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Expert Systems—Experiments with
Rule Induction

JOTIN MINGERS
Polytechnic of the Scuthbank

There is currently much interest in the development of expert systems. Knowledge acquisition—developing
the knowledge base from an expert—is one of the most time-consuming aspects of the process. Work is
under way on methods of automating this procedure, one of which is rule induction from a set of examples.
This paper introduces rule induction and evaluates some of the practical difficulties.
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INTRODUCTION

Recently, there has been much interest in and development of expert systems both outside and
inside O.R. From a specialized and esoteric area of artificial intelligence in the 70s, the field has
blossomed to the extent that there are now many generalized expert systems or ‘shells’ available,
even for microcomputers. This paper reports on some work done in a particular area—rule
induction—both to demonstraie its potential and to illustrate some of the difficulties and
limitations of one particular approach to rule induction.

After introducing expert systems and the idea of rule induction, the paper will explain the
workings of one particular method—the ID3 algorithm by Quinlan'—and outline the major
problems with it. Some of these will then be taken up in detail. The domain of statistical significance
tests will be used as an example.

EXPERT SYSTEMS AND RULE INDUCTION

General introductions to expert systems are by now fairly common.” In brief, an expert system
is a computer program in which the knowledge of a human expert, much of which may be tacit
and practical rather than explicit and theoretical, has been systematically reconstructed. The expert
system can then be consulted by a non-expert user, and should be able to offer advice based on
the knowledge in the system and further information obtained from the user. The system should
be able to explain why it took certain actions or decisions, in a way that the user can understand.
Clearly, the decisions made by the expert system should be similar to those the expert would have
made. There are various ways that the knowledge can be represented in the program, the most
common being in the form of a system of production rules.

One of the most difficult and time-consuming stages in the development of an expert system is
the elucidation, from the expert, of a comprehensive and consistent set of rules—knowledge
acquisition. Coding these rules in an expert system shell is relatively straightforward. Work has
been done on developing automatic methods for doing this,® although it is fair to say that they
are only beginning to deal with an extremely difficult problem. This paper is concerned with one
of these methods—that of inducing rules from a set of examples or cases.

THE TD3 ALGORITHM

Explanation of ID3

Each item in the set of examples can be classified as a member of a particular category. The
problem is to establish a set of rules which will correctly classify the items, and others like them,
in an efficient manner. To do this, the expert decides on relevant attributes for the items, and the
rules relate the values of these attributes to the categories.
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TasLy 1. Data for significance tesis

Attributes Category
No. of Sample Normal Known Paired  Equal
samples  Scale size distr, 8D samples 5D Test
1 int large — — e — Z -test
1 int small Y Y — — Z-test
1 int small Y N — — {-test
1 int smuall N — — — sign-test
2 int large — — — — Z -test
2 inl small Y Y — — Z-test
2 int small Y N Y — paired-¢
2 int small Y N N Y 1-test
2 int small Y N N N U-test
2 ini smal] N- — N — U-test
2 int small N — Y — Wilcoxon
3 ord — — — — — Kruskal
2 ord — — -— N — U/ -test
2 ord — — — Y — sign-test
—Null value.
Notes:

(i) The set of cxamples has been carefully selected Lo cover the different
possibilities, rather than being selected at random:.

(2) The attributes are u mixture of numerical, logical and nominal.

(3) The null values cccur either because the atiribute is meaningless in that
particular example (e.g, are the samples paired when there is only one
sampie?), or because the atlribute has meaning but the value is irrelevant
(e.g. with 2 large sample, it does notl matter if the SD is known or not).

An example should make this clear. In statistics there are various different significance tests for
a sample mean, depending on the characteristics of the sample(s) of data—i.e. the number of
samples, whether the data is ordinal or interval, whether the sample is large (= 30) or small,
whether it is normally distributed, whether the standard deviation is known, and, if there are two
samples, whether they are paired and whether the standard deviations are equal. Here, these
characteristics are the attributes and the appropriate test is the category. The induced set of rules
should enable the correct test for a particular sample of data to be determined. The data for this
example is shown in Table 1, although not all the possible types of significance test are covered.
Two sets of trees of rules, generated from this data, are shown in Figure 1(a) and {(b).

