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Expert Systems—Rule Induction
with Statistical Data

JOHN MINGERS
Polytechnic of the Southbank

Rule induction has been proposed as a way of speeding up the acquisition of knowledge for expert systems,
Quinlan’s 1D3 algorithm has been used successfully but can only deal with determinate data. This paper
explores extensions to deal with statistical data.
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INTRODUCTION

In a previous article,' the use of rule induction in expert systems was discussed. This was based
on work by Quinlan,> who had produced an algorithm (ID3) to perform the process of rule
induction on very large sets of data. The data consists of a set of examples from some particular
knowledge domain. Each example has a number of attributes and can be classified into a particular
class. The algorithm attempts to find a tree of rules (in the form of IF.. THEN clauses) which
will correctly classify all the examples on the basis of their attribute values. Quinlan was working
with data which was deterministic—i.e. the data could be classified purely from the attributes—but
this paper extends the method to deal with stochastic data.

Stochastic data will contain a degree of random, chance variations within it as well as basic
relationships beiween the variables. The ID3 algorithm assumes that the data is determinate, and
so attempts to produce a rule tree able to classify every single instance. Some, if not most, of the
rules in the tree will be based on pure chance. The algorithm has no concept of statistical
significance, and so cannot distinguish between a significant and an insignificant improvement in
the information measure.

This difficulty has been identified by Hart,® who suggested using the chi-squdre contingency table
test in the place of the information measure. Hart’s reasoning is as follows:

The information measure (IM) is used to select attributes which are good discriminators within
the current set of data. The IM is actually calculated from a contingency table,' and since y* is
doing essentially the same thing—detecting the degree of association—it could replace the IM. This
would have two advantages. First, once the selected attribute was insignificant (at, say, the 10%
level), generation of that branch could be terminated. Secondly, it could take into account, via the
degrees of freedom, the number of possible values of the attribute. The more values, the more likely
an attribute is to discriminate well by chance, and therefore the IM tends to be biased towards
attributes with a number of possible values and against attributes with only two.

This approach was mentioned in the original work by Hunt er al.* on which Quinlan’s method
is based, and Quinlan has also looked at chi-square,” although as a complement rather than a
replacement for the IM.

This paper reports on investigations into these ideas; discusses the use of chi-square and its
problems; looks at alternatives and considers the statistical distribution of the information measure
and the (-statistic; and presents results of testing the system as well as measures of significance
for the resulting rule trees.

USING THE CHI-SQUARE TEST

The ID3 algorithm, with the enhancements mentioned previously,' was modified to calculate y*
instead of IM, and will henceforth be called ID5. Initial tests on small, deterministic problems
confirmed that it worked and generally generated the same or similar trees to the IM.
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Sample problem with noisy data

To test the use of x* on noisy data, the last two graduating years of the Business Studies degree
were used (see Table 1), with the aim of trying to predict students’ final grade of degree from certain
of the attributes they possessed when starting the course.

Initial runs were performed using y? purely as a means of choosing attributes—not of judging
their significance—on the two years separately and on the data as a whole. These runs were
compared with runs using the IM measuré. The general conclusions were first that both
methods produced extremely bushy trees, indicating little if any reduction in the data, though
identifying important rules. Generally, IM produced smaller trees than y*. Secondly, they both
produced similar trees, at least in the first few levels. Beyond these, however, the trees were quite
different.

Using ¥* to cut off the rule-tree

The next stage was to use the 2 value to cut off the tree when the best value at a branch was
insignificant. In the resulting tree, the leaves would no longer have items all of the same class. The
class of a leaf would therefore become probabilistic, based on the relative frequencies of the items
there.

To determine the significance correctly, an algorithm to calculate the probability of a particular
%2 value would need to be incorporated. The choice between attributes could then be based on the
smallest (i.e. most unlikely) probability, and the tree stopped when the probabilities were all greater
than the chosen significance level. Unfortunately, this would dramatically increase the run time of
the program. A second alternative is to incorporate a section of the y* tables for varying degrees
of freedom and significance levels, and have the program use these. This approach is adequate for
cutting off the tree but dees not allow for the selection of an attribute from a number with the
same level of significance if they have differing degrees of freedom. A third, approximate, method
is to modify the calculated x* value to take into account the degrees of freedom (v) by, for example,
working out the number of standard deviations away from the mean. This has the advantages of
being easily understandable and able to be used both for the selection of attributes and for cutting
the tree.

