-standard extension [AM93]. 12



signature SIG =sig type tlocal val x:t in endend;structure S:SIG =structdatatype t = foo of tendThis is well-formed according to SML but is ill-formed according to the veri�cation se-mantics of EML because S.t is a type with no values! (Recall that values in SML arerepresented as �nite ground terms built from constructors; since the only constructor fortype S.t is S.foo:S.t->S.t, there are no �nite ground terms of type S.t.) The pointhere is that local val x:t in end in SIG imposes a logical constraint, namely that thas at least one value, which is disregarded by SML but cannot be correctly disregarded byEML. Apart from this minor restriction and the restrictions mentioned above, EML doesnot limit the freedom of the SML programmer in the sense that well-formed SML programs(even \ugly" ones) satisfying these restrictions are also well-formed according to EML. Ofcourse, it is clear that it will be easier to reason about the correctness of some programsthan others, in EML or any other framework.Compatibility between SML and EML is a more delicate matter than simply insuringcompatibility for the SML fragment of EML. For example, the dynamic semantics of EML(see Section 4.2), which de�nes the result of evaluating EML \code" insofar as this ispossible, raises the exception NoCode when producing a result would involve evaluatinga speci�cation construct such as a quanti�ed expression or question mark. To eliminate\programs" that depend on the lack of code, it is essential to de�ne NoCode as a specialexception that cannot be trapped by any surrounding handler. As another example, specialcare is taken in the static semantics of EML (see Section 4.1) to ensure that the presenceof axioms does not in
uence the result of typechecking signatures. Then regarding all theaxioms in an EML program as comments results in a well-formed SML program.By way of disclaimer, it should be noted that the assertions above concerning suchmatters as compatibility between the semantics of SML and EML should be formally re-garded as conjectures which we strongly believe to be true but which have not yet beenformally proved; the same goes for similar assertions in the remainder of the paper.4 An overview of the EML semanticsAs mentioned earlier, one of the most important features of SML is that it has a fullyformal de�nition (modulo some minor faults [Kah93]). Not only is its syntax formallyde�ned | this is not unusual | but also the meaning of SML programs is determinedunambiguously by a formal mathematical semantics [MTH90], [MT91]. This is givenin the form of so-called natural semantics [Kah88] (or structural operational semantics13



[Plo81]) via deduction rules that determine a meaning for each SML phrase. We willpresent a number of such rules below, hopefully giving the reader the 
avour of the entiresemantics.The semantics of SML consists of some two hundred rules, grouped to re
ect both thestructure of the language and the envisaged phases of program interpretation. Thus, onone hand, the semantics of SML divides into the semantics for the core language and thesemantics for the module language. Then, the semantics for the core and the semanticsfor modules are each split into two parts: the static semantics, which describes the type-checking phase of program interpretation, and the dynamic semantics, which describes theactual evaluation of programs. In addition, the derived forms of the syntax are describedby translation to phrases of the bare language.The dependencies between various parts of the semantics are kept to a minimum, tofacilitate understanding of the quite complex language de�nition. As expected, the staticsemantics for modules relies on the static semantics for the core. Similarly, the dynamicsemantics for modules relies on the dynamic semantics for the core. However, no part ofthe semantics for the core depends on the semantics for modules, and the static semanticsand the dynamic semantics are independent.8 All the parts are joined at the top level,where the overall semantics for SML programs involves both type-checking (the staticsemantics) and evaluation (the dynamic semantics).The semantics of EML inherits its basic form and structure from the semantics of SML.It is given as a natural semantics and consists of a number of deduction rules groupedto re
ect the structure of the language and the various aspects of the interpretation ofEML phrases. As in the SML semantics, the semantics for EML core and modules aregiven separately, each of them incorporating static semantics and dynamic semantics. Themeaning of the derived forms of EML is given by translation to the bare language, but thedescription of this translation is considerably more detailed than the corresponding part ofthe SML semantics, since we have decided to capture formally all the technicalities, whereasthe de�nition of SML relies at this point on a somewhat informal English description.In addition we also have a veri�cation semantics for EML, again split into the veri�ca-tion semantics for the core and for modules. In a way, the veri�cation semantics for EMLmodules is the essence of the de�nition of EML. This part of the semantics captures therequirement that modules are correct with respect to their interfaces. We consider a (well-typed) EML program to be correct if the veri�cation semantics produces a meaning for it.If the veri�cation semantics fails for this program, that is, no veri�cation meaning for theprogram may be derived, the program is considered incorrect. Incorrect programs maystill be \run" (according to their dynamic semantics) | but the results are not guaranteedto meet the requirements expressed in the module interfaces.The dependencies between the various parts of the EML semantics are somewhat morecomplicated than in SML. As in SML, the semantics for modules depends on the semanticsfor the core, while the semantics for the core does not depend on the semantics for modules.8Although this statement is technically accurate, a successful \run" of the static semantics is needed toensure that the dynamic semantics yields expected meanings. In this sense the dynamic semantics dependson the static semantics. A precise statement of this \soundness" property may be found in [Tof88].14



Static semanticsfor the Core � Static semanticsfor ModulesDynamic semanticsfor the Core � Dynamic semanticsfor Modules6Veri�cation semanticsfor the Core � Veri�cation semanticsfor Modules}Derived forms � Programs
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Figure 2: Direct dependencies between parts of the EML semanticsThe static semantics and the dynamic semantics are independent. However, the newpart of the semantics, the veri�cation semantics, depends on both the static and thedynamic semantics. As explained in Section 2.4, the interpretation of axioms dependson typing information (for example, the type of the bound variable must be known todetermine the meaning of a universally quanti�ed expression) | hence the dependencyon the static semantics. The dependency on the dynamic semantics stems from the needto interpret axioms describing evaluation properties of expressions (for example, statingthat an expression terminates) and to determine exactly what the expressible values are.We should hasten to add that neither the static nor the dynamic semantics depends onthe veri�cation semantics, as should be expected. Finally, as for SML, all the parts of thesemantics are joined at the top level, where the overall semantics of EML \programs" isgiven. Figure 2 is a diagram of the direct dependencies between the various parts of thesemantics.In the rest of this section we present fundamental ideas that are important for eachpart of the semantics | see [KST94b] for the complete de�nition. We skim through thestatic and the dynamic semantics, as the issues involved there are much the same as in thesemantics of SML | we hope, however, to give the 
avour of these parts. More attentionis paid to the veri�cation semantics, as this is the really new (and most interesting) partof the de�nition of EML. We go into more of the technical details there, and the reader15