{a) 13}
saaples scale
ang i5size ordinzl :rsamples
small [noraal {3 :paired
y isd y +SIBN-TEST
knows ;Z2-TEST n o U-TEST
unknown iT-TEST 323 IKRUSKAL-WALLIS
n ISIGN-TEST interval :samples
large [2-TEST {1 Issize
tup :scale ssall apraal
ordinal :paired y sd
¥ rSIGN-TEST known 2Z-TEST
n o CU-TEST unknowy 3 T-TEST
iMerval Issize h 1SIGN-TEST
small :noraal large (Z-TEST
y rsd }=2 issize
known 1 Z-TEST . saall  Inoraal
unkaown Ipaired Y isd
y +PAIRED-T known IZ-TEST
n lsd’s usknown Ipaired
equal  :T-TEST y iPAIRED-T
' unequal :U-TEST n sd's
» ipaired equal  :T-TEST
y HILCOXON ugequal :U-TEST
noiU-TEST n paired
Large :Z-TEST y WILLOXON
aore KRUSKAL-WALLIS n U-TEST

large (Z-TEST
FiG. L. Rule trees for significance tests.
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The basic rule induction algorithm is explained in Quinlan.” It is limited in that it deals with
only two classes and will not accept numerical attributes—only nominal or logical ones. 1t works
as follows:

(1) Take each attribute in turn, and calculate a measure of how well the values of the attribute
split the data into their classes. The measure used is of particular importance and will be
explained below. Ideally, each attribute value would only be associated with one particular
class, and the data would thus be classified. At worst, the classes may be equally spread
between the attribute values, that attribute therefore providing no help.

(2) Choose the best attribute and partition the data according to the values of the attribute.

(3} For each partitioned set, repeat steps 1 and 2 until all the data is correctly classified or no
more attributes are available because they have all been used along a particular branch. In
this case, a new attribute would be needed to classify the data correctly.

{(4) Quinlan was working with very large sets of data (hundreds of thousands) which could not
all be dealt with at once, and so had a further loop, in which rule trees were refined by using
different sub-sets of the whole data, but this does not really concern us.

Of prime importance is the measure used to evaluate particular attributes, and this is based on
Shannon’s ¢lassic work in information theory.®

Suppose we receive one message {rom a set of # possible messages. How much information does
this contain?

If they are all equally likely, then the greater the number of possibilities, the more information
the receipt of a particular one will provide. A convenient measure for this information content is:

H =log(n).

The base of the log determines the units of measurement, e.g. log, gives bits, log;, gives digits.
So one digit out of the 10 possible has an information content of

log,(10) = 3.32 bits or log,,(10)=1 digit.
If the messages are not equally likely, then a more general form is

H = —KY p/log(py),

where K is a constant to do with the units which can be set to 1, and p; is the probability of the
ith message.

This has a minimum value of zero if there is only one possible message, and a maximum value
of log(n) if all messages are equally likely—the situation of maximum information gain.

The measure is used in ID3 in the following way.

To measure the power of a particular attribute in classifying some set of the data, a contingency
table can be formed. The following is an example for the attribute ‘sample size’ in terms of just
two classes.

Class
Z-test  ¢-test
Attribute
Sample  Small 2 2 4
size
Large 2 0 2
4 2 6

How well does knowledge about sample size discriminate between a Z-test and a /-test in
comparison with the other possible attributes?

Using Quinlan’s notation, where M and B represent amounts of information and C represents
class, and using the relative frequencies as estimates of the probabilities, we can calculate as follows:

The information needed to classify the data without knowledge of the attribute ‘sample size’ is

M(C) = — 4/6log (4/6) — 2/6 log (2/6)
M(C) =0.636514.
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Suppose that the atiribute value was known. If it were ‘small’, then how much information is
necessary?

