UKC COMPUTING MAY 1997

CONTENTS

CONTENTS

1 INTRODUCTON

2 OVERVIEW OF DISTRIBUTED SYSTEMS
21 What isaDistributed System?
2.2 How Does ANSAware Help Build One?

3 IMPLEMENTING THE CONCEPTS
31 Interface Description Language
32 stubm3 - the IDL Compiler
3.3 Building Applications with m3build

4 BUILDING AN APPLICATION ONE STEP AT A TIME
4.1 Configuring the Shell for an ANSA Session
4.2 Defining the Interface for our Service
43 Copying the Default M3makefile
4.4 Writing the Server
45 Writing the Client

5 EXCEPTION HANDLING

6 PROGRAMMING WITH THREADS
7 DEBUGGING

8 TRCONTROL - A USEFUL TOOL

9 WHERE DO | GO IF I WANT TO KNOW MORE?

APPENDIX A — IDL TOM3TYPE MAPPING

APPENDIX B — M3MAKEFILE MACROS

AN NN =

N o oo o o b~

12

13

UKC COMPUTING MAY 1997 UKC ANSAWARE SURVIVAL GUIDE (FOR MODULA-3)

UKC ANSAWARE SURVIVAL
GUIDE (FOR MODULA-3)

1 INTRODUCTON

So you need to write an ANSAware application in Modula-3 but don’t know where to start? This docu-
ment will try to break you in as gently as possible by explaining the concepts you need to understand and
then showing you how ANSAware implementsthem. Although the conceptsare general, the parts of this
document that explain how to compile code are specific to UKC.

2 OVERVIEW OF DISTRIBUTED SYSTEMS
2.1 What is a Distributed System?

Ok, so you're used to one program which starts, runs and then stops. It contains proceduresthat perform
some function and these are called in turn so that the program performs some required task.

Ina*“distributed system” we take a problem and we build a solution from several different programs
that all talk to one another, when we can make these programs communicate over some network we are
able to have each one run on a different machine. It is this that makes a distributed systems solution so
useful; these programs may run on machines on other side of the room or the other side of the world.

Another important aspect of distributed systemsis* rel ocation” — if one of our machinesstopswork-
ing then we might be able to start that part of the system on another machine somewhere else and carry
on.

2.2 How Does ANSAware Help Build One?

ANSAware providessupport for building client/server applications. A server capsule providessome* ser-
vice” totherest of the ANSA world, an example might be“| cantell you thetemperatureoutside’; aclient
capsule will make use of this service by making a request to the server.

Here are two terms you will use alot when talking about ANSA programs:

B AnANSA programiscalled acapsule.

B Therequest that aclient makesto a server isimplemented viaa Remote Procedure Call (RPC).

Let'slook at anormal piece of Modula-3 code; your program call sa procedurewith some parameters
and you may get someresultsback. An RPC is exactly the same except that the procedureis executed by
the server which may be on another machine, ie. remote. You can pass parametersand get resultsback in
just the same way, remember that passing pointersto data structures across machinesisn’t going to work!

This leaves us with two BIG issues to deal with:

B Wenow have al these server capsules that we can talk with and they can be running on different
machinesin several | ocations so how do weknow what servicesare out there and how do we contact
them?

B What do we do when our call to a server fails?

UKC ANSAWARE SURVIVAL GUIDE (FOR MODULA-3) UKC COMPUTING MAY 1997

The second question will be answered later. Let’s answer thefirst by considering the Yellow Pages.

| am a plumber, a good plumber who works at a reasonable rate and | know that everyone would
like to use my plumbing service but first | need to tell the world that | exist. What do | do? | take out
an advertisement in the Yellow Pages, the advertisement says | am a plumber and identifies a method of
contact. Now someone with aleaking water pipe knows they need the services of a plumber so they can
find mein the Yellow Pages and call me.

The ANSAware Trader is similar to our Yellow Pages. The Trader isan ANSA capsule that knows
about al the visible servicesin our little world and how to contact the servers that provide them.

B When aserver wishesto tell the world that it is around it exports a service offer to the trader. In
our plumber example this occurs when | place my advertisement in the Yellow Pages.

B When aclient wantso use aserviceit importsthe location of the service from the Trader. What it
gets back isacontact point for the service and can usethisto talk to the server directly and perform
the RPC.

Wildcards can be used so that the Trader performs a search and returnsalist of matching services.