should be warned that these are somewhat intricate. This should give some idea of howmany issues had to be taken into account in the course of work on the de�nition. Thede�nition of the syntax is not discussed, although certain tricky problems arise there dueto unconventional features of SML's syntax.4.1 Static semanticsThe static semantics of EML describes the process of elaboration of EML phrases. Thisincludes, for example, checking that all the objects used have been declared in the currentenvironment and, most signi�cantly, that phrases are well-typed.Perhaps most typically, the rules of the static semantics for expressions allow one toderive judgements of the form9 C ` exp ) � . This is to be read: in the context C,the expression exp can elaborate to the type � (or exp can have type � ). Here, contextsare triples, where the most essential component is a static environment storing typinginformation about the objects declared in the current environment. We have C ` [1])int list and C ` [ ]) int list (for any10 context C). Note, however, that we also haveC ` [ ]) � list, where � list is the type of lists over arbitrary type �. The polymorphicgeneralisation of this type is written as 8�:� list. It is formed when an expression oftype � list is bound to an identi�er (provided � is not �xed by the context). 8�:� listmay be instantiated to any type of the form � list; we write e.g. 8�:� list � int list.Declarations are slightly more complicated: the static semantics elaborates a declara-tion to a static environment, containing typing information about the objects introducedby the declaration. The corresponding judgements are of the form C ` dec ) E, and forexample we have C ` val a = 5) fa 7! intg. Examples involving function declarationsare no more complicated: we have C ` val f = fn x => [x]) ff 7! int! int listg, aswell as C ` val f = fn x => [x]) ff 7! 8�:�!� listg.The judgements mentioned above may be formally derived using the rules of the staticsemantics. A typical example of such a rule, involving the elaboration of both declarationsand expressions, is the following rule for expressions with local declarations (this is asimpli�ed version of the rule!):C ` dec ) E C � E ` exp ) �C ` let dec in exp end) �This is to be read: if in the context C the declaration dec elaborates to the static environ-mentE and in the context C extended by the static environmentE the expression exp elab-orates to the type � , then in the context C the expression let dec in exp end elaboratesto the type � . Notice that the result of the elaboration of dec does not appear in the overallresult. For example, using this rule we can deriveC ` let val f = fn x => [x] in f 5 end)int list (for any context C).9This is an approximation used here for presentation purposes only; more details will be providedbelow.10We tacitly assume that contexts, environments, etc., used in the small running examples throughoutthis section map the built-in type constructors and values of EML to their expected meanings, as describedin the initial basis for SML, cf. [MTH90]. 16



The static semantics for modules proceeds in much the same way as that for the core,but the semantic values built are more complex. For example, a structure expressionelaborates to a static environment E, which stores typing information about the objectsdeclared within the structure, together with a structure name m (a unique internal tag)attached to the structure to keep track of sharing. The corresponding judgements havethe form B ` strexp ) (m;E), where B is a static basis, containing a context and aset N of structure names used so far. Here is a typical rule, for the encapsulation of astructure-level declaration of objects to form a new structure:B ` strdec ) E m =2 (N of B) [ namesEB ` struct strdec end) (m;E)The hints above on the static semantics apply to SML as well as to EML. However, asmentioned before, there are some di�erences. For example (cf. Section 3) we have designedtyping for EML modules to be stricter than for SML, and this change is properly re
ectedby the static semantics for EML modules. Let us consider a simple structure declaration:structure S: sig type t; val c:t end =struct type t = int; val c = 17 endIn SML, the signature constraint in this particular example has no e�ect : the static envir-onment assigned to the structure identi�er S maps t and c to int. A signature constraintin SML, if present, is used only to check that the structure matches the signature and tohide auxiliary structure components. In EML, signature constraints have an additionalpurpose: they also hide information about structure components | only the informationprovided in the signature can be exploited when using the structure. In particular, in theabove example, the EML static semantics binds S to a static environment that maps t andc to a new, otherwise unknown type. Consequently, in the context of the above structuredeclaration, in EML we cannot form expressions like S.c+2 | this is not well-typed inEML, although it is well-typed in SML. This behaviour of EML is compatible with SML inthe sense that every successful elaboration in EML will also succeed in SML.Another di�erence is that in EML we have a new part of the semantics, the veri�cationsemantics, which relies on the type information gathered during static elaboration. Weneed some mechanism to export this information from the static to the veri�cation se-mantics of EML, also covering cases in which the intermediate types for some parts of EMLphrases do not appear in the overall result, as for example the type of f in the elaborationof let val f = fn x => [x] in f 5 end, which we considered earlier. This is achieved byaccumulating all the types used in static elaboration of a phrase in an additional compon-ent of the result of elaboration | a so-called trace | for use by the veri�cation semantics.One can think of a trace as an annotation of the entire parse tree for the phrase with resultsof the static analysis of each of its subphrases. The presence of traces somewhat complic-ates both the form of judgements and the rules of the static semantics. For instance, theabove rule for expressions with local declarations in fact looks as follows:11C ` dec ) E; 
 C � E ` exp ) �; U; 
0 tynames � � T of CC ` let dec in exp end) �; U; 
 � 
011The third premise, which requires that the type of exp does not use any new type names not mentioned17



Here, the trace 
 accumulates the types used in the elaboration of dec to the static en-vironment E in the context C, 
0 accumulates the types used in the elaboration of expto the type � in the context C � E, and consequently 
 � 
0 accumulates the types usedin the elaboration of let dec in exp end to the type � in the context C. (Elaborating anexpression produces an additional result U , the set of unguarded type variables, used tokeep track of the scope of explicit type variables. This issue is treated semi-formally in[MTH90].)An additional problem is that the static semantics may \choose" di�erent types forsome parts of an expression without a�ecting the type of the expression as a whole. Asmentioned above, the type of fn x => [x] may be either int! int list or �!� list(among others). Moreover, since f 5 elaborates to int list both in the context assign-ing int! int list to f and in the context assigning 8�:�!� list to f, the elabor-ation of let val f = fn x => [x] in f 5 end may proceed either via the judgement C `val f = fn x => [x] ) ff 7! int! int listg, or via C ` val f = fn x => [x] ) ff 7!8�:�!� listg, in each case yieldingC ` let val f = fn x => [x] in f 5 end) int list,but with di�erent traces. The type chosen for f may in
uence the result of the veri�cationsemantics (well, not in this trivial case, but for example if f was involved in an axiomlike forall (x; y) => f x = f y, which unexpectedly happens to be true if f is typed asunit! unit list | see Section 2.4). To resolve the potential ambiguity, we have todecide which of the possible types should be \exported". The obvious choice is the mostgeneral, principal type [DM82] (8�:�!� list for f here), and so an appropriate princip-ality requirement is imposed on traces, much as in the SML static semantics for modulesthe principality requirement is imposed on signatures. The existence of principal typesand signatures is a fundamental property of the SML type system (see [MT91] for a precisestatement and proof) that is retained by EML and extends to the existence of principaltraces.The requirement of principality is essentially an in�nitary condition which states thatany type that can be produced by the static elaboration of a phrase is an instance of thetype that elaboration is required to choose. In the semantics of SML it is imposed forexample in the following rule:C of B ` dec ) E E principal for dec in (C of B)B ` dec ) Ewhich states that if a declaration dec elaborates as a core declaration to a static environ-mentE that is moreover principal for dec in the given context, then dec, as a structure-leveldeclaration, elaborates to E (notice the crucial distinction between the elaboration of decas a core declaration and as a structure-level declaration). In the semantics of EML, suchin�nitary conditions are formalised by means of higher-order rules. For instance, the abovein the original context, is not present in the corresponding rule of the SML de�nition. The type systemis unsound without this requirement, because type names introduced by di�erent let expressions canotherwise accidentally become equal. See [Kah93]. 18