Problems with simple chopping of the tree

At this point, a major problem with the approach of stopping the generation of a branch when
there were no meore significant attributes became apparent. On looking at a whole tree, with the
x* values at each node, there were situations where a later node was significant, even though earlier
-nodes on that branch had not been. These later nodes would never have been reached because
generation would have stopped at the eatlier, insignificant nodes. The basic reason for this is that
some attributes really work together jointly. Either one, by itself, is insignificant, but taken together
they classify the data well. For example, in the following set of rules, neither Al nor A2 can, by
itself, classify the data at all.

TaBLE 1. Sample data for degree students
A-level O-level No. of Work

Age  Sex Qualification score  © maths O-levels exper. Degree
18 M A 8 C 7 N 2.2
18 M A 9 C 5 N 2.1
17 F A 6 C 7 N 2.1
21 M A 6 C 6 Y 22
19 M A [ C 8 N 2.2
ig M A 3 C 7 N 3rd
i7 F A 2 B 8 N 21
28 F B — C 5 Y 22
33 F &} — F — Y 22
20 M A 8 A 10 Y st
17 F A 9 B 9 N 2.1
17 M A 11 C 8 N 2.1

Notes: (i) Qualification (for entry) can be A-levels (A), BEC OND (B) or other (O}
(ii) O-level maths is the grade (A-C) or fail (F) or not taken {F).
(ifiy Work experience means significant experience, not just holiday jobs.
(iv} *—" means not relevant, e.g, A-level score if you have not taken A-levels.
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IF Al
=1 THEN IF A2
=1 :Classl
=2 :Class2
=2 THEN IF A2
=1 :Class2
=2 :Classl

This means that a more sophisticated approach is needed—pruning rather than merely chopping
off branches. This involves initially generating the entire tree and then, starting at the tip or leaf
of each branch, working backwards until the first significant node is found. That node will then
be kept. However, this does not mean that all the later nodes can automatically be dropped. Before
a node can be dropped, it is necessary to check all those nodes which come after it on various
branches to see if any of them are significant. If any are, the node must remain. In other words,
a node must be kept either if it itself is significant, or if any nodes on branches stemming from
it are significant.

This is part of the more general problem of dependence or relationships between the attributes.
The above situation is one of logical dependence, where the effects of attribute values depend
on prior attributes in the tree, and is dealt with successfully. This approach to rule induction,
however, cannot cope with rules involving functional dependence between the atiributes. For
example,

IF attribl = attrib2 THEN. . .
or
IF attribl = 2 x attrib2 THEN. . .

This is because it has no method of generating the possible functional relationships. This is a very
difficult problem, as there is an infinite variety of possible functional relationships between any or
all of the attributes, and it is not addressed in this paper.

Other difficulties with ¥?

The major one is that of statistical unreliability because of the small number of observations
involved in the lower levels of the tree. In generating the tree, the number of data items left
at any particular point gets progressively smaller until there may only be two or three awaiting
classification. The x? statistic is particularly sensitive to this, and it is not a problem which
can really be overcome, although Fisher’s exact test could be used when the frequency is
small. :

It was also found that using the normalized value certainly did correct the bias towards
multi-valued attributes to the extent that they were almost never chosen, and the tree became
extremely deep and even harder than normal to understand and interpret. This brings out the fact
that the statistic is being used to perform two different functions—first, the selection of attributes
in generating the tree and, secondly, judging their significance in pruning the tree. In evaluating
possible measures, these different functions have different criteria. For significance, it is purely the
statistical reliability of the measure which is important. In selecting attributes, however, wider
considerations come into play concerning how good or bad the resultant set of rules is as a whole,
and statistical reliability may be less important than other considerations such as understandability
or acceptance by the expert.

To summarize, the difficulties with y* were the production of significantly larger trees than with
IM; the extreme sensitivity to small, expected frequencies; and, particularly with the normalized
value, the favouring of two-valued attributes, leading to very narrow trees with many levels, This
led to a reconsideration of the IM—this too must follow some statistical distribution which would
enable it to be used for pruning the tree—and other alternatives.
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THE DISTRIBUTION OF THE INFORMATION MEASURE
AND OTHER ALTERNATIVES

Reference to Kullback® showed a statistic for contingency tables based on information theory.
Further, Sokal and Rohlf” discuss a statistic called the G-statistic, also based on information
theory. The relationships between these statistics, Quinlan’s IM, the ? test statistic and the y2
distribution were investigated. The details are shown in the Appendix. The main results can be
summarized as follows:

(1) Kullback’s statistic and the G-statistic are identical and will henceforth be referred to as G.
The distribution of G is a very close approximation to the x* distribution.