MA(C |small) = —2/4log {2/4) — 2/4log (2/4) = 0.693147.
Similarly, ‘

M (C|large) =0 (since it is then definitely a Z-test).

Taking a weighted average of these two gives a measure of the information needed given the
attribute in general:

B{C |sample size) = 4/6+0.693147 + 2/6+0.0 = 0.462098.
Finally, the expected information gain, given knowledge of sample size, is
M (C)— B(Clsample size) = 0.636514 — (.462098 = 0.174416.

This is calculated for each of the possible attributes and the greatest one chosen at that par-
ticular stage. This particular example has used natural logs, but this has no effect on the ordering
of the attributes, and the procedure is easily extended to more than two classes or attribute
values.

Evaluation of ID3

The original motivation for Quinlan’s work was to find a small set of rules which could classify
as many as possible of a very large set of known examples. In this, ID3 was very successful. Looking
at a particular chess ending (rook vs knight) in which positions can be classified by an expert as
lost or not within, say, three moves, there is a total of 1.8 million possible positions, of which
474,000 are lost. Few general rules were known to describe all these particular examples, but ID3
found, in a matter of a few seconds, a rule tree of just 88 leaves which could account for every
instance. Determining the 49 attributes to use, however, took Quinlan 2 months!

Within O.R., the possible applications of this method would seem to have a rather different
emphasis from that of efficiently classifying extremely large data sets. There are two main areas:
first, knowledge which is fairly determinate but is not available in a form appropriate to incorporate
in an expert system, e.g. practical knowledge in someone’s head or complex procedures, rules or
laws; secondly, probabilistic information where data could be collected and the rules extracted
which best explain this data in a way analogous to the use of multiple regression.

The major problems

Taking the basic 113 algorithm as a starting point, there are a number of difficulties as far as
its practical use is concerned:

(1) The algorithm cannot deal with numerical attributes, only with logical or nominal ones.

(i) It is very difficult to decide whether the set of examples and resulting tree are both correct
and adeguate, particularly since different trees can easily be generated from the same data.

(iit) The algorithm assumes that the data is completely deterministic and has no contradictions
in it. Faced with stochastic data, it produces enormously bushy trees in an attempt to classify
every single item. Can it be successfully extended to deal with stochastic data, and what is
the validity of the results?

(iv) The rule trees are difficult for humans to interpret and understand and therefore check. Can
they be post-processed in some way to overcome this?

(v) The algorithm does not guarantee to find the best rule; and indeed, what might ‘best’ mean
in this context—the most efficient, the smallest, the most easily understandable?

The rest of this article will examine the first two of these problems, Current work on the others
will be mentioned under “Further Rescarch™.
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EXPLORING THE PROBLEMS OF ID3

The following work is based on programs written in Pascal and developed on both a DEC 10
and a BBC micro.

Using numeric attribules

As it stands, the algorithm will only allow logical or nominal attributes, so that each one has
only a limited range of known values. Obviously, in O.R. we need to deal with numerical variables
(i.e. attributes), either integer or real. In fact, since real values can be made integer to the desired
number of significant digits with appropriate scaling, it is only necessary to deal with integer
attributes.

This still creates a significant combinatorial problem. An integer attribute may have a large range
of possible values, and it is necessary to determine the best set of one or more break-points within
this range to split it up into sub-ranges. One way round the problem entirely is to get the expert
to specify the appropriate ranges and thereby effectively make the attribute a nominal one.
However, it would be more useful, particularly in uncertain situations, for the system to work out
the best possibilities itself from the actual data. Tn this case, it must be done not just once but every
time the attribute is evaluated within the tree, as the actual data available at each branch will differ.

