University of

"1l Kent Academic Repository

Taylor, Chris, du Boulay, Benedict and Patel, Mukesh J. (1991) Outline
Proposal for a Prolog Textual Tree Tracer' (TTT). Technical report. UoS

Downloaded from
https://kar.kent.ac.uk/21008/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21008/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Outline Proposal for a Prolog
‘Textual Tree Tracer” (TTT)

Chris Taylor, Benedict du Boulay and Mukesh J. Patel
School of Cognitive and Computing Sciences
University of Sussex

10th January 1991

Abstract

This document constitutes an outline specification for a new tracer
for Prolog, the design of which has been guided by an evaluation of the
relative strengths and weaknesses of a number of existing Prolog trac-
ers. The new tracer, known as the ‘Textual Tree Tracer’ (or ‘TTT’ for
short) will produce a ‘sideways tree’ representation of the execution of
a goal, using only textual output, i.e. it will not require the use of any
specialised graphics. Its key features include the following: a compact
and yet very informative basic form of output, which distinguishes clause
matching events, and several different goal failure modes; clear display
of the structure of computation and the flow of control, via the use of a
tree representation; extensive use of default controls to limit the quantity
of trace output produced; the facility of retrospective inspection of ear-
lier parts of the trace, in order to obtain more detailed information; and
a specialised ‘database window’ which facilitates correlation of the trace
with the source code, and shows dynamically any changes to the database
resulting from the assertion or retraction of clauses.

Contents

1

2

Background 3
Tracer design considerations 3
2.1 General tracer typeso e e 3
2.2 Design principles 4
Comparison of three existing tracers 5
3.1 General tracer type 6
3.2 Explicit information provided 0oL 6
3.3 Facilities and optionso 6
3.4 Adherence to design principleso 6
3.5 Some other characteristics 0. 7
Specification of an improved tracer 8
4.1 General concept L. 8

4.1.1 Database window., 9

412 Helpwindow. L 10

4.1.3 Tracewindow. 10

4.1.4 Input/output window or windows. 10

4.1.,5 Control of the tracer. 10
4.2 Underlying structure of the trace 13
4.3 Basic symbolismused oL 14
4.4 Basic traceoutputo Lo 16
4.5 Default controls on trace output 47
4.6 Display of extra information o000 54
4.7 Handling of assertion and retraction 62
Summary 69

1 Background

This proposal arises in the context of a research project currently in progress
at the University of Sussex, entitled “Explanation Facilities for Prolog: Towards
More Versatile Intelligent Tutoring Systems”, which is funded by the Joint Re-
search Council’s “Human-Computer Interaction Initiative”. One of the stated
aims of that project is the re-implementation of a Prolog tracer called the “Ex-
tended Prolog Tracer for Beginners” (EPTB), written in prototype form by
Christo Dichev and Benedict du Boulay (see [Dichev & du Boulay 89]). How-
ever, the project has also involved the investigation of other existing tracers,
notably the “Transparent Prolog Machine” (TPM), a graphical tracer produced
originally by Eisenstadt and Brayshaw, currently at the Open University (see
e.g. [Eisenstadt & Brayshaw 88]), and the standard 'Byrd box’ or ‘spy’ tracer
(see [Byrd 80] and [Clocksin & Mellish 81]). Experience in using the EPTB
tracer and a commercially available version of the TPM tracer has suggested
that the original aim of re-implementing the EPTB should be replaced by the
aim of implementing a new tracer which incorporates good features from both
the TPM and the EPTB, whilst overcoming some of their deficiences. Accord-
ingly, this report constitutes an outline specification for such a tracer.

2 Tracer design considerations

2.1 General tracer types

In this section, some informal criteria are suggested for describing Prolog
tracing tools.

Textual/graphical. A textual tracer is one whose output consists only of
alphanumeric and other keyboard characters; whilst a graphical tracer is one
which makes use also of graphical devices such as boxes, circles, and connecting
lines, and which requires the use of a graphics workstation. Textual tracers
include the spy, the EPTB, the APT (Rajan86) and the PTP (Eisenstadt84).
The latter two of these, whilst not graphical in the full sense, use visual tech-
niques such as highlighting to augment certain aspects of the textual display.
Graphical tracers are exemplified by the various versions of the TPM. See also
DewarANDCleary86 for an account of an earlier tracer using graphical tech-
niques.

Linear/non-linear. A tracer is linear if its output proceeds in a simple se-
quential manner, with each new item of the trace immediately following the
previous one (apart from any ‘white space’ or punctuation characters which
may intervene) in the display window — usually in a left to right, top to bot-
tom order. By contrast, a non-linear tracer is one in which the cursor may flit

around the screen, adding new symbols in the middle of the trace output as
currently displayed, as well as at its end. The spy and the EPTB are examples
of linear tracers, whereas the TPM is an example of a non-linear tracer.

Indented /unindented. A tracer is indented if it makes use of indentation
from an edge of the display window — usually the left-hand or top edge —
to encode information about the computational depth of goals; otherwise, it is
unindented. The PTP and the TPM use indentation, whilst the EPTB and the
spy do not.

2.2 Design principles

As with design in general, the design of a Prolog tracing tool ought to be
preceded by an attempt to formulate some design principles. A number of such
principles are now proposed. For an earlier set of design principles similar in
some respects to these, see for example [Rajan 90].

Use of meaningful symbolism. Tracer output should make use of sym-
bolism whose meaning is readily apparent, or easy to comprehend, e.g. by us-
ing mnemonic abbreviations: the use of totally abstract symbolism should be
avoided as far as possible.

Correlation of trace with source code. The tracer should be designed so
as to enhance the ease with which the trace output can be correlated with the
source code of the program being traced.

Purity of trace. The trace output should not incorporate anything which is
not part of the trace itself, such as for example commands input by the user, or
listings of procedures from the programs being traced.

Inviolability of the program. It should not be possible for the program
being traced to be altered, or effectively altered, by the tracing tool, in the
middle of a trace, since to permit this would be to encourage undisciplined
program development methods. The phrase ‘effectively altered’ here covers the
use of such tracer options as ‘forced failure’, in which a goal that would actually
succeed during the unfettered execution of a program is made to fail artificially
by a command input to the tracer by the user.

Compactness of information displayed. Any information represented in
the trace should be encoded as compactly as it can be without loss of clarity
and readability.

Default restriction of output. The tracer should be constructed so that
unless given specific instructions to the contrary, it produces only a limited
amount of basic information, regarded as the most important: any additional
information should be available on request, but should not be part of the basic
trace output.

Preservation of trace information. As the trace proceeds, information
that was displayed at an earlier stage in the trace — for example previous
variable bindings — should never be irretrievably lost. This need not mean
that such information should be displayed throughout the generation of the
trace: however, it should at least be accessible on request from the user.

Encoding of structure of computation. The trace should encode explic-
itly the structure of the computation, i.e. it should represent both parent-child
relations between goal nodes, and also the order of execution of sibling goal
nodes. The most effective way to do this is to for the output to use a ‘tree’
representation of some kind.

3 Comparison of three existing tracers

In this section, attention will be confined to the following three tracers: the
EPTB, a version of the TPM, and the standard ‘Byrd box’ or ‘spy’ tracer that
is provided with most implementations of Prolog. No detailed description of
these tracers will be given here — the reader should refer to the references
given already in section 1.