3 IMPLEMENTING THE CONCEPTS

When you write code for an ANSA capsule you write one or more modules of code which are then com-
piled and linked by the Modula-3 compiler. Thebest way to run several capsulesistorunthemin different
windows on an X-Terminal.

Before we continue we need a little more terminology:

B Each server capsule hasat least oneinterface. Thisisthe point of contact with the client capsules.

B Each interface can support some number of service operations. Operations are usually grouped
together using some criteriaand each group appears on a different interface, one capsule can have
severa interfaces.

Each interface is represented by a Modula-3 ANSA Network Object. A client asks the Trader for
a handle to a network object that provides a particular service and then invokes methods on the object.
A server creates an object that inherits from the network object associated with the service it wants of
provide and OVERRI DES the methods.

See [Har924] for more details of Modula-3 objects.

3.1 Interface Description Language

The Interface Description Language (IDL) describes the operations available on each Ansa interface.
Thereis at least one IDL file for each interface - if you are writing a client, read the IDL file for the
interface you need to talk to to see what operationsthere are.

If you are writing a server then you must write an IDL file to describe the operationsit will imple-
ment. You can also create your own types to make the operation signatures clearer.

You should see [APM93], section 3.1, for details of the IDL syntax.

3.2 stubm3 - the IDL Compiler

st ubnB isthe Modula-3 stub compiler. Thistakes DL files and produces Modula-3 modulesto imple-
ment the interface definitions.

For each <i nt er f ace> inthe IDL file being compiled, st ubnB producesthe following files:

B <interface>.i 3-the M3 network object interface.

UKC COMPUTING MAY 1997 UKC ANSAWARE SURVIVAL GUIDE (FOR MODULA-3)

B <interface>CRPC. {i 3, n8} - theclient-side stubs.

B <interface>SRPC. {i 3, n8} - the server-side stubs.

See [stu] for afull description, To write code, you will need to know how the stub compiler maps
the IDL types onto Modula-3. These mappingsare givenin Appendix A.

Herefollows a descrption of the functions provided by the gererated stubs:

Server-side Stub Routines

B PROCEDURE Export (
ref: <interface>. T,
i ntf SpecNanme: TEXT := "<interface>";
cont ext : TEXT : = "/";
propLi st : TEXT :="";
concurrency: CARDI NAL : = 16;
typeTagged : = FALSE)
RAI SES {Ansa. Fai | ure};

Export registersthe AnsaNetwork Object r ef with the Trader in the associated trading context
and with the supplied properties. See [APM93], section 3.11 for more details.

concur r ency specifies the number of requests to the interface that will be queued while oneis
being processed.

If i nt f SpecNane isnot registered as a offer type with the Trader then the server capsule will fail
with an error along the lines of:

(./plunber) :: warning, file '../capsule/src/generic/trading.c’: line 104
(./plunber) :: capsule 1857 WARNI NG
bi nder _export - trader error 'unknownType': 1027 (bindFail ure)

B PROCEDURE Wthdrawm(ref: <interface>. T) RAI SES {Ansa. Fail ure};

W t hdr awremovesthe specified Ansa Network Object from the Trader. It should be called when
you no longer wish to providethe serviceie. a server termination time.

Client-side Stub Routines

B PROCEDURE | nport (

i ntf SpecName: TEXT := "<interface>";

cont ext : TEXT :="/";
constraints: TEXT :="";
t ypeTagged := FALSE): <interface>.T

RAl SES { Ansa. Fai | ure};

| mpor t searchesthe Trader for a handle to an Ansa Network Object which provides the specified
interface, isin the specified trading context and that matches the given constraints.

B PROCEDURE Di scard(ref: plunber.T) RAISES {Ansa. Fail ure};

Di scar d freesup any resourcestaken by the binding to the specified Network Object. This should
be done when the binding is no longer required, ie. at client close-down time.

UKC ANSAWARE SURVIVAL GUIDE (FOR MODULA-3) UKC COMPUTING MAY 1997

plumber
plumber idl customer
SPARC src plumber.idl sc SPARC
*.0 Plumber.m3 Customer.m3 * 0
plumber m3makefile m3makefile customer
plumber.i3 plumber.i3
plumberSRPC.{i3, m3} plumberCRPC.{i3, m3}

Figure 1. Directory layout for example programs

3.3 Building Applications with m3build

We use the mBbui | d command to start the Modula-3 compiler running. nBbui | d expects all source
codetobeinadirectory called sr ¢, any object code and the finished executable are placed in adirectory
at the same as sr ¢, whos name is determined by the platform being built for.