SML rule may be expressed as follows:C of B ` dec ) E C of B ` dec ) E0E � E0B ` dec ) EHere, the second premise is a rule, which is true as a premise if it is admissible as a rule.The meta-variable E 0 is scoped at this premise, making it universally quanti�ed for thelocal rule. Thus, the premise requires each E0 to which dec may elaborate to be an instanceof E. Consequently, the new rule means exactly the same as its original version quotedabove from the semantics of SML.Actually, the semantics of EML uses here yet a di�erent rule, which imposes the princip-ality requirement not just on the resulting static environment, but on the entire elaborationas accumulated in the trace:C of B ` dec ) E; 
 N = names
 nN of B C of B ` dec ) E0; 
0(N )
 � 
0B ` dec ) E; 
The last premise of this rule requires that any trace corresponding to an elaboration ofdec in the given context may be obtained from the trace 
 by instantiating new typenames introduced in the corresponding elaboration of dec and (possibly) instantiatingtype schemes contained in 
. As explained above, this requirement, which is stronger thanjust principality of the resulting environment, is necessary for the semantics of EML.The static semantics of the axioms of EML requires little comment. Boolean expressionsused as axioms are typechecked exactly as usual. The only subtle point is that an explicitrestriction must be imposed to prevent the static analysis of an axiom from in
uencing theresults of the static analysis of the phrase in which it occurs. For example, the signatureexpressionsig type tval a:taxiom a=5endis not statically well-formed in EML, since the axiom forces the type t to share withint. The restriction is required to ensure that treating the axioms in an EML program ascomments yields a well-formed SML program.Higher-order rules, which come with an additional scoping mechanism for meta-variables,considerably increase the expressive power of the formalism. They have to be used withcare, as the formalism no longer guarantees that the usual inductive interpretation of therules unambiguously de�nes the true judgements of the semantics. In order for such areading to be valid, \impredicative" dependencies between premises and conclusions inhigher-order rules must be avoided.12 This problem was already present in the semantics12This was not quite ensured in [KST94b], e.g. in the de�nition of logical equality. This de�ciency will19



of SML [MTH90], but was less explicit there since the problematic premises were formu-lated in terms of concepts de�ned semi-formally in English and separately from the rules.The requirement of principality was the most visible example of this, and the potentialproblem is resolved by a theorem in [MT91]. (Capturing principality is the only use ofhigher-order rules in the static semantics of EML, and their interpretation may be ex-plained in exactly the same way as for principality in SML. Since there is an algorithmthat computes principal types, all judgements in the static semantics are decidable forexactly the same reason as in SML.) In the EML semantics, the need for higher-order rulesarises much more frequently and prominently than in SML since the veri�cation of axiomsnaturally involves in�nitary premises because of the presence of e.g. quanti�ers and lo-gical equality, see Sections 2.4 and 4.3.1. Thus the semi-formal style used in SML seemedinappropriate.4.2 Dynamic semanticsThe dynamic semantics of SML, as for any other programming language, is the key partof its description. After all, the main reason for writing programs is in order to evaluatethem, and this is what the dynamic semantics describes. One might think, however, that adynamic semantics for a program development framework like EML is somewhat pointless:the dynamic semantics for the programs produced by formal development is provided bythe de�nition of SML, and can be used to evaluate them. One reason to neverthelessprovide a separate dynamic semantics for EML is that the veri�cation semantics, the mainpart of the EML semantics, relies on the dynamic semantics, for example to determine thevalue of the terminates predicate and in quanti�cation over expressible values | hence,the dynamic semantics is needed to make the formal de�nition of EML self-contained.Another important reason is that we want to formally de�ne a basis for experimentswith un�nished programs. EML programs, even incomplete ones containing speci�cationconstructs, are viewed as \partially executable". The idea is that such programs shouldbe executable insofar as this is possible, and that evaluation should proceed as in SML forthe parts that contain only SML code. The dynamic semantics of EML formalises this.The dynamic semantics describes the evaluation of language phrases. In particular,for expressions, the dynamic semantics allows one to derive judgements of the form13E ` exp ) v, stating that in the (dynamic) environment E, the expression exp evaluates14to the value v, where environments store the values of objects that are currently de�ned.For example, we have fa 7! 27g ` a * 37) 999. Environments are built by declarations,with corresponding judgements of the form E ` dec ) E 0 expressing the fact that inbe alleviated in the next version of the EML de�nition which will admit a well-founded strati�cation ofjudgements such that premises of rules belong to strata that are no \higher" than that of the conclusion ofthe rule itself, and the premises of rule premises in higher-order rules, as well as negated premises, belongto strictly \lower" strata.13This is an approximation used here for presentation purposes only; more details will be providedbelow.14E ` exp ) v literally means that in E, exp can evaluate to v, but since evaluation is deterministic, vis uniquely determined (if it exists). 20



the environment E the declaration dec evaluates to the environment E 0, which storesthe values of objects declared in dec. For instance, we have E ` val a = 27 ) fa 7!27g (for any environment E). Formally, judgements are derived using the rules of thedynamic semantics, with a typical example being the following rule for expressions withlocal declarations: E ` dec ) E0 E + E0 ` exp ) vE ` let dec in exp end) vUsing this rule, we can for example derive directly from the judgements above that E `let val a = 27 in a * 37 end) 999.Evaluation of expressions involving functions is just as simple. One has to rememberthough that values of function types are not functions in the usual sense but rather clos-ures, which result from the encapsulation of expressions de�ning function bodies [Lan64].Closures are expanded when applied to arguments, and a rather elaborate scheme of self-expansion is used to model recursion (see [KST94b], [MTH90] for details). The possibilityof non-termination is re
ected by the fact that using the rules of the dynamic semanticsone cannot derive values for certain expressions of the language. For example, there is novalue v for which the judgement E ` let fun loop() = loop() in loop() end ) vcan be derived, as expected.Another complication arises from the fact that SML (and hence EML) expressions mayraise exceptions. In this case, the result of evaluation is a packet (an exception namepossibly together with a value). Consequently, the formal judgements of the dynamicsemantics for expressions may also have the form E ` exp ) p (in the environment Ethe expression exp evaluates to the packet p). To express the two possibilities jointly, wewrite E ` exp ) v=p, and use the semantic rules to determine which form is derivablefor a particular expression. The possibility of a phrase raising an exception is often leftimplicit in the semantic rules, relying on the so-called \exception convention" to ensurethat packets are propagated by the rules of the dynamic semantics. Thus, the above rulefor expressions with local declarations induces implicitly, by the exception convention, thefollowing rule: E ` dec ) E0 E + E0 ` exp ) pE ` let dec in exp end) p(and similarly for packets arising from evaluation of dec). Of course, some semantic rulesmust be exempted from the exception convention. Most notably, the rules that describehow exceptions may be trapped (i.e. how packets may be handled) deal with packetsexplicitly.Another aspect of dealing with exceptions is that the set of exception names used isdetermined dynamically | a new exception name is generated each time an exceptiondeclaration is evaluated (this new exception name is used as the meaning of the exceptionidenti�er declared). Consequently, the set of exception names generated so far must bestored. In SML this set is one of the components of the current state | and since its othercomponents are used to describe the imperative features of SML programs, this is the onlycomponent of states in the dynamic semantics of EML (apart from the speci�cation 
ag,see below). This means that states are necessary in EML, and the real form of semantic21