The following tables, whilst not claimed to be completely comprehensive,
provide an overview of the threetracers and their relative merits. The evalua-
tive judgements made reflect only the subjective opinions of the authors, rather
than being based on any wider survey of opinion. The entries on the TPM
refer to an implementation of it marketed by Chemical Design Ltd. — hence-
forth referred to as CDL-TPM — which is inferior to the Open University’s
1987 Apollo implementation, as that is described in the literature. This latter
version, which can be conveniently referred to as JLP-TPM, since it is virtu-
ally identical to the system described in the Journal of Logic Programming
(Eisenstadt ANDBrayshaw88, is an improvement on CDL-TPM in at least the
following respects: it can handle endless loops; shows actual variable names and
clause instantiations; and shows variable bindings explicitly. Nonetheless, some
of the weaknesses of the TPM — such as the inconvenient display of and access
to variable bindings and the arguments of goals — are arguably inherent in its
basic design (which makes use of a vertically aligned tree, so that the horizontal
space available between nodes is limited).

3.1 General tracer type

Spy EPTB CDL-TPM
Textual/graphical Textual Textual Graphical
Linear/non-linear Linear Linear Non-linear
Indented/unindented Unindented Unindented Indented
3.2 Explicit information provided
Information either shown automatically, or on request.

Spy EPTB CDL-TPM
Identifying nos. of matching clauses No Yes Yes
Instantiated instances of clauses No Yes No
Different goal failure modes distinguished No Yes Yes
Ancestors of a goal No Yes Yes
Descendants of a goal No Yes Yes
System goals visible No No Yes
Actual variable names shown in trace No Yes No
Variable bindings shown explicitly No Yes No
3.3 Facilities and options

Spy EPTB CDL-TPM
Trapping a particular named procedure Yes Yes Yes
Trapping goals matching a template No Yes Yes
Reverse stepping through trace No No Yes
Forced failure of goals available Yes No No
Unleashing available Yes Yes Yes
3.4 Adherence to design principles

Spy EPTB CDL-TPM
Use of meaningful symbolism Fair Fair Fair
Correlation of trace with source code Fair Fair Poor
Purity of trace No No Yes
Inviolability of program No Yes Yes
Compactness of information displayed Fair Poor Fair(2)
Default restriction of output Poor Poor Fair
Preservation of trace information Yes Yes Yes
Encoding of structure of computation Poor Fair(1) Good

Notes:

1. Rather than using indentation, the EPTB uses numerical labels to indicate
the computational depth of goals. These labels are not shown by default,
but are included in the trace if the user so requests.

2. The TPM (in all versions) provides a compact ‘long-distance view’ of the
proof tree corresponding to the evaluation of a goal (see [Eisenstadt & Brayshaw 88]).
However, since this ‘long-distance view’ contains very little detailed infor-
mation, it is usually necessary for the user to request expanded views of
parts of the tree, displayed in separate windows; and these expanded views
use a more informative but considerably less compact tree representation.

3.5 Some other characteristics

Spy EPTB CDL-TPM

Display of backtracking Poor Poor Good
Accessibility of variable bindings Poor Good Poor(1)
User-friendliness of command interface Fair Poor Fair

Range of information and options available Poor Good Poor
Clarity of trace layout Fair Poor Fair
Location of loops in programs Fair Fair Very poor(2)
Notes:

1. In the CDL-TPM, the variable bindings associated with a goal are not
immediately visible — to access them, the user has to select the corre-
sponding goal node in the ‘long distance view’ of the proof tree, using
a mouse-controlled cursor. A more detailed view of that node, showing
the arguments of the goal, is then displayed in a small window. However,
only a few such windows can be displayed simultaneously, and in some
cases, such windows may need to be scrolled in order to see all of the
arguments. Furthermore, like the ‘spy’, the CDL-TPM does not show the
actual variable names used in clauses or top-level goals. This is in contrast
to the EPTB tracer and the JLP-TPM, which do show the actual variable
names.

2. The CDL-TPM does not display a proof tree for a goal until the attempt
to satisfy the goal has terminated (either successfully or unsuccessfully).
Thus if a program contains a loop, no trace output is produced at all, and
so the user receives no indications as to the location of the loop. This
problem has been overcome in the JLP-TPM, in which a ‘live mode’ is

available in which display of the proof tree proceeds concurrently with its
development.

To conclude this section, the nature of the three tracers can be summarised as
follows. The ‘Byrd box’ or ‘spy’ tracer provides a fairly compact and simple trace
output, from which the bindings of variables in goals can be inferred, although
not very conveniently. However, it gives a poor picture of the structure of the
computation, and provides no explicit information about which clauses are being
tried, or (at least, in the version available in the Poplog system) about system
calls.

By comparison, the EPTB tracer provides much more information, but at the
expense of a simple interface, and a compact trace output. Like the spy, it does
not show system goals, and it fails to show the structure of the computation
clearly, since it is a linear and unindented tracer.

The CDL-TPM shows the structure of the computation and the flow of control
very clearly, and like the EPTB provides information concerning clause matching
and modes of failure, but is weak as regards the convenient display and access of
variable bindings and the arguments of goals. The JPL-TPM implementation
is an improvement in this respect, in that it shows variable bindings explicitly
and uses actual variable names: however, it still has to rely on a limited number
of sub-windows for the display of goal arguments and variable bindings, so
that goal terms and their associated arguments and variable bindings are not
automatically visible, and only a limited number of them can be seen at any
one time when compared to the more compact of the textual tracers.

4 Specification of an improved tracer

4.1 General concept

In section 2, a number of strengths and weaknesses have been identified for
the EPTB, CDL-TPM and Byrd box tracers. Consideration of these has led to
the conception of a new tracer which, it is hoped, will combine the best features
from these earlier tracers (along with some other features), whilst at the same
time avoiding their various shortcomings.

The new tracer will be called the ‘Textual Tree Tracer’ (TTT for short):
that is to say, it will output a representation of a proof tree, as does the CDL-
TPM tracer; but it will do so using textual output, rather than specialised
graphics, and it will make available detailed information about variable bindings,

on request, as does the EPTB. As the examples to follow will illustrate, the TTT
will use a ‘sideways tree’, with the ‘root node’ at the top left, with branches
growing towards the right, and with new subtrees of a node being added below
any previous subtrees of that node. This is in contrast to the TPM, which uses
an upside-down vertically aligned tree, with the root node near the top of the
screen.

The TTT will make use of the following windows: the ‘trace window’ — show-
ing the trace output itself; the ‘database window’ — showing the current state of
the program database; the ‘help window’ — showing information concerning the
commands available to the user at any particular point, the history of commands
entered by the user, and certain other helpful information; the ‘trace window’ —
showing the trace output itself; and the ‘input/output window’ (or windows),
showing any program input and output. These windows could either be Ved
windows in the Poplog system (on a terminal without graphics facilities), or —
on a Sun workstation — Sunview windows or Xwindows. (N.B. ‘Ved’ is an editor
used in the Poplog system.) The ‘help window’ and the ‘input/output window’
will appear only intermittently, whilst the ‘trace window’ and the ‘database
window’ will be visible for most or all of the time. The software controlling
the windows will be written using abstract (i.e. system independent) window
manipulation procedures, so that it can subsequently be adapted quite easily to
use Ved, Sunview, Xwindows, or some other system, by defining the abstract
procedures in terms of the appropriate system-specific procedures.

