UKC COMPUTING FEBRUARY 1997 CONTENTS

CONTENTS

1 INTRODUCTON 1
2 OVERVIEW OF DISTRIBUTED SYSTEMS 1
21 WhatisaDistributed System? 1
2.2 How Does ANSAware Help Build One? 1
3 IMPLEMENTING THE CONCEPTS 2
4 BUILDING AN APPLICATION ONE STEP AT A TIME 2
41 Configuring the Shell for an ANSA Session 3
4.2 Defining the Interface for our Service 3
43 Copying the Default Imakefile 4
4.4 Generate Service Routine Templates and Signal Handlers 4
45 Fleshing-out the Service Routines 5
4.6 Writing the Server Body 5
4.7 Writing the Client 6
4.8 Building the Application 7
5 Debugging 8
6 Other Thingsto Know 8
7 Treontrol - a Useful Tool 9
8 Exception Handling 9

9 WhereDo | Go if | Want to Know More? 10

UKC COMPUTING FEBRUARY 1997 UKC ANSAWARE SURVIVAL GUIDE

UKC ANSAWARE SURVIVAL
GUIDE

1 INTRODUCTON

So you need to write an ANSAware application but don’t know where to start? This document will try to
break you in as gently as possible by explaining the concepts you need to understand and then showing
you how ANSAware implementsthem. You will not get enough information from this document to fully
understand ANSAware so you should read [APM 93] aswell. Although the conceptsare general, the parts
of this document that explain how to compile code are specific to UKC.

2 OVERVIEW OF DISTRIBUTED SYSTEMS
2.1 What is a Distributed System?

Ok, so you're used to one program which starts, runs and then stops. It contains proceduresthat perform
some function and these are called in turn so that the program performs some required task.

Ina*“distributed system” we take a problem and we build a solution from several different programs
that all talk to one another, when we can make these programs communicate over some network we are
able to have each one run on a different machine. It is this that makes a distributed systems solution so
useful; these programs may run on machines on other side of the room or the other side of the world.

Another important aspect of distributed systemsis*rel ocation” — if one of our machinesstopswork-
ing then we might be able to start that part of the system on another machine somewhere else and carry
on.

2.2 How Does ANSAware Help Build One?

ANSAware providessupport for building client/server applications. A server capsule providessome* ser-
vice" totherest of the ANSA world, an example might be“| cantell you thetemperatureoutside’; aclient
capsule will make use of this service by making arequest to the server.

Here are two terms you will use alot when talking about ANSA programs.

B AnANSA programiscalled acapsule.
B Therequest that aclient makesto a server isimplemented viaa Remote Procedure Call (RPC).
Let'slook at a normal piece of C code; your program calls a procedure with some parameters and
you may get some results back. An RPC is exactly the same except that the procedureis executed by the

server which may be on another machine, ie. remote. You can pass parameters and get results back in
just the same way, remember that passing pointersto data structures across machinesisn’t going to work!

This leaves us with two BIG issues to deal with:

B Wenow have al these server capsules that we can talk with and they can be running on different
machinesin several | ocations so how do weknow what servicesare out there and how do we contact
them?

B What do we do when our call to a server fails?

UKC ANSAWARE SURVIVAL GUIDE UKC COMPUTING FEBRUARY 1997

The second question will be answered later. Let’s answer thefirst by considering the Yellow Pages.

| am a plumber, a good plumber who works at a reasonable rate and | know that everyone would
like to use my plumbing service but first | need to tell the world that | exist. What do | do? | take out
an advertisement in the Yellow Pages, the advertisement says | am a plumber and identifies a method of
contact. Now someone with aleaking water pipe knows they need the services of a plumber so they can
find mein the Yellow Pages and call me.

The ANSAware Trader is similar to our Yellow Pages. The Trader isan ANSA capsule that knows
about al the visible servicesin our little world and how to contact the servers that provide them.

B When aserver wishes to tell the world that it is around it exports a service offer to the trader. In
our plumber example this occurs when | place my advertisement in the Yellow Pages.