To give an idea of the computational scale of this problem, consider an attribute with values
in the range 100-200. It may well be that not all of these possible values occur-—say there are 30
actual possibilities, including the end-points. To split this into just two ranges, 28 possibilities (i.e.
30 less the end-points) need be considered. To split it into three ranges, two break-points are
needed. There are *C, (378) possibilities, and to split it into four ranges there are *C; (3276)
possibilities. Allowing for five ranges gives 20,475—a total of 24,157 in all. Each of these
possibilities has to be evaluated in terms of the information measure, as if it were an attribute in
its own right, at each point in the tree. This would increase the run-time by the order of thousands.

Some attempts were made to pre-analyse the data in some way to pick out the most promising
ranges of values, but examples could always be constructed where they missed out the best
possibilities.

In the end, the only way forward was to restrict consideration to the case of only two ranges
of values—i.e. only one break-point-—thus giving 28 possibilities to examine in the above example.
Although this may seem a major restriction, in practice it is not, because the effect of a number
of ranges can be maintained by aflowing the same integer attribute to be used repeatedly down
a branch of the tree. For example, suppose an attribute is first split into the ranges 100 < 135 and
135 < 200. Following the first branch, the system may subsequently choose that atiribute again and
split it into 100 < 115 and 115 < 135, so that within the tree as a whole, the attribute has actually
been split into ithree ranges. This is not to say, of course, that the same three ranges would have
been chosen if it were allowed to consider them all at once. Examples of this will be discussed below.

Assessing the correctness and adequacy of rule-trees

After producing a rule-tree from a sel of examples, the problem is to assess the validity of the
tree. There are two different dimensions involved here—first, its correctness, and secondly, its
adequacy.

A rule-tree is correct if the rules in it are judged by the expert not to be in errof. This is mainly
a matter of developing an appropriate set of attributes, ensuring that there are no mistakes in the
data and resolving any contradictory examples. The main problem is the difficulty of actually
comprehending and fully grasping all the rules embodied in the tree, because this is not a very
natural way for humans to think. People would generally tend to group together rules giving similar
outcomes; for example:

Do a Z-test IF (interval data AND large sample)
OR (interval data AND small sample AND standard deviation known)

Here, the ANDs are going along a branch, while the ORs are combining across branches.
However, having a tree which appears to be correct does not necessarily mean that the tree will
actually be adequate for the real problem domain, nor even that it will be the best or only tree
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to fit that particular set of data, A rule-tree will be adequate only if it can deal correctly with al
the possibile situations it might have to face. Yet this can never be guaranteed, since the data on
which it is based will inevitably be only a sample of all the possibilities. There will almost certainly
be particular combinations of the various attribites and their values which are not thought of and
made explicit. It is not easy to spot these combinations by examining a single tree, as they often
involve fairly subtle distinctions. One helpful approach is to compare two or more different trees
generated from the same data. It is quite easy to generate different trees in a number of ways. In
the algorithm, the attributes to branch on are chosen by the information measure but could be
chosen by any method—even randomly. The resulting trees would be inefficient but would still
correctly classify the data.

The sorts of possibilities which can easily be missed will be demonstrated with rule trees
generated from the significance test data. The rule trees are shown in Figure 1(a) and (b). The
reason for the difference between these two is that in Figure 1(a) the attribute ‘number of samples’
was treated as nominal with the values one, two or more, whereas in Figure 1(b) it was treated
as an integer attribute with a range of values 1-3. These rules have been induced from the data
like a decision tree. To decide which significance test to use with a particular sample of data, the
rules [in Figure 1{a)] suggest first checking how many samples—one, two or more. If there is one
sample, check the sample size—small or large. If the sample size is large, then a Z-test is
recommended; otherwise check if the distribution is normal and so on.

The difference in treatment of the ‘number of samples’ attribute has led to quite different trees.
With size treated as nominal, it has three values and is chosen as the first test. When treated as
integer, however, it has only two possible values (< or =) and is no longer chosen first. This is
because the information measure tends to be larger the more rows or columns there are in the
contingency table (like the chi-square test to which it is related). This leads it to be biased in favour
of attributes with a greater number of possible values. Notice that different sub-ranges have been
chosen in the ‘ordinal’ and ‘interval’ branches of the tree.