(ii) & is proportional to the IM—in fact,

G =2N x IM,

where N is the total number of observations. This answers the question about the distribution of
M. .

(i) The x* statistic itself only approximates the y? distribution as Sokal and Rohlf? shows
(p. 697). Morcover, Sokal and Rohlf shows that in the tails, the G statistic can be a better
approximation than the y? statistic.

(iv} & is approximately but not exactly equal to the y? statistic. Hart? is mistaken, therefore, in
suggesting that the x? statistic is equal to N times Quinlan’s IM (p. 119); rather, it is approximately
equal to 2N times IM.

As a result of the above, and the fact that G is less sensitive to small frequencies, it was decided
to use G in the algorithm rather than y*. It was further decided to use the calculated value without
normalization. Strictly, this is incorrect as it ignores the degrees of freedom and means that pruning
to a specified significance level will not be accurate. However, pragmatically the final rule tree as
a whole is what matters most, and those with multi-valued attributes were judged better. As for
significance, how should the correct level of significance (10%? 5%? 7.2%7?) be judged anyway?
Problems with small samples would be further improved by pruning the tree severely to ensure that
there were reasonable numbers at each leaf.

RESULTS

Data on business studies students

The attributes used and a sample of the data were shown in Table 1. The entire tree, with no
pruning, had 148 nodes. A pruned tree with a cut-off value of § is shown in Figure 1.

Clearty this pruned tree represents a tremendous simplification over the full one, but how sensible
is it and how can we evaluate it in general and in comparison with trees based on other cut-off
values? :

The first attribute chosen is qualification, and it suggests that those either with BEC or with
‘other” qualifications will get 2.2s, the ‘other’ being based on only three students, one of whom
actually got a first. For those with A-levels, A-level score is chosen next with a test value of 9 points.
Those with over 9 are predicted as 2.1. Those with less than 9 are then split on sex, females being
predicted as 2.2, males being analyzed further, but in all cases bar one still being predicted as 2.2.

Some of the rules seem sensible-—e.g. the rules concerning qualifications and A-level score—but
this tree illustrates a number of general problems.

(i) A number of the leaves are still based on a very small number of observations, despite the
heavy pruning—for example, the split into 2.2 or third with only three observations in each
case—and this would clearly have little or no statistical validity. This happens for different reasons.
First, because the statistic (whichever is used) is independent of the actual number of
observations—it only measures the split between them—it tends to favour situations which can be
reduced to only one class, even if there are very few cases. It would be preferable to favour
situations which were less dichotomized but with more cases. Secondly, it may be that there are
only a few examples of a particular attribute value—e.g. students with qualifications other than
BEC or A-level. '
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qualification 8.84
a : A jevel score 12,19
< 9: sex 10.23
m : 0" maths 7,99
a:22 10300
b : Q" levels 8.55
< 8:22 001400
2 822 03 8 20
c O levels 2.30
< 922 03 182¢0
2 9:0levels 8.32
< 10:ithid 01 0 20
= 1022 0ag300

foinull.

f:22 1915 00

2 821 0721¢0
b:22 0111 20

0:22 10 2 00

class right wrong total
first 0 3 3
2.1 7 17 24
2.2 74 2 76
third 2 7 9
fail 0 0 0

overall significance of the tree 58.42
No. of classes b No. of leaves 10

FiG. 1. Pruned rule-tree for degree data. The value after an attribute, e.g. qualification 8.84, is the G -statisiic.
The five numbers at each leaf are the number of students in each class at that point. The class chosen is that
with the greatest number.

Note that this occurs even with a reasonable total sample size. Using rule induction on
small amounts of statistical data cannot possibly give results that can be relied on any more
than any other statistical technique. For example, Brooks and Alty® induce rules concerning
students’ computing ability on the basis of 17 examples, most of the rules being based on
only one student. The generalizations they make from this tiny, unrepresentative sample
might easily gain more credence through the mystique of terms like expert systems and rule
induction.

(ii) In some cases, an attribute is significant, but when the classes are determined, the class is
the same whatever the attribute value. For example, with a ‘B’ at O-level maths, there is a further
split on number of O-levels (8 or more), yet both cases yield a 2.2, This cannot be avoided during
pruning but could be removed after.

(iii) With a pruned tree, it may turn out that no rules are generated for a particular class or
classes. For instance, in this example there is no rule for a first. This reflects an inherent
unpredictability in the data and the small number of instances.