B When aclient wants o use aserviceit importsthe location of the service from the Trader. What it
gets back isacontact point for the service and can usethisto talk to the server directly and perform
the RPC.

Wildcards can be used so that the Trader performs a search and returnsalist of matching services.

3 IMPLEMENTING THE CONCEPTS

When you write code for an ANSA capsule youwrite oneor more. dpl files. These contain standard C
codeand ANSAware callsto performtheinteractions between capsules. All ANSAware statementsbegin
with a! inthefirst column, the preprocessor expands these to pieces of C and thisis then compiled to
produce an executable program:

exanpl e. dpl — preprocessor — exanpl e. ¢ — C compiler — exanpl e

You will have one or more DPL files for each capsule; these are linked together to produce one ex-
ecutable. The best way to run several capsulesisto run them in different windows on an X-Terminal.

Before we continue we need a little more terminology:
B Each server capsule hasat least oneinterface. Thisisthe point of contact with the client capsules.

Aninterfacereference uniquely identifies each interface in the system; when your client imports
aservice from the Trader what you get back is the interface reference to the service.

B Each interface can support some number of service operations. Operations are usually grouped
together using some criteriaand each group appears on a different interface, one capsule can have
severa interfaces.

4 BUILDING AN APPLICATIONONE STEP ATA TIME

The easiest way to explain how to build an application is to go through a simple example one step at a
time. We will build a plumber service who can give quotesfor jobs and can be called out by a customer
capsule which we shall also build!.

The stages that we go through to build our application can be summarised by thislist:

1. Configureour shell for an ANSA session.
2. Write an interface definition for our service.

3. Copy the default Imakefile and modify it for our interface.

I The code for this example can be found in /proj/ansalexamples/plumber.

UKC COMPUTING FEBRUARY 1997 UKC ANSAWARE SURVIVAL GUIDE

Generate service routine templates and signal handlers.
Flesh out the service routines.
Write the server body.

Write the client.

© N o g »

Build our application.

Thereisalogical order to these steps, use the above list as a reference when you come to writing
your own programs. The following sectionswill explain each of these stepsin detail.

4.1 Configuring the Shell for an ANSA Session

The ANSA system relies on certain environment variables being set so you must configure the shell for
an ANSAware session before starting. If you use the csh shell then add thefirst lineto your . cshr c file,
add the second line to your . bashr ¢ if you use bash:

al i as ansa source /proj/ansal/.ANSAwar erc
al i as ansa="source /proj/ansal/. ANSAwar erc. sh"

Once this has been sourced you can type ansa to set up al the library paths and other things that
are necessary but which you really don’'t want to know about. This setup automatically defaults to us-
ing the latest version installed on the current platform; if you wish to use another version then set the
ANSA_VERSI ON environment variable accordingly. 2

4.2 Defining the Interface for our Service

We need to tell ANSAware what operations are available on each interface, for this we use an Interface
Description Language (IDL). Thereisat least one IDL filefor each interface - if you arewriting aclient,
read the IDL file for the interface you need to talk to to see what operationsthere are.

If you are writing a server then you must write an IDL file to describe the operations it will imple-
ment. You can also create your own types to make the operation signatures clearer.

Hereisthe IDL file for our plumber service (pl unber . i dl):

pl unber : | NTERFACE =
BEG N
-- Defines a sinple plunber service, lan Buckner - 13/03/95

-- client supplies the problemto the plunber who sends a
-- quote back
Get Quote : OPERATION [problem: STRING]

RETURNS [quote : CARDI NAL];

-- supply your address to the plunber, he tells you if
-- he can come out
Call Qut : OPERATION [address : STRING]

RETURNS [booked_ok : BOOLEAN];

-- put the plunber out of business
Sack : OPERATION [] RETURNS [];
END.

We see that there are three operations, two of which take one parameter and return one result, see
[APM93], section 3.1, for details of the IDL syntax. It is a good ideato comment what each operation
will do to avoid searching through the server source when you forget!