4.1.1 Database window.

The ‘database window’ will be particularly useful for debugging programs
involving the assertion and retraction of clauses, but more generally, it will help
the user to relate the trace output to the program being traced. Of course,
any window displaying the source code would help to do this, but the ‘database
window’ will do this in an enhanced way by explicitly numbering the clauses
of procedures, and by indenting the subgoals of clauses in a way which closely
resembles the way in which calls to subgoals will be shown in the trace output. In
this respect, a textual tracer using a sideways tree offers considerable advantages
over a graphical tracer using a vertically aligned tree.

A ‘database window’ was used earlier in Rajan’s APT tracer [Rajan 86], and a
reference to the general concept can be found in [Eisenstadt, Hasemer & Kriwaczek].
In the TTT (unlike the APT), there will be few dynamic changes to the ap-
pearance of the ‘database window’, apart from the display of any assertions
and retractions of clauses. One useful feature, however, might be the automatic
dynamic adjustment of the database window so as to keep visible within the
window the procedure corresponding to the latest goal under evaluation (since
unless the program is a trivial one, the program clauses will typically take up too

much space for them all to be visible in the database window at once). Whether
or not such automatic adjustment is performed, it ought to be possible for the
user to scan the database clauses at any point during the trace, either by using
Ved keys — if a Ved editor window is being used — or by scrolling.

4.1.2 Help window.

The help window will show dynamically the sequence of commands issued
by the user during the execution of the trace. On request from the user, it
will also show the command options currently available to the user (this will
vary according to the circumstances), and indicate which of those options is the
current default option. In addition, the help window will be used to display other
useful information, such as explanations of the meanings of certain symbols used
in the trace output.

4.1.3 Trace window.

This window will contain the trace output itself. As already described, it
will be in the form of a sideways tree, with its root at the top left of the trace,
making use of indentation from the left-hand edge to encode the depth of goal
nodes in the proof tree. In this respect, the TTT tracer will produce a tree
quite similar to that produced by the ‘Mellish tracer’ available in the Poplog
system: however, unlike that tracer, it will never irretrievably overwrite any
information displayed earlier in the production of the trace; and in addition,
its output will be much more compact than that of the Mellish tracer, even
though it will provide considerably more information (although not all of this
information will be shown by default).

4.1.4 Input/output window or windows.

In order to conform to the design principle of ‘purity of the trace’, any output
produced by the program being traced, and any input to it, will not be shown
in the middle of the trace, but in a separate input/output (I/O) window or
windows. If a program has more than one I/O device or file, the I/O window
could be subdivided into different sub-windows — one for each I/O device or
file — or an entirely separate window could be used for each I/O device or file.

4.1.5 Control of the tracer.

A key feature of the I/O interface of the TTT tracer will be its sensitivity
to the position of a mobile cursor in the ‘trace window’, moved about either
with the ‘arrow’ keys, or — if this is available — under mouse control. The
range of trace control options available to the user will depend upon the current
cursor position, and — in some cases — on the most recent previous command
or commands, as stored on a ‘command stack’ maintained by the tracer. On

10

request from the user, the ’help window’ will be used to display the current
command stack and the command options currently available to the user. One
of the commands available will be the default in those circumstances (executed
by simply hitting the ‘return’ key), whilst the others will require more specific
inputs.

At any point during the development of the trace, the user will be able to move
the cursor around over the current trace output; otherwise, when the cursor is
not being controlled explicitly by the user, its movement will be determined
automatically by the tracer.

Commands will be input to the tracer typically by typing alphanumeric codes.
Extensive use will be made of default commands, which will be executed by
hitting the ‘return’ key, or in some cases, as a result of the movement of the
cursor.

The commands that will be available can be classified into a few basic groups,
as follows:

1. ‘Retrospective display’ commands.

Commands which allow the user to modify the information displayed in

that part of the trace output which has been produced so far. These com-
mands could be further subdivided into: (i) Goal visibility commands —
controlling the visibility or otherwise of goals in the trace; and (ii) Goal

detail commands — controlling the amount of detail shown about goals

which are currently visible. (N.B. Retrospective techniques are also used in

the PTP and TPM tracers — see [Eisenstadt 84] and [Eisenstadt & Brayshaw 88|,
respectively.)

2. ‘Prospective display’ commands.

Commands which alter the information that will be displayed in the trace
from the current point in the computation of the trace onwards. Again,
these commands may effect either the visibility of goals, or the amount
of information shown in connection with those goals that will be made
visible. (N.B. It will not be necessary to issue any such commands at the
start of the trace, because the trace will begin with certain default controls
on the information displayed.)

3. ‘Help’ commands.
Commands which cause helpful information to be displayed in the ‘help
window’ — for example explanations of symbols used in the trace window,
or lists of commands available in the current context (as determined by
the current cursor location and stack of previous commands).

11

4. ‘Trace driving’ commands.

Commands which enable the trace to be developed further forwards, or to
be ‘unravelled’ backwards to an earlier point in the computation. Usually
the trace will be developed or unravelled in a stepwise mode, i.e. it will
stop subsequently for further input from the user: however, there will also
be commands analogous to the ‘unleash’ command in the ‘spy’ tracer —
which causes the trace to move onwards without any further interruption
for inputs from the user. When operating in stepwise mode, the next
stopping point for input will depend upon the current controls on the
information to be made visible.

5. ‘Window dump’ commands.
Commands which cause the current contents of any of the tracer windows
to be saved to a file (either a default file, or some other specified file),
or to be sent directly to a printer to obtain a hard copy. Some such
commands might already be available as part of the underlying system
(i.e. Xwindows, Sunview, etc.) in which the tracer program is operating.

In general, for any command which can be ‘undone’, there will be a corre-
sponding ‘inverse’ command, e.g. for any command which adds some information
to that currently on display in the trace window, there will be a corresponding
inverse command which removes that information from the display.

One of the distinctive features of the TTT tracer will be the extensive use
of default controls aimed at restricting the amount of information produced
in the trace output. This will be achieved in part by default restrictions on
the predicates shown in the trace (see Example 10), and on the level of detail
shown concerning each goal (see Examples 1 — 9 for illustrations of the minimum
amount of information shown about individual goals). It will also be achieved by
the default execution, under many circumstances, of commands which remove
from display any detailed information requested earlier by the user. Such com-
mands would be executed automatically by movement of the cursor away from
the cursor location from which the display of the information was requested:
in order to retain such information in the display, the user would have to in-
put explicit 'retention’ commands. Extra information could be displayed at an
intermediate intensity level — so as to stand out against the rest of the trace
— until made permanent by the execution of a retention command, when it
would be displayed at the normal intensity level. The same technique of using
intermediate intensity might also be used to indicate branches of the proof tree
which have failed.

No attempt will be made here to decide precisely what commands should
be available under various circumstances, or to decide which of them should
be defaults: it would be unwise to try to specify this in detail in advance,

12

since practical experience of using a prototype is required to arrive at a sensible
selection of commands and defaults. However, examples 12 to 16 inclusive (in
section 4.6) indicate some possible commands that may prove to be useful.