(iv) How should the level of pruning be chosen? With insufficient pruning there will be many
spurious rules. With too much pruning the rule tree will be over-general. The next section deals
with this by defining measures of significance for a tree,
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Measuring the significance of the resulls

The trees can be evaluated statistically in terms of both the significance of the tree as a whole
and its predictive ability. Taking the first point, the observations at all the leaves can be taken
together as one large contingency table, with a row for each leaf and a column for each class, since
the various leaves split the data exhaustively and exclusively. The G -statistic can then be calculated
for this table as a measure of the significance of the tree as a whole. In the above example, its value
is 58.42, Table 2 shows the significance of trees generated from this data for different cut-off values.

These results show first that the trees can be extremely significant (at the 0.1% level), and
secondly that the significance varies with the degree of pruning. With little pruning, the large
number of leaves is based essentially on chance, while with a high level of pruning, the ability
to classify the data is small. In this example, the most significant trees are for cut-off values of
6 or 8. '

It is also possible to assess the significance of the number of correct predictions which the tree
makes. In this example, 83 out of 112 were correct. How much better than chance is this? Each
prediction can either be true or false, and the predictions are independent, so the number of true
ones should follow the binomial distribution. What will be the probability of success by chance?
That depends on how much chance knows to begin with. If we assume no knowledge at all, then
each class would be equally likely and the probability of one successful prediction would be 1/4
(ignoring the fail class with no examples). However, the classes are not at all equally likely, and
it seems a fairer test (and more consistent with the contingency table) to at least assume knowledge
of the proportion of each class. On this basis, i.e. assuming that the chance predictions are made
in the same proportions as the actual data, then

Prob (successfully predicting a 3rd) =
Prob (student being a 3rd) x Prob (prediction being a 3rd)

=Py x Py
= (P 3 )2-
Similarly, for the other classes, so
Prob (successful prediction) = %(P;)* [t =322 21, 1]
= (3/112)* + (24/112)* + (76/112)* + (5/112)
=0.51.

So on this assumption, the number of successes will follow a binomial, with n» =112, p = 0.51.
This is approximately normally distributed, with p = 57.1, 6 = 5.3. Table 3 details the results for
various cut-off levels. ’

There are two points to note. First, each level is strongly significant, but this takes no account
of the number of leaves in each case. Secondly, to put this in perspective, if the only rule were that
everyone got a 2.2, then 76 predictions would be correct.

TabLE 2. Significance of degree daia rules

Significance levels

Cut-off No, of Degrees of —_—
level leaves freedom G-statistic 5% 1% 0.1%

0 61 180 196 212 29 244

2 60 177 194 209 224 241

4 28 81 113* 103 114 126
o 11 30 65%** 43.8 50.9 9.7
8 10 27 Spxx 40.1 47.0 35.5
10 5 12 JP* 21.0 26.2 32.8
12

4 9 21% 16.9 21.7 279

TaBLE 3. Significance of degree predictions 1984
112 students p="57.1 o=353

Cut-off No. of Successful
level leaves prediclions Z-5C0TE
2 . 60 110 9.9
6 1 84 50
8 1¢ 83 4.8
12 4 ) 81 4.4
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TABLE 4. Significance of degree predictions 1985
67 students p =297 o =4.1

Cut-off Successful
level predictions z-8core
2 27 - =08
6 33 1.2
8 35 1.2

Testing the rule tree

Clearly, it is best to test predictive systems on a separate set of data, and this was done using
the 1985 students’ results, There were 67 students—2 firsts, 23 2.1s, 38 2.2s and 4 thirds.

The probability of a successful chance prediction is therefore 0.44 (calculated as above). Using
the above rule trees on this data produced the results shown in Table 4.

These resulis are obviously disappointing as they are not statistically significant. The set of rules
which was best at explaining the 83’84 data has not managed to produce more correct predictions
than would have been produced by chance. This reflects the lack of a stable pattern in this very
noisy data. One of the main rules was that those with 9 or more A-level points should get a 2.1.
On inspecting the ’85 data, there were #o students with 9 or more points, so the rule was useless
for that data,

When a rule tree was developed for the 1985 data, it was quite different from the 1984 one. Even
the first attribute chosen changed from qualifications to O-level maths, The problem is not peculiar
to this approach but is implicit in any inductive method, e.g. multiple regression, where it is
common that good explanatory systems are not good predictors. The question is whether rule
induction is better or worse than other methods.

