Constructive interval temporal logic in Alf

Simon Thompson

Computing Laboratory
University of Kent at Canterbury
S.J.Thompson@ukc.ac.uk

Abstract. This paper gives an implementation of an interval temporal
logic in a constructive type theory, using the Alf proof system. After
explaining the constructive approach, its relevance to interval temporal
logic and potential applications of our work, we explain the fundamentals
of the Alf system. We then present the implementation of the logic and
give a number of examples of its use. We conclude by exploring how the
work can be extended in the future.

1 Introduction

The traditional approach to executing temporal logics is to execute the formu-
las of the logic; this is in accord with the logic programming paradigm. The
implementation can be deterministic for particular subclasses of formulas, as in
the approach taken by Moszkowski and others [8, 6, 4]. On the other hand, all
the formulas of a logic can be executed using a backtracking mechanism; this is
shown by Gabbay’s normal form result in [5] and is implemented in the various
MetateM systems [1] amongst others.

There 1s another paradigm for implementing logics, based on a constructive
philosophy [7, 11]. Instead of formulas being seen as true or false on the basis of
truth tables or model theory, a constructive approach takes proof as the means
of exhibiting validity; as a slogan, one might say that constructive logic 1s ‘proof
functional’ rather than ‘truth functional’. A constructive proof of a proposition
contains more information than a classical version, so that from a proof we can
derive all the evidence for the proposition being valid. For instance, a proof of
an existential statement will contain a witness which is an object for which the
statement holds.

Under the constructive approach, then, we execute not the formulas of the
logic but their proofs, which we can see from the discussion above contain suf-
ficient witnessing information to be executable. Further details of the basics of
constructive logics, and their interpretation as programming languages can be
found in Section 2.

The system in which we make our implementation is Alf, which comes from
the programming logics group at Chalmers University of Technology in Goteborg,
Sweden. We give a short introduction to Alf in Section 3.

The logic we look at here is an interval temporal logic, which describes finite
intervals. Because of this, besides containing the familiar temporal operators O,

< and so on, interval temporal logics also contain predicates which can only
apply to finite intervals, such as those which measure length or which compose
two propositions in sequence (or ‘chop’). Introductions to the logic are to be
found in [8, 4, 2] and we refer readers there for further details. One distinctive
aspect of our logic is that it involves atomic actions which happen at the instants
of an interval.

The approach we examine here can equally well be used to give a constructive
account of an infinitary linear (or branching time) logic. Details of an implemen-
tation in the Coq system are to be found elsewhere [10].

We see three strengths of the work reported here.

— We provide a single system in which we can model both specifications and
their implementations. Specifications can be related by logical inference, and
are shown to be consistent by exhibiting an implementation; inconsistent
specifications will simply have no implementation.

— We maintain two levels of abstraction in our system. In specifications we can
use operators such as & and ‘chop’ which can be realised in many ways; we
can think of them as non-deterministic. In our implementations or proofs we
have determinism. For example, a constructive proof of a formula OGP will
show not only that P holds at some point in the future but also will state
at precisely which point in the future P holds. This distinction is entirely
appropriate to the modelling applications of interval temporal logics.

— An implementation of a logic such as this forces an implementer to check
the coherence of his or her definition of the logic. In our work here we see a
distinction between the notions of interval and interval proposition which in
an informal account may be elided. We also have to maintain a distinction
between an action A, say, and the proposition that ‘A happens (now)’.

In our related work on linear-time temporal logics, [10], the issue of whether
the logic 1s anchored or not has to be addressed at an early stage in writing
the implementation.

I am grateful to Erik Poll both for supplying an implementation of basic logic
for modification and for making a number of useful comments on drafts of the
paper. I would also like to thank Howard Bowman, Helen Cameron and Peter
King for their collaboration in the Mezit! [2] work. It was this which stimulated
the investigation reported here.

2 Constructive logic

What counts as a constructive proof of a formula? An informal explanation is
given in Figure 1.

That this gives the logic a distinctive character should not be in question;
while truth functionally one would accept AV —=A for any A, it is by no means
clear that for an arbitrary formula one can find either a proof of A or a proof
that A is contradictory. On the other hand we can see that proofs are much more
informative than in the classical case. A proof of a disjunction must be a proof

ANB A proof of AA B consists of a proof of A and a proof of B.
AV B A proof of AV B consists either of a proof of A or of a proof of B.
A— B A proof of A — B is a method (or function) taking proofs of A into
proofs of B.
(dz € A)B(x) A proof of (3z € A)B(z) consists of an element a of A together with a
proof of B(a).
(Vz € A)B(z) A proof of (Vz € A)B(z), which we also write (z € A) — B, consists of
a function taking z in A to a proof of B(z).