4.2 Underlying structure of the trace

The tracing of a goal in the new tracer will involve the construction of an
AND-OR proof tree, represented by a Prolog term, whose abstract structure is
quite similar to that of the trees constructed by the TPM tracer, although some
extra features will be added.

As with the TPM, trees will be composed of ‘goal nodes’ and ‘clause nodes’.
Most goal nodes will have one or more clause nodes as their immediate child
nodes — the exceptions being goal nodes for system goals, which will have no
child nodes, and goal nodes for ‘;” constructions (such as “(p(X);q(X))” and top-
level compound goals (as in ?- p(X), q(X).), which will have other goal nodes
as their child nodes. Unless it corresponds to a clause with no subgoals, any
clause node will have one or more goal nodes as its child nodes.

A subtree of the proof tree with a goal node as its root will be represented
by a Prolog term of the following (approximate) form:

goal_node(

Goal_number,

Initial_goal_term, /* Goal term as instantiated on calling */

Current_goal_term, /* Goal term as currently instantiated */

Goal status field, /* Indicates whether goal has succeeded,
failed, or is being evaluated etc. */

Variable_binding field, /* Contains information about

bindings of variables in goal */

Node_visibility_flag, /* Indicates if goal is currently
shown in trace output */
Cursor_location_flag, /* Indicates if cursor is currently

located on this goal */
.. possibly other arguments
Subtree_list) /* N.B. This list is empty if the node
is a leaf node. */

A subtree with a clause node as its root will be represented by a Prolog term
of the following (approximate) form:

clause_node (
Predicate_name,
Predicate_arity,

13

Absolute_clause_no,

Current_ordinal_clause_no, /* Indicates current ordinal
position of clause in database */

Clause_before_matching_goal,

Clause_after_matching_goal,

Clause_as_currently_instantiated,

Clause_variable_binding_field, /* Contains information about

clause variable bindings */

Node_visibility_flag,

Cursor_location_flag,

. possibly other arguments

Subtree_list)

4.3 Basic symbolism used

The following symbols and abbreviations will be used in the TTT output
(their use will become clearer in the examples of trace output given later — this
section should be used primarily for reference):

*xkk1:, *%x23:, *x124: etc. Goal number labels (nos. correspond to

nos. of calls in ‘spy’ trace).
$$$
N.B. The use of leading asterisks here means that each goal number label
occupies the same amount of space - 5 characters including the colon
(allowing up to 9999 goals in any single trace). This helps to emphasise
the indentation pattern of the goals. Also, for those goals numbered less
than 1000 (i.e.\ most of the goals encountered in practice), the asterisks
help to make the lines representing goals stand out clearly against the
rest of the trace.

1, 2, 10 etc. Clause number labels (used in
‘database window’, as well as in

the actual trace).

| and / are used as punctuation characters.

is used to indicate current variable bindings.

14

1is used to indicate variable bindings which are no longer
current (see Examples 3 & 4), and also - in the
‘database window’ - clauses which have been retracted from
the database (see example 19).

! is used in the goal status fields of goals which have been
‘cutoff’ by the action of the ‘cut’ (see Example 6).

, is used in the goal status field of compound goals using ‘,’
(such as “‘?7- p(X), q(X)?’) to separate the goal status fields
of the individual goals.

; is used in the goal status field of disjunctive compound goals
(such as ‘“(p(X) ; q(X))’’ to separate the goal status fields
of the individual disjuncts.

? is used to indicate goals and clauses currently being
evaluated (including re-evaluation on backtracking).

S Indicates success of a goal. Repeated successes on
backtracking are represented by a sequence of S characters -
one for each success, e.g. SSS means that the goal so labelled
has succeeded three times.

Failure modes (as in the EPTB, TPM and PTP, several failure modes are
distinguished):

Fm ‘match failure’. Clauses of same name and arity as goal are
in the database, but none of them match the goal.

Fa ‘arity failure’. No clauses of same name and arity as goal
are in the database, but some clause or clauses of the same

name and different arity are in the database.

Fu ‘undefined procedure failure’. No clauses of the same name
as the goal (of whatever arity) are in the database.

Fc ‘cutoff failure’. Failure due to attempting to resatisfy a
goal which has been ‘cut off’ by the action of the ‘cut’.

15

Fb ‘backtracking failure’. Failure on backtracking of a goal
which initially succeeded, either because no more clauses
are left which match the goal, or because the goal is a system
goal which cannot be resatisfied.

Fs ‘subgoal failure’. Failure resulting from failure of one of
the subgoals of a clause.

F Any other failure - includes ‘first-time’ (i.e. not on
backtracking) failure of system goals, and failure of
compound disjuncts of disjunctive goals, i.e. disjuncts
consisting of more than one goal.

4.4 Basic trace output

As explained in section 4.1.4, default curbs on output will be in operation most
of the time, so that most goals, and any additional detailed information about
goals or clauses, will not be shown automatically unless specific commands to
the contrary are given by the user. An illustration of the action of the default
curbs will be given in section 4.5: however, in this section, for the purposes of
illustrating the symbolism used in the basic trace output, it will be assumed
that the user has requested that all goals should be shown in the trace.

Example 1: Flow of control.

This example shows the step-by-step evolution of the TTT trace, with the corres-
ponding ‘spy’ trace for comparison. It demonstrates how backtracking and
clause retrying are dealt with. In order to avoid distracting detail at this stage,
the program used involves only goals without arguments.

Points to note:

1. The TTT trace is very compact — in this example it takes up only about
one third of the space used by the corresponding spy trace. This com-
pactness is achieved because the success, failure and redoing of calls are
represented by suffixes to the lines representing the calls, rather than by
extra lines in the trace (like the ‘Exit :’, ‘Fail " and ‘Redo :’ lines in the
spy trace). However, if there are variables involved, extra lines are needed
to display their bindings, so in general, unless backtracking occurs, the
TTT trace will be similar in length to the corresponding spy trace.

16

2. In spite of its compactness, the TTT trace — even in its basic form —
provides considerably more information than the corresponding spy trace,
because the TTT shows the numbers of matching clauses, and distin-
guishes a greater number of failure modes than the spy does.

3. Unlike the spy trace, the TTT trace shows clearly the structure of the
computation, by making use of indentation.

4. By means of the non-sequential movement of the cursor, the TTT shows
very clearly the flow of control involved in backtracking. In this respect it
is like the TPM — another non-linear tracer — and unlike the spy or the
EPTB, which are linear tracers.

Program clauses as shown in ‘database window’:

1 s.
1 t.
1 p:-
9,
r.
1 q:-
S.
2 q:-
t.
Goal: ?- p.

Development of the TTT trace, compared with spy trace:

(N.B. It is assumed that the user just keeps hitting the ‘return’
key. Note that the TTT trace involves more key presses than the
spy, so that successive stages of the spy trace - shown on the
left-hand side - are sometimes identical.

Spy trace TTT trace
** (1) Call : p? *k*x1: p 7
** (1) Call : p? *k*x1: p 17

17

* X
* X

XX
XX

* X
* X
XX

XX
* X
* X

XX
XX
* X
* X

XX
XX
XX
* X
* X

XX
XX
* X
* X
* X
XX

* X
* X
* X
XX
XX
XX
* X

1
(2)

1
(2)

1
(2)
(3)

1
(2)
(3)

1
(2)
(3)
(3)

1
(2)
(3)
(3)
(2)

1
(2)
(3)
(3)
(2)
(4)

1
(2)
(3)
(3)
(2)
(4)
(4)

Call :
Call :

Call

Call :
Call :
Call :

Call :
Call :
Call :

Call :
Call :
Call :
Exit :

Call :
Call :
Call :
Exit :
: q”?