2Supported versions are 4.0 and 4.1 on the research workstations, 4.1 on the fish and 4.1.1 on the snakes.

UKC ANSAWARE SURVIVAL GUIDE UKC COMPUTING FEBRUARY 1997

4.3 Copying the Default Imakefile

The Imakefile explains how to build your ANSAware capsules, it specifies which files will be used in
the build and describes how to construct alist of dependencies so that the correct files are re-built when
something changes. Takeacopy of / proj / ansa/ t enpl at es/ | makef i | e which we will modify
for our application.

Now we have written theinterface description for our servicewe updatethe| DLFI LES entry inthe
Imakefile:

| DLFI LES = pl unber.idl
We must also add an | DLDepend() entry:
| DLDepend(pl unber)

More complex applicationswill use morethan oneinterface. Theremust bean| DLDepend() line
for each one and we must add them to the | DLFI LES list too.

4.4 Generate Service Routine Templates and Signal Handlers

Thefirst thing we need to do now isto generate the service routine template from the IDL file we wrote.
This template will contain the skeleton code for the service routines which we will flesh out |ater.

Firstly, we must process the Imakefile to get a Makefile, do this with ansanknf then nake
t enpl at es which produces severadl files:

pl unber Serv. dpl
nmpl unber . h

t pl umber. h

epl unber. h

pl unber Serv. h
p! unber Si gnal . h
pl unber . si f

The DPL fileis the service routine template, the other files are needed by the ANSAware system.

The next thingto doismake si gnal s which generates signal handling code for each operation
automatically, these are routines that are called by a client capsule when an RPC fails (see later). This
codeiscontained in pl unber Si gnal . dpl inour example.

We must now update the Imakefile to include these newly generated files, firstly we list the header
files:

HDRS = npl unber. h tpl unber. h epl unber. h pl unberServ. h pl unber Si gnal . h
An entry for the SIFfiles:

S| FFI LES = pl unber. si f
and dependency lines for the new DPL files:

DPLDepend(pl unber Ser v)
DPLDepend(pl unber Si gnal)

Asthe Makefileis generated from the Imakefile we must run ansanknf whenever the Imakefileis
changed - if we don’t then our changes will not take effect.

REMEMBER, nmake tenpl at es and nake si gnhal s generatetemplate code by examining
the IDL files you have specified in the Imakefile. These operations can only be done once to prevent any
changes you make to the templates being overwritten by fresh versions. If you do want to generate the
templates again then you will have to delete the generated DPL filesfirst.

UKC COMPUTING FEBRUARY 1997 UKC ANSAWARE SURVIVAL GUIDE

4.5 Fleshing-out the Service Routines

We now implement the behaviour of each of the operations we defined in pl unber . i dl . The stub
compiler has produced a skeleton template called pl unber Ser v. dpl ; this file currently contains a
procedure definition for each of the operations we defined in out IDL file which simply return failure.
The naming convention used is:

<interface nane>_<operation nanme>(ansa_InterfaceAttr *_attr
[, paraneter])

It is important to note that the first parameter to each service routine is aways an
ansa_l nterfaceAttr structure- thishas been added by ANSA and can, for smple applications, be
ignored but not removed.

The other important thing to note is the way in which return parameters are specified. The param-
eters are always ordered with the parameters supplied when the operation is invoked first, followed by
the result parameterswhich are always passed as pointers. The return value of the function call indicates
whether the operationwas successful and takes one of two possiblevalues, Successf ul | nvocati on
or Unsuccessf ul | nvocat i on. Hereisthe fleshed-out routine for the Get Quot e operation:

#i f AW PROTCS
i nt plunber_Get Quot e(

ansa_lnterfaceAttr * attr,
ansa_String pr obl em
ansa_Car di nal *quot e

)

#el se

int plunber GetQuote(_attr, problem quote)
ansa_lnterfaceAttr * attr;
ansa_String probl em
ansa_Car di nal *quot e;

#endi f

{

/*

* the quote is conpletely unrelated to the work that needs doing
*/

*quote = (ansa_Cardinal) ((rand() / (pow2,31)-1)) * MAX BILL);
fprintf(stdout,
"Plunber: asked for a quote on %, reckon it wll cost %% u\n"
, problem *quote);

return Successful | nvocati on;

}

Lastly, aGet Mynt | nt er f ace service function is generated for each interface. You will not usually
be using this and so it can be left unchanged.

