
This is page 1Printer: Opaque thisIs the Quality of NumericalSubroutine Code Improving?T. R. Hopkins1ABSTRACT We begin by using a software metric tool to generate a num-ber of software complexity measures and we investigate how these valuesmay be used to determine subroutines which are likely to be of substandardquality.Following this we look at how these metric values have changed over theyears. First we consider a number of freely available Fortran libraries (Eis-pack, Linpack and Lapack) which have been constructed by teams. In orderto ensure a fair comparison we use a restructuring tool to transform originalFortran 66 code into Fortran 77.We then consider the Fortran codes from the Collected Algorithms from theACM (CALGO) to see whether we can detect the same trends in softwarewritten by the general numerical community.Our measurements show that although the standard of code in the freelyavailable libraries does appear to have improved over time these librariesstill contain routines which are e�ectively unmaintainable and untestable.Applied to the CALGO codes the metrics indicate a very conservative ap-proach to software engineering and there is no evidence of improvement,during the last twenty years, in the qualities under discussion.1 IntroductionThe last two decades have witnessed dramatic advances in the way we viewthe creation of software. Since software engineering was born in 1969 [BR70]an ever growing number of techniques have been put forward in an attemptto promote software production from an art to a science. For almost as longattempts have been made to quantify the quality of software. This has ledto a bewildering number of software metrics being proposed; an excellentreview of many of these may be found in the book by Zuse [Zus91]. Inaddition, a number of software tools have appeared which compute a variety1Computing Laboratory, University of Kent, Canterbury, Kent, CT2 7NF, UK.E-mail: trh@ukc.ac.ukThis paper appears in Modern Software Tools for Scienti�c Computing, ed. Arge,Bruaset, and Langtangen, Birkhauser Boston, 1997, ISBN 0-8176-3974-8. Reprintedwith permission.



2 T. R. Hopkinsof metrics for code written in most of the commonly used programminglanguages. Such tools include QAFortran [Pro92], QAC and QAC++, thenag metrics tool from the NagWare f77 tool suite [Num92] and the LDRATestbed [LDR].In this paper we use a small number of these metrics to investigatewhether we can detect an improvement in the quality of numerical soft-ware written in Fortran over the last twenty years. In section 2 we brie
ydiscuss these metrics and, in the following section, we look at how success-ful they are at identifying software modules that su�er from readability,maintainability and testability problems.We use the QAFortran tool to generate these metrics for the routines in anumber of public domain packages.We also note, in this section, that duringthe time spanned by these libraries, the Fortran language has evolved fromFortran 66 [ANS66], through Fortran 77 [ANS79] to Fortran 90 [ISO91].The additional control structures made available with each new code stan-dard means that it is unfair to make direct comparisons of the code metricsbetween packages without taking into account the version of Fortran be-ing used. In order to `normalize' the metrics we have only considered codewritten in Fortran 66 and Fortran 77 and we have used an automatic coderestructurer, spag [Pol93], to translate from Fortran 66 to Fortran 77. Met-rics from the restructured Fortran 66 codes may then be compared.The packages used in section 3 have all been produced by teams of re-searchers which have included wide ranges of expertise from software en-gineers to numerical analysts. To try to gauge how the quality of scienti�csoftware has varied among the community in general we consider the Col-lected Algorithms from the ACM (CALGO). These codes have been pub-lished since 1960 and are widely regarded as being state-of-the-art both inalgorithmic and coding terms at the time of publication. In section 4 wereport on how our chosen metric values have changed with time by consid-ering the Fortran routines that have appeared in CALGO since 1975.Finally, in section 5, we draw some conclusions from the results we havepresented.2 Software MetricsIn addition to the number of executable LinesO f Code (LOC) and the num-ber of explicit GOTO statements in a subprogram, we will also considerthree further metrics: cyclomatic complexity [McC76], knot count [WHH79]and a variant of the path count metric proposed by Nejmeh [Nej88].It should be noted that the metrics used in this paper have been chosento measure qualities of Fortran code although some of them may also be ap-plied successfully to other procedural languages. Object oriented languagesrequire a di�erent approach and there appears to be, as yet, no general



1. Is the Quality of Numerical Subroutine Code Improving? 3consensus on which metrics are most appropriate. A general discussion ofobject oriented software metrics may be found in Lorenz and Kidd [LK94].Cyclomatic ComplexityThe control graph of a program unit is a directed graph whose nodes arethe basic blocks of code and whose edges are directed arcs correspondingto the 
ow of control between the basic blocks. A basic block is a sectionof code which contains no transfer of control (for example, a sequence ofassignment statements). The cyclomatic complexity, V (G), is de�ned to bethe cyclomatic number of the control graph, i.e.,V (G) = Number of edges�Number of nodes + 1This may be shown to be equivalent to one more than the number ofpredicates (decision statements) used in the code and hence, we believe, it isa good indicator of the complexity of the underlying algorithm. This metricwas extended by Myers [Mye77] who suggested the use of a cyclomaticcomplexity interval to take account of the additional complexity caused bycompound predicates. The lower bound of Myer's interval is the cyclomaticcomplexity and the upper bound is de�ned as one more that the totalnumber of conditions appearing in the code.Cyclomatic complexity was originally advocated both as a measure ofthe testing e�ort required for a module and as an e�ective way of dividingsoftware into subroutines. Shepperd [She88] and Shepperd and Ince [SI94]have questioned the use of the metric for measuring testing e�ort as itappears to be extremely insensitive to the structure of the software. Theystate that this may be due to the fact that the measure is based on a lexicalrather than a structural view of the code.In the present paper the metric is used as an indicator that a piece ofcode would probably bene�t from being broken down into a number ofsimpler program units. McCabe [McC76] suggested a maximum value of10 for an individual program unit while Grady [Gra94], after analyzingthe relationship between the cyclomatic complexity and the number ofupdates required to each module in 830,000 lines of Fortran code, suggestsa maximum value of 14.Knot CountA knot occurs in a piece of code whenever the paths associated with twotransfers of control intersect (see Figure 1 for two examples). Code withlarge knot counts is generally extremely di�cult to read and understand.The number of knots is, therefore, a good indicator of code clarity.