Exit

Call :

Call

Call :
Call :
Call :
Exit :
Exit :
Call :

Fail

P?
q?

: p?
Call :

q?

P?
q?
s?

P?
q?
s?

?
X

?
q”
s?
s?

?
X

?
q”
s?
s?

P?

: q?
Call :
Exit :
Exit :
Call :

s?
s?

q?

prolog_error (UNDEFINED PREDICATE [r])?

P?
q?
s?
s?

q?

prolog_error (UNDEFINED PREDICATE [r])?
: prolog_error (UNDEFINED PREDICATE [r])?

18

**¥x1: p 17
**¥%2: q 7

**%x1: p 17
**k%k2: q 17

**¥x1: p 17
**¥%2: q 17
***%3: s 7

**kx1: p 17
**¥*%2: q 17
**x3: s 17

**kx1: p 17
**k%k2: q 17
**%%3: s 1S
**%x1: p 17
**¥%2: q 1S
**%*%3: s 1S
**%x1: p 17
**%%2: q 1S
**%%3: s 1S

*x*k4: r 7

**¥x1: p 17
*%%2: q 1S
***x3: s 1S

*¥*xx4: r Fu

* X
* X
* X
XX
XX
* X
* X
* X

XX
XX
* X
* X
* X
XX
XX
* X
* X

XX
XX
XX
* X
* X
XX
XX
XX
* X
* X

XX
XX
* X
* X
* X
XX
XX
XX
* X
* X

XX
XX
* X

1
(2)
(3)
(3)
(2)
(4)
(4)
(2)

1
(2)
(3
(3)
(2)
(4)
(4)
(2)
(3

1
(2)
(3)
(3)
(2)
(4)
(4)
(2)
(3)
(3)

1
(2)
(3)
(3)
(2)
(4)
(4)
(2)
(3)
(3)

1
(2)
(3)

Call :
Call :
Call :
Exit :
Exit :
Call :
Fail :
Redo :

Call :
Call :
Call :
Exit :
: q”?
Call :
Fail :
Redo :
Redo :

Exit

Call :
Call :
Call :
Exit :
: q”?
Call :
: prolog_error (UNDEFINED PREDICATE [r])?
: q?

Redo :
Fail :

Exit

Fail
Redo

Call :

Call

Call

p?
q?
s?
s?
q?
prolog_error (UNDEFINED PREDICATE [r])?
prolog_error (UNDEFINED PREDICATE [r])?

q?

>
joX

>
q”
s?
s?

prolog_error (UNDEFINED PREDICATE [r])?
prolog_error (UNDEFINED PREDICATE [r])?
q?
s?

p?
q?
s?
s7?
prolog_error (UNDEFINED PREDICATE [r])?
s7?

s?

p?

: q?
Call :
Exit :
Exit :
Call :
Fail :
Redo :
Redo :
Fail :

s?
s?
q?
prolog_error (UNDEFINED PREDICATE [r])?
prolog_error (UNDEFINED PREDICATE [r])?
q?
s?
s?

: p?
Call :
Call :

>
q”
s?

19

**%x1: p 17
*xx2: q 187
**%%3: s 1S

*¥x*4: r Fu

*kx1: p 17
*k*x2: q 187
**x3: s 187
**x4: r Fu

*kx1: p 17
*k%2: q 187
**x*%3: s 1SFb
**x4: r Fu

*kx1: p 17

*x**x2: q 1SFb/27

**x*3: s 1SFb
*x*4: r Fu

*kx1: p 17

*x**x2: q 1SFb/27

**x*x3: s 1SFb

* X
* X
* X
XX
XX
* X
* X
* X

XX
XX
* X
* X
* X
XX
XX
* X
* X
* X
XX

XX
* X
* X
XX
XX
XX
* X
* X
* X
XX
XX
* X

* X
XX
XX
XX
* X
* X
XX
XX
XX
* X

(3)
(2)
(4)
(4)
(2)
(3
(3
(8)

1
(2)
(3)
(3)
(2)
(4)
(4)
(2)
(3)
(3)
(8)

1
(2)
(3)
(3)
(2)
(4)
(4)
(2)
(3
(3)
(8)
(8)

1
(2)
(3)
(3)
(2)
(4)
(4)
(2)
(3)
(3)

Exit :
Exit :
Call :
: prolog_error (UNDEFINED PREDICATE [r])?
Redo :
Redo :
Fail :
Call :

Fail

Call :
Call :
Call :
Exit :
: q”?
Call :
Fail :
Redo :
Redo :
Fail :
Call :

Exit

Call

Call
Fail

Call :
Call :
Call :
Exit :
: q”?
Call :
Fail :

Exit

Redo

s?

q7?
prolog_error (UNDEFINED PREDICATE [r])?

?
q”
s?
s?

t?

?
X

?
q7
s?
s?

prolog_error (UNDEFINED PREDICATE [r])?
prolog_error (UNDEFINED PREDICATE [r])?
q?
s?
s?
t7

: p?
Call :
Call :
Exit :
Exit :

q?
s?
s?

q?

: prolog_error (UNDEFINED PREDICATE [r])?
: prolog_error (UNDEFINED PREDICATE [r])?
Redo :
Redo :
Fail :
Call :
Exit :

q?
s?
s?
t?
t?

P?
q?
s?
s?

prolog_error (UNDEFINED PREDICATE [r])?
prolog_error (UNDEFINED PREDICATE [r])?

: q?
Redo :
Fail :

s?
s?

20

**k*kb5: t 7
*¥*x*x4: r Fu

*kx1: p 17

*x**x2: q 1SFb/27
**¥*3: s 1SFb
*kx5: t 17
**xx4: r Fu

**%x1: p 17

**%2: q 1SFb/27
***x3: s 1SFb
**¥¥5: t 1S
¥*x4: r Fu

**¥x1: p 17

***x2: q 1SFb/2S
**x3: s 1SFb
**¥%5: t 1S
**x4: r Fu

* X
* X
* X

XX
* X
* X
* X
XX
XX
XX
* X
* X
* X
XX
XX
* X
* X

XX
XX
XX
* X
* X
XX
XX
XX
* X
* X
* X
XX
XX
* X
* X

XX
XX
XX
* X
* X
XX
XX
XX
* X

(8)
(8)
(2)

1
(2)
(3)
(3)
(2)
(4)
(4)
(2)
(3)
(3)
(8)
(8)
(2)
(6)

1
(2)
(3)
(3)
(2)
(4)
(4)
(2)
(3)
(3)
(8)
(8)
(2)
(6)
(6)

1
(2)
(3)
(3)
(2)
(4)
(4)
(2)
(3)

Call :
Exit :
Exit :

Call :
Call :
Call :
Exit :
: q?
prolog_error (UNDEFINED
prolog_error (UNDEFINED

Exit

Call :
Fail :
Redo :
Redo :
Fail :
Call :
Exit :
Exit :
Call :

Call :
Call :
Call :
Exit :
: q”?
prolog_error (UNDEFINED
: prolog_error (UNDEFINED
: q?
Redo :
Fail :
Call :
Exit :
: q?
prolog_error (UNDEFINED
: prolog_error (UNDEFINED

Exit

Call :

Fail
Redo

Exit

Call :

Fail

Call :
Call :
Call :
Exit :
Exit :
Call :

Fail

t7?
t7?
q?