judgements describing evaluation of expressions is s;E ` exp ) v=p; s0 (in the state sand the environment E, the expression exp evaluates to the value v or packet p with theresulting state s0). The so-called \state convention" allows one to formulate many ruleswithout mentioning states explicitly, using the order of premises to determine how statesresulting from evaluation of one phrase are passed to another. Thus, in particular, theabove rule for expressions with local declarations expands to the following:s;E ` dec ) E0; s0 s0; E + E0 ` exp ) v; s00s;E ` let dec in exp end) v; s00The rules resulting from the use of the exception convention are a�ected similarly.The above remarks apply to SML as well as to EML | the overall ideas on how programsare evaluated are the same. What is new in EML is that it contains some phrases which,intuitively, cannot be evaluated. Typical examples here are objects de�ned by declarationswhere no code is provided (the absence of code being represented by the placeholder ?) orphrases containing constructs for building formulae, such as ==, terminates, or forall.Even though the dynamic semantics of EML simply skips axioms, these non-executablespeci�cation constructs may be encountered in evaluation of EML expressions outsideaxioms. When this is the case, a special exception NoCode is raised. NoCode cannot behandled explicitly in programs, as mentioned in Section 3. However, to enable executionof completed parts of EML programs, NoCode is trapped by the dynamic semantics of EMLat the declaration level and a special value Incomplete is used to mark its presence inthe evaluation of an object declaration. An attempt to use the value Incomplete causesNoCode to be raised again. Here are a few examples (where [NoCode] denotes the packetwith exception name NoCode):E ` (fn x : int => x - 1) == (fn x : int => x + 1) ) [NoCode]E ` val x : int = ?) fx 7! Incompletegfx 7! Incompleteg ` x + 27) [NoCode]fx 7! Incomplete; y 7! Incompleteg ` 27 * 3) 81E ` let val x : int = ?; val y = x + 1; val a = 27 in a * 3 end) 81This yields a rather subtle di�erence between the dynamic semantics of EML and boththe dynamic semantics of SML (which simply does not deal with the speci�cation con-structs of EML) and the veri�cation semantics of EML (where, in a sense, these constructsare properly dealt with). To make this explicit, we have added to EML states a newcomponent, the speci�cation 
ag. This 
ag is raised whenever evaluation encounters aspeci�cation construct, or when a closure is produced that depends on a speci�cationconstruct whose evaluation may be required when the closure is applied to an argument.When the speci�cation 
ag is not raised during the evaluation of a phrase, the resultsprovided by the dynamic semantics of EML coincide both with the results of the dynamicsemantics of SML15 and with the results of the veri�cation semantics for the core of EML15Somewhat informally, we mean here the semantics of SML literally applied to EML phrases, hence inparticular with no rules applicable to the speci�cation constructs of EML.22



(see Section 4.3.1 below). When the dynamic semantics of EML does not yield a result,the veri�cation semantics cannot yield one either, nor can the dynamic semantics of SML.However, obtaining a result with the speci�cation 
ag raised provides no reliable informa-tion about the behaviour of either the veri�cation semantics or the dynamic semantics ofSML: they may yield a di�erent result or no result whatsoever.The role of the dynamic semantics for EML modules is purely to de�ne a basis forexperiments with un�nished programs (see the beginning of this section). The otherparts of the semantics do not depend on this part, as Figure 2 indicates. It follows thedynamic semantics for SML modules in the same manner as the dynamic semantics forthe EML core sketched above follows the dynamic semantics for the SML core. Thus, inparticular, EML structure expressions evaluate to environments, but evaluation need notterminate and may modify the state. Moreover, evaluation proceeds in a basis, a \richer"environment which, apart from the values of objects stored as in the dynamic environmentfor the core, may also store functors and signatures. The corresponding judgements havethe form s;B ` strexp ) E; s0. The EML-speci�c constructs are treated as sketchedabove: axioms are disregarded, evaluation of non-executable expressions raises the NoCodeexception and may result in the value Incomplete being stored in the environment. Inparticular, environments resulting from evaluation of EML structures may contain objectswith Incomplete stored as their value.No higher-order rules are used in the dynamic semantics of EML. It follows that thejudgements de�ned here are semi-decidable, so evaluation is implementable although (ofcourse) it may fail to terminate. This is just the same as in SML.4.3 Veri�cation semanticsAlthough we provide a dynamic semantics for EML, the main stress in a speci�cation andformal development framework like EML is rather on the veri�cation of correctness asser-tions that are present in EML phrases. Consequently, we view the veri�cation semanticsas the essence of the formal description of EML. The heart of this part of the semantics isthe check that structures and functors match their signatures, which in particular meansthat they satisfy the axioms given in the signatures. Signature matching is described bythe veri�cation semantics for modules, and the meaning of axioms is described by theveri�cation semantics for the core. Veri�cation of an EML phrase does not result merelyin a binary statement indicating whether the phrase is correct or not. Some more detailedinformation about the contribution of the phrase to the meaning of the whole programmust be determined as well. We will say that the veri�cation semantics describes howEML phrases veri�cate16 to semantic objects.Higher-order rules are used throughout the veri�cation semantics. We claim that someof the judgements de�ned here are not semi-decidable, so (as one would expect) there isno sound and complete proof system for EML.16An obvious alternative is \verify", but this carries connotations we would like to avoid.23



4.3.1 Veri�cation semantics for the coreThe veri�cation semantics for the EML core is in many respects quite similar to its dynamicsemantics. The basic ideas are the same, and for example expressions veri�cate to valuesor to packets (since exceptions may be raised), possibly changing the state. A di�erencewith respect to the dynamic semantics stems from the fact that veri�cating an expres-sion requires information that is not available in the expression itself or in the dynamicenvironment. This information comes from various sources. As mentioned earlier, theinterpretation of axioms depends on type information that appears in the trace producedby the static semantics. Expressions are substituted for question marks by reference to thequestion mark interpretation produced by the veri�cation semantics for modules, see Sec-tion 4.3.2. The veri�cation semantics thus interprets expressions in the context of a modelconsisting of a dynamic environment (with some type information added), a trace for theexpression at hand, and a question mark interpretation; the corresponding judgement hasthe form s;M ` exp ) v=p; s0. Each state is augmented with (among other things) twotype interpretations: one is used to interpret types that were de�ned using question marksin other phrases, and the second, produced by the veri�cation semantics for modules,penetrates the abstraction barrier imposed by interfaces for use in the interpretation oflogical equality and quanti�ers, see below. Similar remarks apply to declarations, wherejudgements have the form s;M ` dec ) E=p; s0.The speci�cation constructs of EML, such as ==, terminates and forall, are viewedas special operators with their own veri�cation rules (recall that an attempt to evaluatethem in the dynamic semantics simply raises NoCode, a special exception reserved for thispurpose). The rules of the veri�cation semantics capture the meaning of these constructsas sketched in Section 2.4.The veri�cation of logical equality exp1 == exp2 proceeds in two stages. First, theexpressions exp1 and exp2 are classi�ed according to whether they (i) veri�cate to values,(ii) veri�cate to packets, (iii) fail to evaluate, or (iv) fail to veri�cate without failing toevaluate. If (iv) holds for either of the two expressions then we have no reliable informationabout its value (see the discussion of the terminates construct below) and exp1 == exp2 isunde�ned; otherwise it is always de�ned. Most typically, if (i) holds for the two expressions,we proceed by comparing their values v1 and v2 (see below). The result of veri�cation isdetermined directly if (iii) holds for the two expressions | then exp1 == exp2 veri�cates totrue | and if they fall into di�erent categories as described by (i), (ii) and (iii) | thenexp1 == exp2 veri�cates to false. If (ii) holds for the two expressions and the exceptionnames in the resulting packets are di�erent, then exp1 == exp2 again veri�cates to false.Otherwise, values v1 and v2 are extracted from the packets.To resolve the remaining cases, the values v1 and v2 obtained from exp1 and exp2 asabove are compared. This comparison is always de�ned and yields true if v1 and v2 areindistinguishable, i.e., if there is no expression exp that yields di�erent outcomes in twoenvironments distinguished only by assigning to some new variable x in exp the values v1and v2 respectively.This informal explanation is not as precise as it appears. The phrase \expression exp"may seem innocuous, but it omits one crucial ingredient: a static context C in which exp24