4.6 Writing the Server Body
We now need to write the body of the server, thisisin pl unber Body. dpl .
We indicate which interfaces we will be using and that we will offer a plumber service.

/* Interface declarations */
I USE Trader
I USE pl unmber

/* Interface reference declarations */
! DECLARE { plunberServerRef } : plunber SERVER

UKC ANSAWARE SURVIVAL GUIDE UKC COMPUTING FEBRUARY 1997

Oneimportant thing to remember is that Ansa capsul es start running from the body function, NOT
from mai n asusual C programs do. Most serverswill execute along the following lines:

Create a service interface and specify the number of simultaneous requests that can be madeto it:
I' {plunberServerRef} :: plunber$Create(l)
Tell the rest of the world about the service they provide by exporting it to the Trader:

I' {} <- traderRef $Export("plunber", CONTEXT, propbuf, \
p!l unber Ser ver Ref)

Thefirst parameter to the export request is the service type. This must have already been added to
the trader or a message similar to this will appear when you run your server:

(./plunber) :: warning, file "trading.c’: line 104
(./plunber) :: capsule 15286 WARNI NG bi nder _export - trader error
"unknownType’ : 1027 (bindFail ure)

You can use Trcontrol (see section 7) to add service typesto the Trader.

CONTEXT isthe trading context for this offer. You should have your own context space to work in
and only import from other spacesif you are talking to servers not owned by you. Now we just provide
the service until close down when we call:

I capsul e$Term nat e()
which will remove the offer from the trader and close the capsule down cleanly.

The plumber example shows how the server can simply loop until it is asked to terminate. The ap-
plication is prevented from using excessive CPU by making callsto

timer_Sl eep(TSeconds, (ansa_Ti neDel ay) DAYLENGTH);

The ANSA sceduler is non-preemptive so any capsule that has more than one thread of execution
must sleep at some point in the main thread to ensure that the body is descheduled and give timeto allow
other threads to execute. The exception is if your capsule is a pure server and does nothing else other
than service RPC's; if thisis the case then the main body can be |eft to exit leaving just the RPC service
routinesto be started when required.

You must also be carefull not to use blocking serviceslike keyboardinput unlessthereisdatato read
or you will lock up your capsule.

4.7 Writing the Client

So now let’s take a step by step look at how a client capsule would use this service. Lets look at the
ANSAware partsof cust oner . dpl first:

We need to say that we shall be using the Plumber interface:
I USE PI unber

and we need to save an interface reference so that we can talk to it, remembering that we will be a
client. The use of the second temporary reference will be explained in a moment.

! DECLARE { plunberdient } : Plunber CLIENT
| DECLARE { tempRef } : Plunber CLIENT

In the body we must declare the variable for the interface references we will use, ANSAware gen-
erates atype from the interface name by adding a Ref suffix to the interface name:

pl unber Ref tenpRef, plunberdient;

NOTE: aways use the ANSA generated interface types rather than the generic
ansa_l nt er f aceRef sothat the compiler can enforce type checking.

Now let’'stalk to the Trader and try to import the plumber service:

UKC COMPUTING FEBRUARY 1997 UKC ANSAWARE SURVIVAL GUIDE

I {tenpRef} <- traderRef$lmport("plunmber”, CONTEXT, "")

The Import operation on the Trader takes three parameters, thefirst of theseisthetype of the service
wewant to contact, we get back theinterfacereferencefor the service. We now copy thereturnedinterface
reference into the variable we will usein the RPC calls using the interface reference copying function.

i fref _copyRef (&l unberdient, &t enpRef);

ANSA places return parameters in its own private data space, This data space changes whenever
ANSAware performs an RPC so you are likely to loose your data unless you copy it out explicitly. This
is one of the most common problems with peoples programmes.