Fig. 1. Proof in constructive logic

of one of the disgjuncts, and a proof of an existential statement must provide a
witness which is a point where the statement holds, together with a proof that
it does indeed hold at that point.

How does a constructive implementation work? We take the formulas of a
logic as specifications of behaviour; it is then the proofs of these formulas that
are implemented. Underlying this is an important correspondence, attributed to
Curry and Howard and illustrated in Figure 2, which identifies a constructive
logic and a (functional) programming language.

Constructive Logic Programming Language
Formula Type
Proof Value
Conjunction A Product or record type
Disjunction \ Sum or union type
Implication — Function space

Existential quantification 3 ‘Dependent’ record type
Universal quantification V ‘Dependent’ function type

Fig. 2. The Curry-Howard correspondence

Under the Curry-Howard correspondence the formulas of a logic are seen as
the types of an expressive type system which includes not only record, union
and function types but also dependent function types

(xeA)— B

in which B can depend upon z, so that the type of a function application can
depend upon the value to which the function is applied. These types correspond

to universally quantified formulas, while a dependent record type represents an
existentially quantified statement — we shall see this in Section 3.1.

Given this explanation we can now see how our implementation is built. The
formulas of our interval logic become the types of functions which implement
the specifications that the formulas embody.

3 Introducing Alf

The logic used here is a standard formulation of a constructive logic in Alf. As
we explained in Section 2 we can view Alf as a functional programming language
with a strong type system. It is for this reason that we chose to use Alf here
rather than, say, Coq; in Coq the proof terms are implicit rather than explicit,
and we wanted to emphasise these functions in our account.

We explain the basics of the system by means of a sequence of examples

3.1 Basic constructive logic in Alf
Built into the system is the type
Set € Type

which is the type of sets or alternatively the type of propositions. Types are
defined in Alf by inductive definitions, these are a strengthening of the algebraic
data types of standard functional languages such as Haskell [9]. We first define a
trivially true proposition True by giving it a single element, trivial. Constructors
of types are given in boldface; here we see that trivial is a constant, that is a
0-ary constructor.

True € Set

[= data {trivial ()}

Thinking set theoretically, True is a one element set. A False proposition is a
proposition with no proof, or an empty type, which has no constructors:

False € Set
= data < >

The angled brackets here indicate that the type has no constructors, and so is
indeed empty. Next, we have a definition of conjunction:

And(P,Q € Set) € Set

= data {conj (fl)gg)}

This definition of a data type states that to construct an element of And P @)
it is necessary to use the single constructor conj. This requires two arguments
to construct an element of the conjunction, namely elements p of P and ¢ of ().

In other words, 1t is necessary to supply proofs of both conjuncts to give a proof
of the conjunction. We also have a definition of a constructive disjunction

Or(P,Q € Set) € Set
= data {1n1 (p€P) }

inr (¢ € Q)

To supply an element of Or P () we need either to give an element p of P, making
inl p € (Or P Q), or to give an element ¢ of Q, so that inr ¢ € (Or P Q). This
is evidently a constructive disjunction, since a proof of Or P) is a proof of
one of the disjuncts; the first disjunct if it is of the form inl p and the second
disjunct otherwise. As we implied earlier, this explanation is quite different from
a classical interpretation, and so the law of the excluded middle, (Or A (Not A4))
is not valid in general.
The existential quantifier 1s also constructive:

Erists(A € Set, P € (x € A) — Set) € Set

— witness € A
— 18 proof € P witness

We can think of this type as giving a signature; the elements of the type are
structures taking the form

witness = . .. }

struct {proof =...

thus containing a witness of the point at which the predicate P holds together
with a proof that the predicate holds at the witness, that is an element of
P witness. Note that we use a dependent type here: the type of the second
element: P witness depends on the first element, witness.

The syntax of Alf allows quantifiers to be written in a more readable form,
with

FEristsx e Ax...
replacing
Erists A(Ae — ...x....)

where we usex.... for an expression involving x. We use this form in the
remainder of the paper.

3.2 Data types

The natural numbers are given by the declaration

Nat € Set

= data {g((gENat)}

and the constants zero, one, two and so on have the obvious meaning.

In our implementation of interval temporal logic we represent intervals by
non-empty lists of propositions. In order to do this we have to define a type con-
structor for non-empty lists, and this constructor needs to be of the appropriate
kind: since 1t is used to build lists of Set it needs to take a Type to a Type. The
constructor 1is called list, and takes a Type argument, making it polymorphic:

list € (T € Type) — Type
sing (z €T
= AT — data con (xET)
zs € list T

Because the lists are non-empty, they all have a first and a last element. Here
we use the case construction which gives case analysis (and indeed primitive
recursion) over a data type, by means of pattern matching.

first € (T € Type, belist T) =T
:/\Tb—>caseb0f{51ngx_>x }

cons r rs — «
An arbitrary element of the type list T" will either have the form sing x or
cons z xs; the case construct requires us to give the value of first in both these
cases. We can use the variables in the particular pattern in the corresponding
part of the definition.

last € (T € Type, belist T) —T

:/\Tb—>caseb0f{51ngx_>x }
cons x s — last® xs
Although the function last takes two arguments we suppress the first (type)
argument, since it is invariably obvious from the context. The absence of one or
more parameters is indicated by the superscript in last®.