In summary, the use of the G-statistic and tree-pruning has been demonstrated, and measures
for the significance of the resulting tree and the number of successful predictions have been
developed. That the predictions have not been successful in this case is largely a function of the
data, but it would be interesting to known if a more traditional technique, such as multiple
regression, would have done better.

CONCLUSION

This paper has developed and explored extensions to D3 to enable it to deal with stochastic
data, following on from suggestions by Hart. It has been shown that:

(i) Statistical data can be analysed using y? instead of the information measure. However, it has
been found better to use the G-statistic-—another measure based on information theory. The
relations between these various measures are set out.

(i) It is not adequate to cut off a tree when a branch becomes insignificant during its
development, as both Hart and Quinlan suggest, in case it should be significant further on. It must
instead be developed fully and then pruned back. Even then, simply pruning to some specified
significance level generates trees which are not totally satisfactory.

(i) Measures of significance both for a rule tree and for predictions made from a tree have been
developed, and these enable different trees with different levels of pruning to be compared.

There remain, however, difficulties in using rule induction. The problems specifically concerned
with using statistical data have been discussed in the last section. The most important of these is
that of statistical reliability, as some of the rules may be based on a very small number of cases,
even when there is a large amount of data in total. If there is only a small amount of data, there
is no more value in using rule induction than any other statistical technique. Problems concerning
both statistical and determinate data include:

~——discovering rules involving functional relationships between the atiributes;

—the difficulty of understanding and interpreting rule trees in their standard form;

—the question of an ‘optimum’ rule tree—would this be the smallest, the most efficient,® the most
easily understood, the expert’s choice, or what?

—the selection and development of suitable attributes in the first place,
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Thus the potential of rule induction to deal with statistical data has been demonstrated, and the
degree of success warrants further investigation. This does not mean, however, that it is a panacea
for knowledge acquisition—it will always be limited by the quality and amount of data available;
it still requires & good deal of expert time to supply the attributes and examples, and to validate
the rule tree; and it will only really be suitable for fairly straightforward, well-defined domains.

AREAS FOR FURTHER RESEARCH

(i) More tests on other sets of data, preferably with differing degrees of noise. Also, comparisons
with other statistical techniques such as multiple regression, discriminant analysis and
categorical/classification methods.'™"

(i) Methods for more intelligently pruning the tree, or post-processing it, to avoid redundant
tests, taking into account the relative strength/reliability of the various rules, and displaying them
in a more appropriate form.

Acknowledgements—I would like to thank Mike Parker and anonymous referees for help and comment.

APPENDIX

Relations Between the Information Measures and ¥*

Given that we are considering the association between one attribute and the class, the data (or
subset thereof) can be set out in a contingency table:

Class
cC, G C. | Totals

A, Xy X2 X1,

Attribute A, Xy Xy X,
values

Xy
A, X,
Totals X, X, X, N

where x; is the number of examples in class j with attribute value .

Quinian’s Information Measure

Using notation from Quinlan,? the information content of the class totals as a whole is

X
M(C)=—E"logﬁ‘—w'log—N~...

1
=% (Zx;log x;— N log N).
The information content for ths row 4, is

M(d) = —%llog%—%log%—
1. 1. 1. 1.

and similarly for the other values of A4.
Taking an average of these A values weighted by the frequency of occurrence of each (the row
totals) gives

X X
B(CIA)-—-TVI—' M(A,)+ﬁ M(A) + . ..
1
=—% (ZZx;log x;— Zx; log x; ).
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The information measure is then defined as the gain in information brought about by knowledge

of the attribute

I=M(C)—B(C|4)

1
= v (ZZx;log x, — Zx; log x; — Zx,logx;+ Nlog N). )

Kullback’s Information Measure
Using notation from Kullback,® Table 2.1, p. 158,

Nx,
=2x¥x..1 g
H{A, C)=2ZEx;log Py

= 2(XXxylog x; — Zx; log x, — Zx log x ;+ N log N)
=2NI substituting from (1).

Thus Quinlan’s measure is

H(A, C)
2N

The G-Statistic

From Sokal and Rohlf’, Box 17.6,

G =2(ZEx;logx; — Zx; log x, — Zx log x;+ N log N).

It can be seen that the G-statistic is the same as Kullback’s information measure H (4, C).

The y*-Test
This is the most common measure for contingency tables:

BV
xzﬁZZ(ﬂEﬁi,

¥

where

Ey= x;'\fj-

Kullback® (p. 159) shows that his measure, I (4, C), is approximately but not exactly equal to

this.

B e

el ey

10,
1.
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