Now we have a handle on the service we can talk to it directly:
I {cost} <- plunberdient$CGet Quot e(probl em

When we have finished we can free up the space used by the interface reference with:
I plunberd i ent $Di scard

4.8 Building the Application

We are now ready to build our plumber and customer capsules. So far we havejust used the mak e mech-
anism to generate template code, we must now modify our Imakefile to reflect the programs we want to
build:

We have written two new DPL files so we add:

DPLFI LES = pl unber Serv. dpl pl unber Body. dpl custoner. dpl \
pl unber Si gnal . dpl

and two new dependency lines:

DPLDepend(pl unber Body)
DPLDepend(cust oner)

We wish to build two separate capsules so we define a list of objects needed to build the customer
and alist for the plumber. When an IDL is compiled by stubc three files of stub routines are generated:

B nxinterface nane>. ¢ - marshalling code
B s<interface nanme>. c - server stub code

B c<interface nane>. c - client stub code

A capsule which is a client of this interface will require the client stubs and marshalling code, a
server will need the server stubs and marshalling code. The customer uses the signal handling routines
and the plumber requires the service routines so we now know which objects will be needed for each of
our capsules:

CUSTOVER _OBJS = custoner. o plunber Signal.o nplunber.o cplunber.o
PLUMBER _OBJS = pl unber Serv. o pl unber Body. o npl unber. o spl unber. o

It isalso necessary to list the names of the capsule executablesin the PROG variable:
PROGS = pl unber custoner

Thelast thing to add isan entry to actually build our capsules; Si ngl ePr ogr aniTar get () takes
the name of the executable, followed by the list of objects and then libraries:

Si ngl eProgr anirar get (cust oner, $(CUSTOVER_OBJS) , $(LOCALLI B), \
$(LI BPATH) $(LI BS))

Si ngl ePr ogr anTar get (pl unber, $(PLUMBER _OBJS), $(LOCALLI B), \
$(LI BPATH) $(LIBS))

UKC ANSAWARE SURVIVAL GUIDE UKC COMPUTING FEBRUARY 1997

Now rebuild the makefilewithansamknf ,doamake depend towork out file dependenciesand
finaly do make to build the applications.

NOTE, nake depend informs nake of the relationships between source files so that it knows
what to recompile when you change things. These dependencies are added to the end of the Makefile so
you must do this after every ansanknf .

5 Debugging

One thing to note: when the compilation fails and gives you a line number that contains an error thisis
thelineinthe DPL file, NOT in the Cfile.

Running an ANSA capsul ethrough adebugger can beareal problem because of the macro-expansion;
PREPC inserts commentsinto the C filesit producesto show whereit has expanded codein the DPL file,
this makes debuggers get confused about line numbering. You can make the compiler drop code with de-
bugging information and convince PREPC not to insert commentsby adding theselinesto your I makefile:

CCFLAGS = -g
DPLFLAGS = -n

gdb does a pretty good job at handling ANSA code. When you debug a capsule you will be pre-
sented with the source code fromthe Cfile so you will haveto look at the DPL fileto work out where code
has been expanded. You will notice that most of the expanded code will call routinesin the marshalling
code or in the client/server stubs. Gdb should be able to find this source asit will bein the same directory
as the executable. You can find a gdbinit file for each ANSA versionin/ pr oj / ansal/ <ver si on>/
confi g/ gdbinit 3, copy thisto your home directory as .gdbinit to point gdb at the ANSA library
source.

6 Other Things to Know

The Trader supports more than just simple Import and Export operations. The Lookup operation alows
aclient to obtain alist of services which match a particular criteria, hereis an example:

LResult | ookup_result;
LPolicy policy = Lookup All;

I {l ookup_result} <- traderRef $Lookup("pl unber", CONTEXT, "", policy)

Herewe ask the Trader to giveusall theinterfacereferencesto plumber servicesin thegiven context.
What we get back is quite a complex structure and needs some explaining:

B | ookup.resul t. desi gnat or iseither F_S or S_Sindicating failure or success.
B Onfailure | ookup_resul t. u_F_Sindicateswhy the Lookup failed.
B Onsuccess, | ookup_resul t. u_S_S. | engt h ishow many interface references we got back.