We will often need to build anumber of capsules so the best way to lay them out is shown in Figure

nBbui | d should beinvokedin thedirectory that containsthe src directory for the capsule you want
tobuild. When started, n8bui | d readsthecommandsinsr ¢/ nBnmakef i | e todecidehow to construct
the capsule.

m3makefiles are written in a procedural language called Quake. There are a number of predefined
procedureswhich allow you to build straight forward Modul a-3 appli cations, see[m3m] for details. m3ansa
provides a number of extra proceduresfor building Ansa applications (see Appendix B).

nBbui | d buildsthe program, n8Bbui | d cl ean removesall code derived from the build.

4 BUILDING AN APPLICATIONONE STEP ATA TIME

The easiest way to explain how to build an application is to go through a simple example one step at a
time. We will build a plumber service who can give quotes for jobs and can be called out by a customer
capsule which we shall also build'.

The stages that we go through to build our application can be summarised by thislist:

Configure our shell for an ANSA session.

Write an interface definition for our service.

Copy the default m3makefile and modify it for our interface.
Write the server capsule.

Flesh out the service routines.

Write the server body.

N o g M w N PP

Write the client.

L The code for this example can be found in /proj/ansalexamples/m3ansa/plumber.

UKC COMPUTING MAY 1997 UKC ANSAWARE SURVIVAL GUIDE (FOR MODULA-3)

8. Build our application.

Thereis alogical order to these steps, use the above list as a reference when you come to writing
your own programs. The following sectionswill explain each of these stepsin detail.

4.1 Configuring the Shell for an ANSA Session

The ANSA system relies on certain environment variablesbeing set so you must configurethe shell for an
ANSAware session before starting. If you use the csh shell then add the following linesto your . cshr ¢
file:

set env ANSA VERSI ON n8

al i as ansa source /proj/ansal/.ANSAwar erc

Once this has been sourced you can type ansa to set up al the library paths and other things that
are necessary but which you really don’'t want to know about. At present Modula-3 is only installed on
larch and mango so configuring your shell for an m3ansa session on any other machine will fail.

4.2 Defining the Interface for our Service

We need to tell ANSAware what operations are available on each interface, for this we use an Interface
Description Language (IDL). Thereisat least one IDL filefor each interface - if you arewriting aclient,
read the IDL file for the interface you need to talk to to see what operationsthere are.

If you are writing a server then you must write an IDL file to describe the operations it will imple-
ment. You can also create your own types to make the operation signatures clearer.

Hereisthe IDL file for our plumber service (pl unber . i dl):

pl unber : | NTERFACE =
BEG N

-- Defines a sinple plunber service
-- | an Buckner - 13/03/95

-- Operation signatures

-- client supplies the problemto the plunber who sends a quote back
Get Quote : OPERATION [problem: STRING]
RETURNS [quote : CARDI NAL];

-- supply your address to the plunber, he tells you if he can cone out
Call Qut : OPERATION [address : STRING]
RETURNS [booked ok : BOOLEAN];

-- put the plunmber out of business
Sack : OPERATION []
RETURNS [];

END.

We see that there are three operations, two of which take one parameter and return one result, see
[APM93], section 3.1, for details of the IDL syntax. It is a good ideato comment what each operation
will do to avoid searching through the server source when you forget!

4.3 Copying the Default M3makefile

The m3makefile explains how to build your ANSAware capsules, it specifies which files will be used in
the build. Take acopy of / proj / ansa/t enpl at es/ nBnakef i | e which we will modify for our
application.

UKC ANSAWARE SURVIVAL GUIDE (FOR MODULA-3) UKC COMPUTING MAY 1997

See [m3m] for more details on writing m3makefiles.

4.4 Writing the Server

The first thing we need to do is update our nBrrakef i | e to indicate which interfaces our server will
provide. Aspl unber . i dl isheldinadifferent directory, we use:

i mport_ansa_server("../../idl", plunber)
The main body of our server will bein Pl unber . n8 so we add:
i mpl enent ati on(Pl unber)

Now let'slook at how Pl unber . n8 is put together. All m3ansacapsulesimport the Ansamodule
which contains the Ansa type definitions. As we are a server of the plumber interface, we import the
plumber module and associated module that contains the Server Remote Procedure Calls too:

| MPORT Ansa;
I MPCRT pl unber, pl unber SRPC,

The next thing to do isto OVERRI DE the methods for the object associated with the service that we
are providing - the plumber object in this case;