is well-formed. There are various choices for C, each giving a distinctive 
avour to thecomparison. We use a context C in which every constructor is available (disregardingscoping) and associated with its original type (disregarding abstraction barriers). Thisalso determines the two environments in which the value of exp is to be obtained: theycarry all the values and types mentioned in C, plus the binding of the new variable x tov1 and v2 respectively. This decision makes it possible to distinguish values even if thecurrent program context is not capable of making such a distinction. A small example:datatype t = A | B | C of int->intval z = A and y = Bdatatype cover = A of int | BIn the context produced by the above sequence of declarations, no means are provided todistinguish the values of z and y: since the declaration of cover hides the constructorsA and B of t, expressions like case x of A => true | _ => false, which distinguishbetween the values of z and y before the declaration of cover, become ill-formed after it(t is not an equality type so expressions like x=z are ill-formed). The veri�cation semanticsbuilds a context that restores the constructors A and B hidden by the declaration of cover(without hiding the constructors from that declaration) and these two values then becomeeasily distinguishable. The use of this enriched context means that the result of comparisonis una�ected by the textual position of the formula. For example, the expression z==y willveri�cate to false regardless of whether it occurs before or after the declaration of cover.In spite of the way that a structure's interface signature abstracts away from the detailsof the structure body, hiding the concrete realisation of its types and other components (seeSection 4.3.2 below for details), each model incorporates a particular choice of these detailssatisfying the axioms in the signature.17 Comparison of values takes this information intoaccount. Consider the following example:signature TWOVAL =sig type tval c: tval d: tend;structure T: TWOVAL = ?Any model will bind T.t to some type and T.c, T.d to values of that type. In a modelthat happens to bind T.c and T.d to values that are distinguishable in this model, theexpression T.c==T.d will veri�cate to false; in a model that binds them to values thatare indistinguishable in this model, it will veri�cate to true. If the choice of bindings inthe model were not taken into account and only the information in the signature wereavailable for comparison of values, then T.c==T.d would always veri�cate to true sinceno contexts would be available to distinguish between T.c and T.d.17This information is partly in the type interpretations that are contained in the state.25



The result of veri�cating an expression of the form exp terminates indicates whetherthe veri�cation of the expression exp terminates or not, provided we have reliable inform-ation to determine this. This proviso is crucial to avoid the usual paradoxes involvingexpressions exp that contain the termination predicate itself. Reliable information abouttermination of veri�cation is provided by the dynamic semantics. If in the dynamic envir-onment obtained by removing type information from the current veri�cation environmentexp evaluates to a value v or packet p without raising the speci�cation 
ag, then theveri�cation of exp will terminate as well (and yield the same value) | the circumstancesunder which the dynamic semantics raises the speci�cation 
ag are carefully chosen toensure this property. Consequently, we can then reliably veri�cate exp terminates totrue. If, however, the evaluation of exp results in a value or packet with the speci�cation
ag raised, the termination information thus obtained is unreliable and we indicate thisfact by raising the special exception Abuse. Finally, if there does not exist a successfulevaluation of exp then exp terminates veri�cates to false. An important consequenceof this de�nition is that the veri�cation of exp terminates for expressions exp that donot depend on speci�cation constructs is always determined and yields true or falseconsistently with the termination behaviour of this expression in the dynamic semanticsfor SML.Intuitively, a universally quanti�ed formula forall x => exp is true if exp[x := v] istrue for all values v. Since SML is a typed language, we have to modify this statement byrequiring v to have the type that x has. But what is the type of x and how do we obtainall its values?The answer to the �rst question is given by the static semantics of EML.18 However, it isonly a partial answer, since the type assigned to x (available from the trace) is its principaltype, as explained in Section 4.1. For the purposes of quanti�cation instantiation of thistype is required as it increases the set of values: for example, � list only has the singlevalue [] (the empty list), but we get non-empty lists as well when � is instantiated to non-empty types. This explains why it is counter-intuitive to stick solely to the principal typefor the purposes of quanti�cation: we want to be able to state properties of non-emptylists without giving a particular instantiation of �, thus for universal quanti�cation over� list we have to consider all possible instantiations of �. Consequently, a universallyquanti�ed expression forall x => exp veri�cates to true if exp[x := v] veri�cates to truefor all values v of all instances of the type of x, as presented in Section 2.4.This might suggest that a universally quanti�ed expression should be false if exp[x :=v] veri�cates to false for some value of some type instance, and analogously for exist-entially quanti�ed expressions veri�cating to true. We have, however, decided againstthe second \some", in part because it leads to certain anomalies as the following exampleillustrates.signature SIG =sig18This is not the whole story. The type inferred by the static semantics needs to be modi�ed to takethe realisation of types in structures into account, see Section 4.3.2.26



val f: int -> int listaxiom exists xs => (forall y => f y = xs)end;structure S:SIG =structval f:''a -> ''a list = ?axiom exists xs => (forall y => f y = xs)endBoth the structure and the signature contain literally the same axiom, and signaturematching permits the structure to be more polymorphic than the signature speci�es, sowe would expect this declaration to veri�cate (and indeed it does veri�cate in EML).Had we instead adopted the above suggestion, then the veri�cation of the structure bodywould admit a model mapping f to the polymorphic function fn z => [z] since [()]is a witness for xs in the existential axiom in the structure body with f considered overthe type unit -> unit list. Clearly, for this choice of the function f, the axiom in thesignature cannot be satis�ed, since f is considered there over the type int -> int list.Thus, as indicated in Section 2.4, we require witnesses to existential axioms for eachinstance of the type of the quanti�ed variable. Therefore, all models admitted by veri�c-ation of the structure body above map f to functions such that for each equality type � ,a witness xs:� list can be provided for which forall y:� => f y = xs veri�cates totrue | for example, f could be mapped to the function fn z => [], with the witness forxs being [] for each type � list | and then we are guaranteed that there is a witness oftype int list, as required in SIG.We decided to de�ne the set of all values of a type � to be the values that can beexpressed in the language, i.e. each value considered can be obtained from an expressionexp of type � . Again, two aspects of this characterisation have to be made precise: we haveto decide in which static context exp should have type � , and we have to choose whether\obtain" refers to the dynamic or veri�cation semantics. For the former, a solution similarto that for logical equality is chosen: we disregard scoping and abstraction barriers andquantify over the values of the type realisation in the model at hand. The followingstructure declaration veri�cates, as expected:structure S : sig type tval c: tval p: t -> boolaxiom exists x => p xend =struct type t = intval c = 1val p = fn y => y=2endTo veri�cate the axiom in the signature we use the type t as realised (by int) in thestructure body, and then the axiom clearly holds. Had we instead relied on the type t as27