Before we proceed, note that in this presentation of lists we take the length of
a list to be the number of elements it contains menus one. In particular therefore
a single element list has length zero in this formulation.

The functions take and drop are used to select portions of a list. The natural
number argument supplied gives an indication of the number of elements taken
or dropped from the front of the list. Specifically

take® nl

gives a list of length n (that is comprising (n+1) elements) from the front of [,
whilst

drop® n l
removes n elements from the front of [. The effect of this choice is that take® n [
and drop® n [overlap by one element.

take € (T € Type, b € Nat, ¢ € list T) — list T
0 — case cof { sing z — sing.x }
cons r s — sing z
=AXTbc— case b of sing zr — sing z
Sn — casecof{consxms — }
cons r (take® n zs)

drop € (T € Type, b€ Nat, ¢ € list T) — list T
0 — ¢
=ATbec— casebof Snecasecof{Singx_)Singx }
cons x rs — drop® n xs
The function index selects an element of a list, numbering the elements from
zero. If the index exceeds the number of elements in the list, the last element is
returned.

index € (T € Type, b€ Nat, c€list T) =T
0 — first® c

=ATbec— casebof sing x — «
Sn — case c of

cons ¢ s — index® n zs

3.3 Using Alf

We have used the experimental Alfa version of Alf, which i1s implemented using
Haskell and the Fudgets library [3] by Thomas Hallgren. The system contains
an interactive graphical editor which allows a user to build complex definitions
by point and click. A particularly valuable feature is a menu of options giving
possible constructions which it would be type safe to use at any point in an
expression; by means of this one constructs type correct programs.

This concludes our introduction to the aspects of Alf used here; more details
can be found at http://www.cs.chalmers.se/ hallgren/Alfa/

4 Interval Temporal Logic

In this section we begin by giving in Section 4.1 our definition of the fundamen-
tals of the implementation, namely definitions of what it is to be an interval, an
action and an interval proposition.

Central to interval logic are various connectives or combinators which allow
us to combine interval propositions together to give more complex propositions.
Apart from the obvious lifting of the propositional connectives and quantifiers
of predicate logic, which we look at in Section 4.8, and the standard temporal
operators defined in Section 4.7, we introduce two operators characteristic of an
interval logic.

The first is chop P @, in Section 4.3, which holds of an interval when the
interval can be split into two halves satisfying P and @) separately. Secondly we
introduce proj P () which projects one interval, by means of P, onto another
which should meet @); projection is introduced in Section 4.5.

4.1 Actions and Intervals

We take the type of actions as given; for the sake of exposition here we assume
it is a data type of constants (or 0-ary constructors):

Act € Set

- auta {A0))

There are various means of representing sets in constructive logic; here we choose
to model sets of actions by ‘characteristic’ functions from Act to Set:

ActSet € Type
=(A € Act) — Set

An interval 1s a list of action sets.

Interval € Type
= list ActSet

and an interval proposition or IntProp is a function which takes an interval to a
proposition (that is a Set).

IntProp € Type
= (I € Interval) — Set

An interval is said to be empty if it contains a single point.
Empty € IntProp
:/\I—>case10f{

sing ¢ — True
cons ¢ s — False

Generalising this is a proposition Length n expressing that the length of an
interval is n: Empty is then given by Length 0.
Length € (a € Nat) — IntProp
0 — case b Of{sing r — True
cons x &s — False
sing ¢ — False
cons ¢ ¥s — Length n xs}

=Aab— case a of

Sn — casebof{

Our final example of an atomic proposition is ‘A happens now’, that is at the
first point of an interval

happensNow € (A € Act) — IntProp
=AAT— first® T A

The expression first® I is an action set, and so the proposition that A holds is
given by applying the action set to the action, giving the proposition (first® I A).

4.2 Specifications

A specification of an interval can now be seen as an interval property, that is
a member P of IntProp. An tmplementation of such a specification will be an
interval I for which we can find a proof

p € PI

The proof p contains information about exactly how the interval I meets the
specification P. It will, for instance, state a point in an interval at which a &
property holds, and state which of a pair of disjuncts is valid. Examples are
given in Sections 4.4 and 4.6 below.

