UKC COMPUTING MAY 1997

UKC Orhix Survival Guide

|.C.A.Buckner & |.A.Penny
Computing Laboratory, University of Kent at Canterbury

May 6, 1997

1 Introduction

So you heed to write an Orbix application but don’t know whereto start? Thisdocument will try to break
you in as gently as possible by explaining the concepts you need to understand and then show you how
Orbix implements them. If you read it in conjunction with the programmer’s guide [lona, 1995 then
you should get a good idea of what is going on. The concepts and much of the implementation details
are generic but there are parts which are specific to UKC, and we will highlight these when we cometo
them.

2 Concepts

In order to understand the fundamentals of Orbix there are two concepts you must be familiar with: dis-
tributed systems and object orientation. There are numerous books on these subjects, so we will limit
ourselvesto abrief introduction.

2.1 Distributed systems

In atraditional, non-distributed, system, when you wish to solve a problem you write a program which
starts, calculates the solution and then stops. Itis highly likely that you divide your program into a num-
ber of sub-tasks, each implemented by a separate function, which, when executed in turn, perform your
required task.

In adistributed system we build a solution to a particul ar problem by building anumber of programs
which when they communicate perform the required task. The programs can be distributed across a net-
work of machinesto take advantage of the resourcesof each one; thisdistribution should betransparent to
theuser. Intheory it should not matter if the machineisin the next room or on the next continent, although
there are obvious performance advantages in having the machines contained within aloca network.

2.2 Object orientation

We are surrounded by objectsin everyday life, some simple, others complex. Often complex objects are
created from acollection of other, simpler, objects, thus hiding the complexity of theinner workingsfrom
us. For example awatch consists of a number of cogs, hands, and springs; we do not interact with these
components we interact with the watch as an object in its own right.

In object oriented computing “the underlying concept is that one should model software systems
as collections of cooperating objects’ [Booch, 1994]. Server objects provide operations which may be
invoked by client objectsto €elicit some changein state; Booch identifies five distinct operations:

A Modifier atersthe state of an object.
A Selector accesses the state of an object, but does not alter the state.
An Iterator permits parts of an object to be accessed in awell-defined order.

A Constructor creates an object and initialises its state.

A Destructor freesthe object’s state and destroysiit.

UKC COMPUTING MAY 1997

The implementation of an operation within a server object is transparent to client objects. This di-
vision between implementation (definition) and interface (declaration) provides a clear boundary to the
object which is associated viathe interface.

3 Writing Orbix programs

Orbix isan implementation of the Common Object Request Broker Architecture(CORBA) [OMG, 1991].
It combines distributed systems with object orientation to provide a distributed programming environ-
ment in which a system can be constructed from a number of communicating objects. The communica-
tion mechanism is provided by the environment; the role of the programmer isto design and implement
ohe or more server objects, and a client which invokes the server.

This section describes, in detail, the steps required to write a client and server using Orbix; it is
supplemented by a checklist which can be used in your future projects. We shall examine the process
by working through an example system, from interface description to compilation of the code. The code
used in this exampleis available onlinein the directory / pr oj / or bi x/ doc/ sur vi val / src.

3.1 Problem description

“A retail system comprises a component which maintains arecord of stock item serial numbers, prices,
and descriptions. The serial number and price are of typelong. The description is a character string. Op-
erationsarerequired toregister anitem, delete anitem, find its price, changeitsprice, find its description,
and change its description.”

3.2 Interface description

Beforewe actually writethe codefor the server object we must specify theinterfacewhich will be used by
the client when it wishes to invoke server operations. To do this you must write an interface description
language (IDL) file; thisfile is processed by Orbix’s IDL compiler. Theretail system, described previ-
oudly, will use thefollowing IDL file:

/1 In fileretail.idl
interface stock {
/1 Attributes
readonly attribute long item count;

/1 Functions
void newiten(in long serial, in long cost, in string nane);
void deliten(in long serial);

I ong getprice(in long serial);
void setprice(in long serial, in long cost);

string getname(in long serial);
voi d setname(in long serial, in string nane);

b

We see that there are six functions, four of which return no result and the othersreturn along integer
and a character string respectively. Itisalso possibleto pass these results back as out parameters, but we
prefer to return them as the result of the function.

3.3 Compiling idl
To compiletheIDL filer et ai | . i dl you must type the following :

kestrel %idl -B -Sretail.idl

The-B flag states that you wish to use the BOAImpl approach, see section 1.4.1 of the programmer’s
guidefor details. The-Sflag askstheidl compiler to drop skeleton code for the declaration and definition