B | ookupresult.u.S.S. data[O0].ifr_ref isthefirstinthelist of interface references.

See [APM93], section 3.11, for more details on the Trader.
It is often necessary to see if two interface referencesare identical. This can be done with

ansa_Bool ean ifref _cnpldentity(ansa_InterfaceRef *a,
ansa_|l nterfaceRef *h);

3<ver si on>is ANSAwar e. v4. 0 or ANSAwar e. v4. 1 on the research workstations, ANSAwar e. 4. 1. 1 on the snakes
and ANSAwar e. v4. 1 onthefish.

UKC COMPUTING FEBRUARY 1997 UKC ANSAWARE SURVIVAL GUIDE

which returnsansa_TRUE if both interface references refer to the same interface instance.

Thelast point to makeisregarding premeture termination of server capsules. |f aserver capsuledies
or iskilled without closing down properly, it's offer can remainin the Trader. A client may subsequently
import the interface reference associated with this offer and will then terminate with a bind failure when
it triesto invoke an operation on the interface.

This can be overcome by using Trcontrol (see later) to remove stale offers from the Trader after a
server has terminated abnormally.

7 Trcontrol - a Useful Tool

Treontrol isan X-based application that allowsyou to visually see the servicesregistered with the Trader,
as well as add and delete service types and trading contexts 4. The application is started by typing
trcontrol ; Figure 1 shows the application window.

Themain screen of Trcontrol isdivided into seven areas. At thetop isthe message window showing
the previous operations executed by Trcontrol, below thisis an input bar into which you can type. Next
are two large buttons which refresh the display and show the details of the Trader being managed.

The next row of buttons perform operations on the trading contexts that are shown in the window
below. Thetrading contextsare hierarchical andonesendingin®/” can beexpandedto reveal lower levels.
All normal ANSAwareuserswill haveatrading context below “/ansa/users/” or “/ansa/groups/”, followed
by their login — contact the ANSAware administrator if you do not have one.

Once atrading context has been expanded, you will see alist of the service offerswhich have been
exportedin this context. Once you have highlighted an offer, the operationson the“ Offers’ button can be
used to delete it or view it's details. Deleting servicesis useful for removing stale offers - when a server
has died but has not withdrawn it's offer from the trader. Importing and using this service will fail asthe
server is no longer around.

The bottom part of the Trcontrol display isabutton bar and a hierarchical display of thetypesregis-
tered with the trader. You can expand and move around the type hierarchy in the same way asyou doin
the context window. The“Add Type” option on the “ Type” menu can be used to insert atypein the part
of the hierarchy that is currently highlighted.

Oneword of warning, thereis no sense of ownership on offers, contexts or types which meansyou
are free to delete any ones you want. Be sensible and do not go around deleting other peoples offers or
trading contexts asthisis VERY annoying!

8 Exception Handling

The call that a client makes to a server may not always succeed; this may be because the server is no
longer running or because the server is unreachable due to a network problem. We don’t want our client
to fall over in a heap when this happens and would like to, at the very least, be told that a failure has
occured and have the client close down gracefully.

Thisis implemented using ANSA exception handling - we add an exception clause to each RPC
invocation, ie:

I {quote} <- plunberdient$GCGet Quote(problenm Continue ok Signal *

Thiswill let us know if the request failsfor ANY reason - [APM93], Section 3.7 explains how this
exception syntax can be used to indicate certain types of failure and not others ,though, in general, you
will find that you will use the above form more often than not.

The UK C stub compiler generates standard signal handlerswhen it compileswith the- g option (ie.
whenyoudoanmake si gnal s). Thedefault behaviour of thesehandlersistotry torelocatethe service

4Trcontrol is not yet available on the snakes, you will have to use the standard ANSA “trclient” program to query the Trader.