abstractly characterised by the signature, the axiom would not hold, since the only valueof t we could construct at this level is given by the constant c, and c is not a witness forthe existential axiom in the signature.The choice whether we obtain values by evaluation or veri�cation has to be decidedin favour of evaluation to avoid vicious circles | after all, the veri�cation of a quanti�edexpression produces a value (of type bool) itself. A complication arising from this choiceis that we have to check that the evaluation of the expression exp used to generate a valuedoes not raise the speci�cation 
ag. This is necessary to ensure that the veri�cation ofexp yields the same value. A consequence is that the values considered cannot depend onspeci�cation constructs.The following rule for veri�cating a universally quanti�ed formula to true takes all ofthe above points into account. This is the actual rule as it appears in [KST94b] | exceptthat quanti�cation over a list of patterns, rather than over a single variable, is allowedthere | and so includes states and other details that we have been glossing over in thepreceding discussion. We give it here to illustrate how involved the technicalities maybecome | admittedly, this is one of the most complicated rules in the semantics! Thereader should not be alarmed if some of the details are not completely clear; they becomeclear only in the light of details given in other rules.Comp(FE; s) = VE 
 � 
1 = (C; � ) � 
2 s##(C) + StatVE `STAT atexp� ) � 0; ;; 
3s##(� ) = � 0 Dyn(s; FE + V E) `DYN atexp� ) vDYN; (>; ens)9s0: s; (FE + V E; 
1 � 
3) ` (fn x => exp�) atexp� ) true; s0s; (FE; 
) ` forall x => exp� ) true; sA few comments are required to link the notation used to the discussion above. Comp(FE; s)produces an environment in which every constructor is available, disregarding scoping. Thefunction s## interprets question marks in types taken from traces and penetrates abstrac-tion barriers, thus referring to the type realisation in the model at hand. (Note that thisis one of the rules that makes use of the information recorded in the trace, rather thanmerely building traces and passing them around.) The functions Stat resp. Dyn extractstatic resp. dynamic information from the veri�cation environment, and `STAT resp. `DYNrefer to the judgements of the static resp. dynamic semantics. > in the state resulting fromthe dynamic evaluation of atexp� means that evaluation does not raise the speci�cation
ag. Finally, the bullet in atexp� and exp� restricts to phrases not containing questionmarks.4.3.2 Veri�cation semantics for modulesEML module phrases veri�cate to sets of semantic objects, rather than just to a singlesemantic object as in the veri�cation semantics for the core. For instance, in a givenbasis, EML structure expressions veri�cate to sets of (veri�cation) environments,19 with19In fact, just as in the dynamic semantics of EML it was necessary to consider an environment togetherwith a state, in the veri�cation semantics structure expressions veri�cate to sets of elements that are pairsof an environment and a state. For presentation purposes we disregard states in the rest of this section.28



the corresponding formal judgements having the form B; 
 ` strexp ) E. Typically, in acomplete EML structure expression (containing only SML code) without substructures, theresulting set of environments will contain exactly one element: the environment determinedby the SML code. But there are several reasons why this set might not be a singleton.Most obviously, there may be unresolved choices within strexp. For example, a structure-level declaration like val a : int = ? results in a set of environments, each mapping a toa di�erent integer. Then, the resulting set may be empty | for example, an axiom likeaxiom a>5 andalso a<3 in strexp results in the empty set of environments | but noticethat this is di�erent from a failure to veri�cate at all! Finally, and perhaps most cruciallyfor the methodological aspects of the veri�cation of EML programs, if strexp contains asubstructure or uses another structure then its attached interface �lters the informationavailable, hiding the details given in its body. This is modelled by taking the \veri�cationmeaning" of a structure to be the set of all environments matching its interface, ratherthan the particular environment (or set of environments) given by its body.This last point is perhaps best explained by looking at the veri�cation of a singlestructure declaration structure S : sigexp = strexp. To veri�cate this, one proceeds asfollows (we leave the basis in which the veri�cation takes place implicit):1. First, veri�cate the signature expression sigexp, obtaining a (veri�cation) signature�. This stores the names of objects speci�ed in the signature together with staticinformation about them. Moreover, axioms given in the signature are stored in anappropriate form | see below for more details.2. Then, veri�cate the structure expression strexp, obtaining a set of environments Eas discussed above.3. Then, check that each environment E 2 E matches the signature �. This stepis where the real veri�cation takes place: it involves checking whether the axiomsincorporated in � are satis�ed by each E 2 E.4. The result is the set of environments binding S to an environment that matches thesignature �. Notice that this \includes" but is in general larger than the set ofenvironments binding S to an environment in E.If any of the above steps fails (this may happen in step 2, for example if strexp containsan incorrect substructure declaration, or in step 3, if the veri�cation requirement formu-lated there does not hold) then the structure declaration structure S : sigexp = strexp isincorrect and hence its veri�cation fails as well. This is di�erent, however, from the casein which the result is the empty set. The latter is possible if no environment matches �,and the veri�cation of strexp results in the empty set of environments. Of course, such astructure would not be of much use!Here is (a simpli�ed version of) the rule that embodies the above veri�cation procedure:B ` sigexp ) � B ` strexp ) E for each E 2 E; E matches �B ` structure S : sigexp = strexp ) f fS 7! E0g j E0 matches �g29



A few comments are necessary here. First, see below for a discussion of the details involvedin matching an environment against a signature. Second, we have elided traces. Third,we use an ad hoc but self-explanatory notation to present a rule with an in�nite set ofpremises, where moreover the number of these depends on a semantic object mentionedin another premise. The semantics uses a higher-order rule to express this more formally.Finally, this is a very simpli�ed version of a rule that does not actually appear in thesemantics, but may be derived using more elementary rules for structure bindings andstructure declarations.To take a simple example, consider the following structure declaration:structure S: sig val a: int; axiom a>0 andalso a<5 end =struct val a: int = ?; axiom a>1 andalso a<4 endThe veri�cation of the structure expression in this declaration results in the set of envir-onments fE2; E3g where we write Ei for fa 7! ig.20 It is then checked that each of theseenvironments does indeed match the signature, and in particular satis�es the axiom giventhere. The resulting set of environments assigning an interpretation for the structure Scontains not only fS 7! E2g and fS 7! E3g, but also fS 7! E1g and fS 7! E4g, since theset of environments matching the signature is exactly fE1; E2; E3; E4g.If we modify the interface as follows:structure S: sig val a: int; axiom a>0 andalso a<3 end =struct val a: int = ?; axiom a>1 andalso a<4 endthen the check that each of the environments resulting from the veri�cation of the structureexpression (E2 and E3) matches the signature fails, since E3 does not satisfy the modi�edaxiom. Thus, the veri�cation of this structure declaration fails: the structure declarationis (not surprisingly) incorrect.The outcome of a successful veri�cation of a structure-level declaration is a set of envir-onments, each expressing a possible meaning of the declared objects. Further veri�cationproceeds for each of these possibilities separately, as expressed by the following rule forsequential composition of structure-level declarations (again, a very simpli�ed version isused, with an ad hoc notation to represent dependencies between objects):B ` strdec1 ) E1 for each E 2 E1; B �E ` strdec2 ) E2[E]B ` strdec1;strdec2 ) fE1 + E2 j E1 2 E1; E2 2 E2[E1]gThe above rule appropriately respects the dependencies between consecutive structuredeclarations. Consider the following example:structure S: sig val a: bool end =struct val a: bool = ? end;structure T: sig val b: bool; axiom b = S.a end =struct val b: bool = S.a end20We omit type information in veri�cation environments here and below.30