>
ok
q?
s?
s?

q?
s?
s?
t?
t?
q?

prolog_error (UNDEFINED

>
ok

>
q”
s?
s?

s?
s?
t7
t7

p?
q?
s?
s?
q?

prolog_error (UNDEFINED
: prolog_error (UNDEFINED
Redo :
Redo :

>
q”
s?

21

PREDICATE
PREDICATE

PREDICATE

PREDICATE
PREDICATE

PREDICATE
PREDICATE

PREDICATE
PREDICATE

[r1)?
[r1)7?

[r1)?

[r1)?
[r1)7?

[r1)?
[r1)?

[r1)?
[r1)7?

*kx1: p 17

**¥x2: q 1SFb/2S
**x*%3: s 1SFb
**xk5: t 1S
**x4: r Fu
*kx6: r 7

*kx1: p 17

*x**x2: q 1SFb/2S
**x*%3: s 1SFb
**xk5: t 1S
**x4: r Fu
**¥x6: r Fu

*kx1: p 17

*x**x2: q 1SFb/2S7
**x*%3: s 1SFb
**xk5: t 1S
**x4: r Fu

**¥x6: r Fu

* X
* X
* X
XX
XX
* X
* X

XX
XX
XX
* X
* X
* X
XX
XX
* X
* X
* X
XX
XX
XX
* X
* X
XX

XX
* X
* X
* X
XX
XX
* X
* X
* X
XX
XX
XX
* X
* X
XX
XX
XX
* X

(3)
(8)
(8)
(2)
()
(6)
(2)

1
(2)
(3)
(3)
(2)
(4)
(4)
(2)
(3)
(3)
(8)
(8)
(2)
()
(6)
(2)
(8)

1
(2)
(3)
(3)
(2)
(4)
(4)
(2)
(3)
(3)
(8)
(8)
(2)
(6)
()
(2)
(8)
(8)

Fail :
Call :
Exit :
Exit :
Call :

Fail

Call

Call

Call

Call

Exit

Redo

prolog_error (UNDEFINED

: prolog_error (UNDEFINED
Redo :

q?

: p?
Call :
Call :
Exit :
Exit :
Call :
Fail :
Redo :
Redo :
Fail :
Call :
Exit :
Exit :
: prolog_error (UNDEFINED
Fail :
Redo :
Redo :

q?
s?
s?
q?
prolog_error (UNDEFINED
prolog_error (UNDEFINED
q?
s?
s?
t?
t7
q?

prolog_error (UNDEFINED
q?
t7

: p?
Call :
Call :
Exit :
Exit :

q?
s?
s?

q?

: prolog_error (UNDEFINED
Fail :
Redo :
Redo :
Fail :
Call :
Exit :
: q”?
Call :
Fail :

prolog_error (UNDEFINED
q?
s?
s?
t7
t7

prolog_error (UNDEFINED
prolog_error (UNDEFINED

: q?
Redo :
Fail :

t?
t?

22

PREDICATE
PREDICATE

PREDICATE
PREDICATE

PREDICATE
PREDICATE

PREDICATE
PREDICATE

PREDICATE
PREDICATE

[r1)?
(r1)?

(r1)?
[r1)?

[r1)?
(r1)?

[r1)?
(r1)?

(r1)?
[r1)?

**%x1: p 17

*x**2: q 1SFb/2S7
**x*%3: s 1SFb
**xx5: t 1S7
**x*x4: r Fu

***¥6: r Fu

**kx1: p 17

**%2: q 1SFb/2S7
**x*%3: s 1SFb
**x5: t 1SFb
x%4: r Fu

**x*%6: r Fu

* X
* X
XX
XX
* X
* X
* X
XX
XX
XX
* X
* X
* X
XX
XX
* X
* X
* X
XX

XX
* X
* X
XX
XX
XX
* X
* X
* X
XX
XX
* X
* X
* X
XX
XX
XX
* X
* X
XX
no

1
(2)
(3)
(3)
(2)
(4)
(4)
(2)
(3)
(3)
(8)
(8)
(2)
()
(6)
(2)
(8)
(8)
(2)

1
(2)
(3)
(3)
(2)
(4)
(4)
(2)
(3
(3)
(8)
(8)
(2)
(6)
()
(2)
(8)
(8)
(2)
1

Call :
Call :
Call :
Exit :
: q”?
prolog_error (UNDEFINED
prolog_error (UNDEFINED
: q?
Redo :
Fail :
Call :
Exit :
: q”?
prolog_error (UNDEFINED
prolog_error (UNDEFINED

Exit

Call :
Fail :

Redo

Exit

Call :
Fail :
Redo :
Redo :
Fail :
Fail :

Call

Call
Fail

Exit

Call :
Fail :
Redo :
Redo :
Fail :
Fail :
Fail :

p?
q?
s?
s?

s?
s?
t7?
t7?

q?
t7
t7
q?

: p?
Call :
Call :
Exit :
Exit :

q?
s?
s?
q?

q?
s?
s?
t7?
t7?

q?
t7?
t7?
q?
p?

: prolog_error (UNDEFINED
: prolog_error (UNDEFINED
Redo :
Redo :
Fail :
Call :
Exit :
: q”?
prolog_error (UNDEFINED
prolog_error (UNDEFINED

23

PREDICATE
PREDICATE

PREDICATE
PREDICATE

PREDICATE
PREDICATE

PREDICATE
PREDICATE

[r1)?
[r1)?

[r1)?
[r1)?

[r1)?
(r17

(r1?
[r1)?

**%x1: p 17

**¥x2: q 1SFb/2SFb
**x*%3: s 1SFb
**x5: t 1SFDb
**x4: r Fu

**x6: r Fu

*%x1: p 1Fs
**¥x2: q 1SFb/2SFb
**x*%3: s 1SFb
**x5: t 1SFDb
**x4: r Fu
**¥x6: r Fu

no

Example 2: Goal variable bindings.
Points to note:

1. The basic trace output will show only the bindings of variables which are
unbound when goals are called — hence it will not invariably show the
bindings of clause variables.

2. In the basic trace, only the bindings resulting from success of goals will
be shown, i.e. any intermediate bindings will not be shown. However, as
will be described in section 4.4, more information about variable bindings
will be available on request.

3. Only the numbers of clauses whose heads match goals appear in the trace.
For example, since ‘2’ is the first number to appear at the right-hand side
of the first line of the trace, it can be inferred that clause 1 of ‘conc’ did
not match the goal ‘conc([a, b], [c], L)’.

4. Like the EPTB, and unlike the spy or TPM, the TTT will show the actual
names of variables. The following method for displaying names will be
used: top-level goal variables will be shown just as they are in the goal
(e.g. ‘L’ in this example), whereas clause variable names are shown as they
occur in the clauses of the program, but with a numerical suffix added (e.g.
‘T1.1’, “T1_2’ in this example) so that variables associated with different
invocations of a clause can be distinguished from one another.

5. The number of the clause that was used to obtain a set of bindings is
indicated at the left-hand side of the line showing the first binding in that
set.