TYPE
T = plunber. T OBJECT
OVERRI DES
Cet Quote : = DoCet Quot e;
Cal | Qut = DoCal | Qut;
Sack = DoSack;
END;

We now writethe serviceroutineswhich will get called when aclient makesarequest on our plumber
interface. Hereis the code for the GetQuote operation:

PROCEDURE DoCet Quote (<*UNUSED*> self: T; problem TEXT):
pl unber. Get Quot eResul t _ RAI SES {} =
VAR res: plunber. Get Quot eResul t _;
BEG N
(*
* the quote is conpletely unrelated to the work that needs doing
*
)
W TH rand = NEW Random Default).init() DO
res.quote := rand.integer (5 MAX BILL);
END;
Say("asked for a quote on
& Fm.Int(res.quote));
RETURN r es;
END DoGet Quot €;

& problem& ", reckon it will cost $"

Two things to note about service methods are:

B Thefirst parameter is always of type T and is a reference to the object that owns the method, the
remaining parameters are the ones declared in the idl definition of the operation.

B Thereturntypeisawaysof type<i nt er f ace>. <oper ati on>Resul t _

Now, to create our service object, we create a variable of the service object type:

VAR
pl unber Ref ;T

Then we create an instance of the object:

UKC COMPUTING MAY 1997 UKC ANSAWARE SURVIVAL GUIDE (FOR MODULA-3)

pl unber Ref := NEWT);
and tell the rest of the world about the service by exporting it to the Trader:
pl unber SRPC. Export (pl unmber Ref, context := CONTEXT);

CONTEXT isthe trading context for this offer. You should have your own context space to work in
and only import from other spacesif you are talking to servers not owned by you. Now we just provide
the service until close down when we call:

pl unber SRPC. W t hdr aw(pl unber Ref) ;
which will remove the offer from the trader.

The plumber example shows how the server can simply loop until it is asked to terminate. The ap-
plication is prevented from using excessive CPU by making callsto

Thr ead. Pause();

Which puts the main capsule thread to sleep and allows other threadsto run (see later).

4.5 Writing the Client

We shall define our client behaviour in Cust oner . n8. Firstly, we update the nBnmakef i | e to show
that we will be aclient of the plumber interface:

import_ansa_client("../../idl", plunber)

Two more lines have to be added to tell nBbui | d where the main body of codeis held and which
program to build:

i mpl enent at i on(Cust oner)
pr ogram(cust oner)

Thistime our program is a client so we will need to import the plumber module and the client stub
routines:

| MPORT Ansa,
| MPCRT pl unber, pl unmber CRPC,

To invoke operations on a server object, we first declare a variable of the server object type:
pl unberdient: plunber. T,

We then performan | npor t operation to bind us to the server:
plunberdient := plunber CRPC. I mport (context := CONTEXT);

Rememberingthat result parametersareawaysof atype<i nt er f ace>. <oper ati on>Resul t

ie
reply : plunber. Get Quot eResul t _;
book_reply : plunber. Call Qut Resul t _;

We can call operations on the server object:
reply := plunberdient. Get Quot e(PROBLEM ;
When we no longer need the server, we can release the binding:

p! umber CRPC. Di scard(pl unberdient);

UKC ANSAWARE SURVIVAL GUIDE (FOR MODULA-3) UKC COMPUTING MAY 1997

5 EXCEPTION HANDLING

Invoking a server method or calling one of the client/server stub routines can fail for one of severa rea-
sons. The server method may fail becausethe server isno longer running or becauseit is unreachabledue
to anetwork problem. We need to be ableto trap failureswhen they occur so that we can take appropriate
action.

Failurerecovery isavery important part of writing distributed applications. We must make our code
asrobust as possible so that if part of our system fails, we can till continue.

The Modula-3 exception mechanism is used to indicate failure. Server methods and client/server
stub routinesraisethe Ansa. Fai | ur e exception on failure and pass back areason. The following ex-
tract of code shows how we might trap an exception caused by an Export failure:

TRY
pl unber SRPC. Export (pl unmber Ref, context := CONTEXT);
EXCEPT
| Ansa.Failure (stat) =>
W . Put Text (Stdio.stderr, "Export failure. Reason: " & stat & "\n");
W . Fl ush(Stdio. stderr);
RETURN;
END;

In this example we simply return back to the calling procedure. Rather than do this, we might raise
another exception for the calling procedure to pick up.

See [Har92b] for further information on exception handling in Modular-3.