The veri�cation of these two declarations will result in the set of environments containingfS 7! St; T 7! Ttg and fS 7! Sf ; T 7! Tfg, where St = fa 7! trueg, Tt = fb 7! trueg,Sf = fa 7! falseg and Tf = fb 7! falseg. However, the resulting set of environmentsdoes not contain for example fS 7! St; T 7! Tfg even though the interface for S does notdetermine the value of a (nor does the structure body in this case). The point is thatthe veri�cation of the declaration of T proceeds in the context of an arbitrary but �xedinterpretation for S:a, for each of the open possibilities separately.On the other hand, removing the explicit information about the dependency from theinterface for T changes the result:structure S: sig val a: bool end =struct val a: bool = ? end;structure T': sig val b: bool end =struct val b: bool = S.a endNow, the result of the veri�cation of these two declarations will consist of four environ-ments: fS 7! St; T' 7! Ttg and fS 7! Sf ; T' 7! Tfg as before, but also fS 7! St; T' 7! Tfgand fS 7! Sf ; T' 7! Ttg. Even though the veri�cation of the structure expression in thedeclaration of T' results in a single environment for each binding of S considered (as be-fore), this information is �ltered out by the interface provided in the binding as describedearlier. Consequently, a further declarationstructure U: sig val c: bool; axiom c = S.a end =struct val c: bool = T'.b endis incorrect and does not veri�cate.The sets of environments above arise through interaction between the veri�cation se-mantics for modules and for the core. At the point where a declaration is passed fromthe module semantics to the core semantics, a question mark interpretation (which is re-quired as a component of the model used to interpret core phrases) is chosen arbitrarily.Veri�cation may succeed or fail for this choice; one possible reason for failure is that anaxiom contained in the declaration may not veri�cate to true (see Section 4.3.1). Thisdoes not necessarily mean that the declaration is incorrect. It means only that the partic-ular choice of question mark interpretation is unsuccessful and will not contribute to theresult of the veri�cation semantics of the declaration. Only those environments resultingfrom a successful veri�cation of the declaration for some choice of the interpretation ofquestion marks are included in the result of the veri�cation of the declaration at the struc-ture level. This is captured by the rule given below, again in a somewhat simpli�ed form.Rather informally, we write M [B;QI] for the model obtained by extracting the appropri-ate components of the veri�cation basis B and adding the question mark interpretationQI. B ` dec ) fE j for some QI;M [B;QI] ` dec ) EgAs in the static semantics (see the rule imposing principality discussed in Section 4.1) thedeclaration dec is viewed here as a core declaration in the judgement M [B;QI] ` dec ) E,and as a structure-level declaration in B ` dec ) fE j : : :g.31



Here is a simple example of a structure expression:structval a: int = ?axiom a>5 andalso a<8val b = a+2endThe veri�cation semantics for the structure-level declaration enclosed in struct : : : endtries to veri�cate its enclosed sequence of declarations for each possible interpretationof the question mark, one interpretation f? 7! ig for each integer i. It is clear thatthe veri�cation succeeds only for the interpretations f? 7! 6g and f? 7! 7g, yieldingenvironments E6 = fa 7! 6; b 7! 8g and E7 = fa 7! 7; b 7! 9g respectively. The result ofthe veri�cation of the declaration is thus fE6; E7g, and this set of environments is takenas the result of veri�cation of the entire structure expression.The constraints imposed by consecutive axioms accumulate by gradually restricting theset of environments constructed by the veri�cation semantics. For example, the veri�cationsemantics for the following structure expression yields fE6g:structval a: int = ?axiom a>5 andalso a<8val b = a+2axiom a mod 2 = 0endThe order of such axioms does not matter, and they may be arbitrarily intermingled asabove with core declarations (provided that identi�ers used in axioms remain in scope).The situation is di�erent when substructure declarations are present. Consider the follow-ing structure expression:structval a: int = ?axiom a>5 andalso a<8val b = a+2structure A:sig val c:int; axiom c mod 3 = 2 end =struct val c:int = b endaxiom a mod 2 = 0endThe declaration of the substructure A is required to veri�cate in both E6 and E7. Sinceits veri�cation fails for E7, the veri�cation of the overall structure expression fails. Incontrast, changing the order of the �nal axiom (which �lters out E7) and the substructuredeclaration gives the following structure expression which veri�cates successfully, since thesubstructure A veri�cates in E6: 32



structval a: int = ?axiom a>5 andalso a<8val b = a+2axiom a mod 2 = 0structure A:sig val c:int; axiom c mod 3 = 2 end =struct val c:int = b endendIn the same way as EML quanti�cation is based on expressible values (see Sections 2.4and 4.3.1), question mark interpretations QI map question marks to expressions, notto values, with the di�erence that expressions here are allowed to contain speci�cationconstructs. In this way ill-formed values are avoided, and moreover, the interpretationof each question mark may depend on the context in which it appears. The latter pointmeans that in the veri�cation of a function declaration likefun f x = let val c = ?:int in g c endquestion mark interpretations may replace the ? by (integer) expressions containing freeoccurrences of x.The treatment of question marks in type bindings is somewhat di�erent. The staticsemantics guarantees that whatever replacement a question mark interpretation providesfor a question mark type (such that certain attributes are preserved), the success of staticanalysis, and hence well-formedness of the program, is not a�ected. However, the exactresults of static analysis are a�ected, and this has to be taken into account by interpretingthe types derived during static analysis using one or both of the type interpretationsrecorded in the state.Matching an EML structure against an EML signature involves a number of rathersubtle points. Perhaps the most obvious is the fact that the axioms in the signature mustbe interpreted relative to the type instantiation determined by the structure. For example,in signature SIGA =sig type taxiom exists x:t => trueendthe axiom requires the type t to be non-empty and its satisfaction depends on the partic-ular realisation of t in the structure we match against SIGA. When a structure is matchedagainst SIGA, the type instantiation arising from the match is applied to the axiom in SIGA.The semantic object associated with axioms in signatures consists mainly of the syntax ofthe axiom itself | see below for details | and this is not a�ected by the application ofthe type instantiation. But the syntax of the axiom is accompanied by its trace, and thisis a�ected. The result is that the existential quanti�er in the above axiom will range overthe realisation of t given by the type instantiation.33