Program as shown in ‘database window’:
1 conc([], L, L).
2 conc([H|T], L, [HIT1]):-

conc(T, L, T1).
Goal: ?- conc([a,b], [c], L).
Development of the TTT trace:
**xx1: conc([a,b], [c], L) ?

x*xx1: conc([a,b], [c], L) 27

*xx1: conc([a,b], [c], L) 27
**x%2: conc([b], [c], T1_1) 7

24

x%xx1: conc([a,b], [c], L) 27
*%%x2: conc([b], [c], T1_1) 27

*x*x1: conc([a,b]l, [c], L) 27
*%%x2: conc([b], [c], T1_1) 27
**%%x3: conc([], [c], T1_2) 7

xxx1: conc([a,b], [c], L) 27
*xx2: conc([b], [c], T1_1) 27
**%*x3: conc([], [c], T1_2) 17

x%x1: conc([a,b], [c], L) 27

*%%x2: conc([b], [c], T1_1) 27
***3: conc([], [c], T1_2) 17
|1 T1_2 = [c]

x%x1: conc([a,b], [c], L) 27

*%%x2: conc([b], [c], T1_1) 27
***3: conc([], [c], T1_2) 1S
|1 T1_2 = [c]

x*xx1: conc([a,b], [c], L) 27
*%%x2: conc([b], [c], T1_1) 27
|2 Ti_1 = [b,c]

***3: conc([], [c], T1_2) 1S
|1 T1_2 = [c]

x%x1: conc([a,b], [c], L) 27
*xx2: conc([b], [c], T1_1) 2S
|2 Ti_1 = [b,c]

***3: conc([], [c], T1_2) 1S
1 Ti_2 = [c]

x%x1: conc([a,b], [c], L) 27

|2 L = [a,b,c]

**x%x2: conc([b]l, [c], T1_1) 2S
|2 Ti_1 = [b,c]
**%%x3: conc([], [c], T1_2) 1S
1 Ti_2 = [c]

25

*xx1: conc([a,b], [c], L) 2S

|2 L = [a,b,c]

**%*x2: conc([b]l, [c], T1_1) 2S
|2 Ti_1 = [b,c]
**%%x3: conc([], [c], T1_2) 1S
|1 T1_2 = [c]

**x*x1: conc([a,b]l, [c], L) 2S
|2 L = [a,b,c]
**%*x2: conc([b]l, [c], T1_1) 2S
|2 Ti_1 = [b,c]
**%%x3: conc([], [c], T1_2) 1S
|1 T1_2 = [c]
yes

Example 3: Variable unbinding on backtracking.

Points to note:

1. When a variable becomes unbound as a result of backtracking, the old
binding is still shown, but the “=" sign is replaced by a hash character

(#). Any new bindings are shown on fresh lines below it.

Program as shown in ‘database window’ of tracer:

1 pX):-
q(X),
r(X)

2 p(e)

1 q(a)

2 q(

1 r(d)

Goal: 7- p(A).
Development of the TTT trace:
xk*x1: p(A) 7

xk*x1: p(A) 17

26

*okk] e

*okkD

EEEN

EEE N

*okk] e

*okkD

1

EEEN

*okkD

[1

EEEN

EEE N

[1

*kx 3

EEEN

EEE N

1

*kx 3

EEEN

EEE N

1

*kx 3

*okk] e

EEE N

1

*kx 3

*okk] e

EEE N

1
|2

*kx 3

EEE

EEE N

1
[2

p(a) 17

q(a) 7
p(A) 17
q(a) 17
p(a) 17
q(a) 17
A =a
p(A) 17
q(a) 1S
A =a
p(A) 17
q(a) 18
A =a
r(a) 7
p(A) 17
q(a) 18
A =a
r(a) Fm
p(A) 17
q(a) 187
A# a
r(a) Fm
p(a) 17

q(A) 1SFb/27
A# a
r(a) Fm

p(a) 17
q(A) 1SFb/27
A # a

A=bD
r(a) Fm
p(a) 17

q(A) 1SFb/2S
A# a
A =D

27

k%32

*okk] e

*kkD

1
[2

*kk3 2
*kk4

EEE

*kkD

[1
[2

*kk3 2
*kkd

*okk] e

*okkD

[1
|2

*%%3:
*kk4

*okk] e

*kkD

1
|2

*kk3 2
*kk4

T

*kkD

[1
[2

*kk3 2
*kxd

EEE
[2

*okkD

1
|2

*k%k3 2
*kk4

r(a) Fm
p(a) 17

q(A) 1SFb/2S
A # a

A=0D»

r(a) Fm

r(b) 7
p(a) 17

q(A) 1SFb/2S
A# a

A=0D»

r(a) Fm

r(b) Fm
p(a) 17

q(A) 1SFb/287
A# a

A#D

r(a) Fm

r(b) Fm

p(a) 17

q(A) 1SFb/2SFb
A # a

A#D

r(a) Fm

r(b) Fm

p(A) 1Fs/27

q(A) 1SFb/2SFb
A# a

A#Db

r(a) Fm

r(b) Fm

p(A) 1Fs/27
A=c

q(A) 1SFb/2SFb
A # a

A#b

r(a) Fm

r(b) Fm

28

**x1: p(A) 1Fs/2S

|2 A=c
*x*xx2: q(A) 1SFb/2SFb
[1 A#a
|2 A#b

x%x3: r(a) Fm
xxx4: r(b) Fm

x*x1: p(A) 1Fs/2S

[2 A=c
*x%x2: q(A) 1SFb/2SFb
|1 A# a
|2 A#b

*x*x3: r(a) Fm
**x*x4: r(b) Fm
yes

Example 4: Multiple variable bindings and answers.

This example illustrates what happens when the initial query contains more
than one variable, and when multiple answers to the query are obtained by
backtracking at the top-level goal, forced by the user.

Points to note:

1. To save space, the X and Y bindings could be put on the same line for
each individual answer. However, that would mean that the computational
level of Y would not be so clearly indicated as it is by its alignment with
the start of the ‘p’ goal, and in any case, it is not very common for a goal
to have more than 1 or 2 uninstantiated variables. (Refer back to example
2 to see how variables are indented in accordance with their computational
level.)

Program clauses as shown by ‘database window’:

1 q(a, b).

qld, a).

1 p(e,).
pX, Y):-
qlX, Y).

Goal: ?7- p(X, Y).