At first sight, either of these trees seen by itself appears correct, but in fact both have limitations,
as shown below. The difficulty is in fully comprehending the implications of the tree.

(i) In (a), the Kruskal-Wallis test is selected if there are more than two samples, without
checking that the data is ordinal, whereas in (b) it can only be chosen if the data is ordinal.
This is because there is only one example of more than two samples, and so it can be
classified without reference to any other attributes.

(it In (), where there is only one sample, the Z-test and z-test could be selected without
checking that it is interval data. This is because all the one-sample examples are interval
data, so the scale attribute does not distinguish between them. In (b), where scale is the first
attribute, this problem does not arise.

(iii) In (b), if the scale is ordinal and there are less than three samples (i.e. one or two), it checks
whether the samples are paired. This clearly makes no sense if there is in fact only one
sample. Again, this is because there are no examples of one-sample ordinal data.

All these demonstrate the same points. A tree by itself might well look correct at first sight, but
on closer inspection may not cope with all situations in the right way.

CONCLUSIONS

This paper has introduced the idea of inducing rules from sets of examples in order to speed
up the development of knowledge bases in expert systems. Based on Quinlan’s ID3 algorithm, this
approach doees efficiently produce logically structured sets of rules, However, there are significant
problems with the approach as it stands:

(i) It is difficult to ensure that a set of rules induced from a sample of particular instances is
adequate for dealing correctly with its entire domain of application, even in well defined
domains where there is no noise in the data. First, a rule tree can only take account of the
actual examples it is given, and it can be very difficult to detect any shortcomings in the
data set from a single tree, not least because it does look so logical. Secondly, even with
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a comprehensive set of examples, different trees can be generated correctly from the same
data, and these will classify certain instances not included in the actual examples differently.
Having more than one tree helps in the process of spotting holes in the data but by no means
guarantees the results.

(iiy TD3 will only work satistactorily with deterministic data, and yet this is relatively rare within
the practical world of O.R. Work has been done on this area, both by Quinlan® and Hart,'®
in trying to reduce the very large, bushy trees which are produced. Further results in
extending TD3 to deal with stochastic data will be reported in a future paper.

(ii1) Rule trees, while appropriate for use in computer systems, are not easily understood by
humans—certainly not in ferms of their detailed implications. This contributes to the
problem of assessing their validity, and limits their use outside computer programs—for
example in manuals or for stimulating discussion or ideas.

Nevertheless, this is an interesting and potentially useful area worthy of future research.

AREAS FOR FURTHER RESEARCH

(i) Rule induction, in general terms, is a method for discovering undetlying relations in sets
of examples. As such, it should be comparable to well known statistical methods such as
multiple regression and, more particularly, discriminant analysis. It would therefore be very
useful if studies could be undertaken comparing induction with these methods to discover
if it is comparable or even better, and if so, under what conditions.

(ii) To help with the problems of rule validity, methods for assessing the reliability of a rule
tree should be explored—for example, special test data such as actual examples from the
situation, randemly generated examples or even an attempt at systematically testing all the
possible combinations of attribute values.

(iii) The fact that different trees can correctly represent the same data raises the question of whether
one i8 better than another. Is it 2 matter of size or efficiency—the fewer branches and leaves
the better? Or is it that the tree should match the expert’s way of thinking, or that it should
be the most easily understood, or that there should be some quantitative measure?

(iv) The information measure used by Quinlan is only an heuristic—other simpler ones are used
by Hunt et al.'' in their original work, and there are also statistical measures such as
chi-square that perform the same function. How do these all compare with each other? Also,
are there are more efficient ways of choosing the ranges for numerical attributes?

{v) Finally, methods of making the rules more transparent are needed. This could be either by
post-processing the rule tree and re-arranging the rules so that they are more easily
understood, or by structuring the way they are generated in the first place. Some work has
been done in this latter area by Michie and Shapire which they call structured induction.'*!?
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