Another important point is that signatures in both SML and EML allow the use ofhidden functions and hidden types. For the dynamic semantics hidden objects are ofno concern, but they do matter in the veri�cation semantics, where their interpretationmay in
uence the veri�cation of axioms. For example, a structure matching the followingsignaturesignature SIGB =sig local val b: intaxiom b>0in val c: intaxiom c>b+1endendneed not include a value b (but has to include an integer value c, of course). However,to successfully veri�cate the axiom c>b+1, a value b has to be found such that both the\hidden" axiom b>0 and then the \visible" axiom c>b+1 are satis�ed (in this example,this would not be possible unless the value of c is greater than 2). In a certain sense, thehidden declarations are existentially quanti�ed (see [Far92]).Axioms in signatures are stored in the form of so-called generalised axioms. The twomost important forms of generalised axiom arise in the signatures SIGA and SIGB above.There are no hidden components in SIGA, so the resulting generalised axiom has the form(B; 
; axdesc) where axdesc is the syntax of the axiom as it appears above, 
 is the traceproduced for this phrase by the static semantics, and B is a basis for the interpretationof global identi�ers in the axiom (in this case, just the identi�er true). The purpose ofthe basis is exactly the same as that of the environment in a closure. The judgement formfor satisfaction of a generalised axiom is E ` A ) fg, which is read: in the environmentE, the generalised axiom A holds. The environment E comes from the structure that ismatched against the signature containing the axiom. For a generalised axiom of the form(B; 
; axdesc), this judgement amounts to the statement that axdesc veri�cates to truein the environment B + E, using a trace obtained from 
 as explained above. Since thesignature SIGB has hidden components, the resulting generalised axiom has a form that wecan write as 9�:A, where A is a \normal" generalised axiom (as in the previous example)for the visible part of the signature and � is the hidden part. For this to be satis�ed, theremust exist a structure expression strexp that matches � (and satis�es its axioms) suchthat A is satis�ed in an appropriate extension of the environment obtained from strexp.The above presentation has focussed on the veri�cation of structure expressions andstructure declarations. This extends to the veri�cation of functor declarations in theobvious way. 34



5 Final remarksWe have tried in this paper to provide a readable exposition of the de�nition of EML,a framework for formal speci�cation and development of SML programs. We have notdiscussed here in any detail the methodological assumptions and theoretical underpinningsunderlying the design of this framework | these have been presented elsewhere. We havealso refrained from discussing merits of the design of the SML programming language.The genesis of EML was the decision to design a framework for the speci�cation and de-velopment of programs in SML, an existing real programming language, building on found-ations in the theory of algebraic speci�cation. EML was designed to be a minimal extensionof SML, which led to a wide-spectrum formalism integrated with SML rather than a \pure"speci�cation formalism added as a separate layer above it. The \property-oriented" algeb-raic style of speci�cation was adopted rather than the use of explicit pre/post-conditions ormodel-oriented speci�cations. (But note that pre/post-conditions can be expressed easilyin EML, and model-oriented speci�cations are subsumed once behavioural equivalence istaken into account.) An attempt was made to include as much of SML as possible, withthe main omissions being imperative features and input/output. The only modi�cation tothe underlying programming language was the use of a stricter type discipline for moduleinterfaces (\opaque" signatures), to enable separate development of the components of amodular system. A natural consequence of the decision to conform fully with SML wasto re-use SML's existing formal de�nition, given in an operational style, and build theformal de�nition of EML on this basis. An obvious alternative would have been to providea denotational or algebraic-style semantics for EML. In spite of the perceived advantagesof this approach for reasoning about programs, it was rejected as it would have meantstarting from scratch with no practical way of ensuring compatibility with SML. AdoptingSML's semantics as our starting point almost forced a number of other decisions, includingthe modelling of functions as closures rather than as mathematical functions and quan-ti�cation over expressible values only. It seemed convenient to reuse SML's constructs(andalso, not, etc.), with their usual semantics, in the language of EML axioms. This ledto the decision to use boolean expressions, extended by the addition of a few speci�cationconstructs (forall, terminates, ==, etc.) as axioms. A more conventional alternativethat would make the logic closer to standard two-valued logic would have been to build aseparate layer of logical expressions | this would refer to SML expressions but not viceversa | with a new set of logical connectives to combine them. We chose to make quan-ti�cation over type variables implicit, as in SML, in the expectation that this would seemmore natural to an SML programmer, although a simpler and more conventional choicewould have been to require explicit type quanti�cation.The enterprise of engineering a sizable completely formal de�nition of a realistic, prac-tically useful formalism is an inherently complex task. All the di�erent aspects of thisformalism interact with each other, and their mutual relationship is a delicate matterwhich has to be handled with care and extreme attention to detail. We should perhapsquote here the example of the formal de�nition of SML on which we build. The originalde�nition of SML went through three major revisions before it was �nally o�cially pub-35



lished as [MTH90]. As a result of the study of the de�nition by a larger body of users,this was then followed by a number of subsequent changes included in [MT91]. And evennow, some inaccuracies, weak points and minor mistakes in the de�nition are still beingdiscovered [Kah93]. Nevertheless, as a whole, the SML de�nition is considered (certainlyby us!) to be an excellent example of the precise de�nition of a realistic programming lan-guage, with very few practical examples of formal design achieving a comparable level ofaccuracy and mathematical precision. We expect that the de�nition of EML will undergoa similar process of revision. In fact, as various footnotes above indicate, a second versionof [KST94b] is already on the way.The main problems with producing the formal de�nition of EML have been problemsof size, necessarily involving a struggle with many details. We have tried to illustrate thispoint in the paper. This does not mean that all the issues addressed in the de�nition aremathematically trivial: on the contrary, in our view some of the speci�c decisions in thesemantics, especially those related to the formal de�nition of the language of axioms, areof independent interest, and deserve further separate study.One issue that is not treated in [KST94b] is the role of behavioural equivalence inthe methodology for formal development in EML as described in [ST89]. Following ideasconcerning the use of axioms to specify encapsulated abstractions (see e.g. [Rei81], [GM82],[ST87]), in order to obtain correct results it is not actually necessary for the axioms inan EML signature to be satis�ed \literally": it is enough if they are satis�ed \up tobehavioural equivalence", meaning that there is no way to detect failure to satisfy theaxioms by performing computations that yield observable results (i.e. results of base typessuch as bool). This relaxation is required to adequately deal with certain examples ofre�nement involving choice of data representation.Further study is needed before we will be able to change the present de�nition topermit axioms in signatures to be satis�ed up to behavioural equivalence. Unexpectedly,the approach used in [ST89], via a de�nition of behavioural equivalence between models,will not achieve the desired e�ect here because of our use of models incorporating a ratherconcrete representation of types and values. It should be possible to take a di�erentapproach, which would involve a comparatively slight modi�cation to the semantics ofquanti�cation and logical equality. It is �rst necessary to show that there is a satisfactoryrelationship between what this would yield and the behavioural equivalence relation usedfor the foundations of formal development, following [BHW94]; a �rst step in this directionis taken in [HS95].The next major step in work on EML is to develop a sound proof theory, which wouldprovide the user with some formal proof rules and proof tactics to verify the correctnessconditions arising in the process of program development. Given the complexity of SMLand hence of EML, it may be di�cult to come up with appropriate proof rules, and in factwe expect that work in this area (which is already underway) may force us to re-thinksome of the details in the design of the language of EML axioms. Furthermore, checkingthe formal soundness of these rules with respect to the semantics given in [KST94b] willbe a formidable task on its own.De�ning the formal semantics of a framework like EML, or indeed of a programming36
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