6 PROGRAMMING WITH THREADS

Threads are often used in distributed applications to service a number of requests simultaneoudly or to
perform background operations.

Some mention needs to be made of Modula-3's thread package, Thr ead. M3 used a pre-emptive
sheduler so one thread can not monopolise on the processor. The thread package supports mutual exclu-
sion to provide event synchronisation too.

See [Har92c] for afull description of M3 threads.

7/ DEBUGGING

The best way to debug your programsis to run them through a debugger which will let you step through
the code and print out variable contents.

Thebest programfor thejobism3gdb, amodified version of gdb, the GNU debugger, which supports
Modula-3. Copy the gdb configuration file to your home directory.

cp /proj/ansal/ nBansal/ confi g/ gdbinit ~/.gdbinit

m3gdb should be started in the build directory of the program you want to debug, in our example,
to debug the customer program:

mango% cd exanpl e/ pl unber/ cust oner/ SPARC
mango% nBgdb cust oner

You neeto tell m3gdb that you will be debugging Modula-3:
(gdb) set la nB

Functions can be displayed with the |l i st command. Procedures must be tied to the module they
aredeclared in:

(gdb) list Custoner. Say

UKC COMPUTING MAY 1997 UKC ANSAWARE SURVIVAL GUIDE (FOR MODULA-3)

- which will display the function if the file is on the current search path, this can be added to with
thedi r ect or y command:

(gdb) directory ../../idl

The gdb debugger is very powerful and can not be fully explained here. Read [m3g] and [gdb] for
amore complete explanation. Gdb also has good help facilities, just do

{gdb} help

and follow the instructions. You might also want to consider running m3gdb inside GNU Emacsto
debug your programs. Thiswill give you a source and a debugger window and will highlight the current
line as you step through your code.

8 TRCONTROL - A USEFUL TOOL

Trcontrol isan X-based application that allowsyou to visually see the servicesregistered with the Trader,
as well as add and delete service types and trading contexts. The application is started by typing
t rcont r ol ; Figure 2 shows the application window.

Themain screen of Trcontrol isdivided into seven areas. At thetop isthe message window showing
the previous operations executed by Trcontrol, below thisis an input bar into which you can type. Next
are two large buttons which refresh the display and show the details of the Trader being managed.

The next row of buttons perform operations on the trading contexts that are shown in the window
below. Thetrading contextsare hierarchical and onesendingin®/” can beexpandedto reveal lower levels.
All normal ANSAwareuserswill haveatrading context below “/ansa/users/” or “/ansa/groups/”, followed
by their login — contact the ANSAware administrator if you do not have one.

Once atrading context has been expanded, you will see alist of the service offerswhich have been
exportedin this context. Onceyou have highlighted an offer, the operationson the“ Offers’ button can be
used to deleteit or view it's details. Deleting servicesis useful for removing stale offers - when a server
has died but has not withdrawn it's offer from the trader. Importing and using this service will fail asthe
server is no longer around.

The bottom part of the Trcontrol display is abutton bar and ahierarchical display of the typesregis-
tered with the trader. You can expand and move around the type hierarchy in the sameway asyou doin
the context window. The“Add Type” option on the “ Type” menu can be used to insert atypein the part
of the hierarchy that is currently highlighted.

Oneword of warning, thereis no sense of ownership on offers, contexts or types which meansyou
are free to delete any ones you want. Be sensible and do not go around deleting other peoples offers or
trading contexts asthisis VERY annoying!

9 WHERE DO | GO IF | WANT TO KNOW MORE?

Configuring your shell for an ANSA session also makes some extra manual pages available. Many of
the ANSA routines are documented and these pages help supplement the written material. 1t is probably
worth playing around with man - k and seeing what you can find.

We have copies of the ANSAware manuals. Be warned however that these have been found to be
incomplete and contain errors - don’t take them as gospel. Application Programming in ANSAware is
the reference manual for the language - three copies are available at Computing Reception but these can
not be removed from the building. Systems Programmingin ANSAware dealswith the ANSAwareimple-
mentation and isvery low level, it will be of useif you need to play around with the ANSAwareinternals.
The Systems Managers Guide explains how to install ANSAware and its day to day maintanance and An
Overview of ANSAware 4.1 describes the ANSAware approach and tries to cover the changes between
vVersions.

UKC has been using ANSAware on research projects for several years now, many bugs have been
fixed and sleep lost in the process. Most of the Networks and Distributed Systems Research Group have