29

Development of the TTT trace:
x**x1: p(X, Y) 7
x**x1: p(X, Y) 17

x**x1: p(X, Y) 17
[1 X=¢e
| Y=1F

x*x1: p(X, Y) 1S
[1 X=e
| Y=1*f

Now user forces backtracking by inputting ¢;’ (not shown on trace)

x*x1: p(X, Y) 187
[1 X#e
| Y # £

*xkx1: p(X, Y) 1SFb/27
|1 X # e
| Y # £

*x*xx1: p(X, Y) 1SFb/27
|1 X # e

| Y # f

***x2: q(X, Y) 7

*x*xx1: p(X, Y) 1SFb/27
|1 X # e

| Y # f

***x2: q(X, Y) 17

x**x1: p(X, Y) 1SFb/27

[1 X#e
| Y # £

***x2: q(X, Y) 17
[1 X=a

I Y=»

30

xkx1: p(X, Y) 1SFb/27

|1 X # e
| Y # f

***x2: q(X, Y) 1S
|1 X =a

| Y=5D

x**x1: p(X, Y) 1SFb/27

[1 X#e

I Y # T

|2 X=a

| Y=5>

**x2: q(X, Y) 1S
[1 X=a

I Y=0»

x*xx1: p(X, Y) 1SFb/2S

|1 X# e
I Y # T
[2 X=a
I Y=0D
**x2: q(X, Y) 1S
|1 X =a
I Y=0»

(Now user forces backtracking again.)

x*x1: p(X, Y) 1SFb/2S?

|1 X# e
I Y # T
[2 X#a
| Y#bD
**x2: q(X, Y) 1S
|1 X # a
I Y #5D

31

**x1: p(X, Y) 1SFb/2S?

1
2
*okkD

[1
|

TN

1
2
*kkD

[1
I

EEE

1
2

*%k%D :
1

|

|2

I

EEE

1
2

*%k%kD :
1

|

|2

I

X # e
Y # f
X # a
Y#bD

q(X, Y) 187
X # a

Y#5D

p(X, Y) 1SFb/2S?
X # e
Y # f
X # a
Y#D

q(X, Y) 1SFb/27
X # a

Y#b

p(X, Y) 1SFb/2S?
X # e
Y # f
X # a
Y #b

q(X, Y) 1SFb/27
X #

I #*
p AT P

Y
X
Y

p(X, Y) 1SFb/2S?
X # e
Y # f
X # a
Y #bD

q(X, Y) 1SFb/2S
X #
#

p AT

Y
X
Y

32

**kx1: p(X, Y)

[1

I

|2

I

[2

I
*okk2
[1
I
[2
I

*kk]
[1
I
[2
I
|2
I
*okk2
[1
I
|2
I

**kx1: p(X, Y)

[1

I

[2

I

|2

I
*okkD
1
I
[2
I

yes

1SFb/2S7
X # e
Y # T
X # a
Y#D
X=d
Y =a
q(X, Y) 1SFb/2S
X # a
Y #5D
X =4d
Y =a
p(X, Y) 1SFb/2SS
X # e
Y # f
X # a
Y#D
X=4d
Y =a
q(X, Y) 1SFb/2S
X # a
Y #Db
X =4d
Y =a
1SFb/2SS
X # e
Y # f
X # a
Y#D
X=d
Y =a
q(X, Y) 1SFb/2S
X # a
Y #5D
X =4d
Y =a

33

Example 5: System predicates and infix operators.

Only the complete trace is shown in this example.

Points to note:

1. Like the TPM, and unlike the spy and the EPTB, the TTT tracer will
show system calls, thereby making it easier to correlate the trace output
with the program clauses.

2. For infix goals, whether they are system goals or not, the default will be
to show them in infix form (as for the ‘<’ in this example), although as in
the EPTB, it will be possible to show them in non-infix form on request.

Program as shown in ‘database window’:

1 sorted([]).

2 sorted([X]):-
integer (X).

3 sorted([X, YIT]):-
integer (X),
integer(Y),
X<Y,
sorted([YIT]).

Goal: 7- sorted([2,3,6]1).
Complete TTT trace:

**x*x1: sorted([2,3,6]) 3S
***2: integer(2) S
**x3: integer(3) S
*®kk4d: 2 < 3 §

**x*x5: sorted([3,6]) 3S
***6: integer(3) S
***7: integer(8) S
**x*%8: 3 < 6 S
**x9: sorted([6]) 2S

*¥10: integer(6) S
yes

34

Example 6: Effect of the ‘cut’.
Points to note:

1. Immediately after a ‘cut’ has succeeded, those goals which have been ‘cut
off” are indicated by the insertion of a ‘" symbol in their goal status fields.
This is analogous to the use of ‘clouding’ over part of the graphical proof
tree, used to show the effect of the cut in the Open University’s version of
the TPM.

Program clauses as shown in ‘database window’:

1 q.
1 p:-

9>

'

r.
Goal: ?- p.

Development of the TTT trace:
xkx1: p 7
*kx1: p 17

*kx1: p 17
*%%2: q 7

*kx1: p 17
*k%x2: q 17
*kx1: p 17
*xx2: q 18
*kx1: p 17
*k%2: q 1S
*%%3: |7
*kx1: p 17
*k%2: q 1S
**x%3: ! S

35

**k*x1: p
*okkD
k%32

*xkk] : P
*okkD
k%32
*kk4

*xkk] : P
*kkD 2
k%32
*kk4

*xkk] : P
*kkD 2
k%32
*kk4

*xkk] : P
*kkD 2
*k%3
*kk4

*xkk] : P
*kkD 2
*k%3
*kk4

*%*x1: p
*kkD 2
*k%3
*kk4

no

q

r

12
1S!

12
1S!

12
1S!

Fu

117
1S!
S?
Fu

117
1S!
SFb
Fu

1!'Fc
1S!
SFb
Fu

1!Fc
1S!
SFb
Fu

36

Example 7: Display of deep trees.

Points to note:

1. The indentation reverts to the left-hand side of the window after a certain
depth is reached (in this case a depth of 8). The depth at which this
occurs will be set to a default value, although could be made alterable by
the user.

This example shows just the complete trace.
Program as shown in ‘database window’:

1 member(X, [X|_]).
2 member(X, [_IT]):-
member (X, T).

Goal: ?- member(5, [7,8,0,6,3,2,34,9,100,5,11]).

Complete TTT trace:

*%%1: member(5, [7,8,0,6,3,2,34,9,100,5,11]) 2S
*%%2: member (5, [8,0,6,3,2,34,9,100,5,11]) 2S
**%3: member(5, [0,6,3,2,34,9,100,5,11]) 2S
***4: member(5, [6,3,2,34,9,100,5,11]) 2S
***5: member(5, [3,2,34,9,100,5,11]) 2S
**xx6: member(5, [2,34,9,100,5,11]) 2S
*xx7: member(5, [34,9,100,5,11]) 2S
**x*x8: member (5, [9,100,5,11]) 2S

**%*x9: member(5, [100,5,11]) 2S
*x10: member(5, [5,11]) 1S
yes

37

Example 8: Top-level conjunctive goals.

Points to note:

1.

The individual goals of a top-level conjunctive goal (e.g. the goals num-
bered “***2’” and “***3’ in this example) are shown as its immediate sub-
nodes, i.e. they are indented one character further to the right.

. The goal status field of a conjunctive goal (such as that for the goal num-

bered “***1’ in this example) consists of one or more subfields separated
by ¢’ characters, each corresponding to one of the individual goals of the
conjunctive goal. As the individual goals are evaluated, and their individ-
ual goal status fields develop, so the subfields of the goal status field of
the conjunctive goal develop in parallel, as illustrated in this example.

Program clauses as shown in database window:

1 conc([HIT], L, [HIT1]):-
conc(T, L, T1).
2 conc([], L, L).

Goal:

Development of the TTT trace (assuming user keeps hitting the ‘return’ key,

?- conc([]1, [al, X), conc(X, [b]l, Y), fail.

and all goals are being traced):

EEE

*okk] e

conc([], [al, X), conc(X, [bl, Y), fail <

conc([], [al, X), conc(X, [b], Y), fail <7

*xx*x2: conc([], [a], X) 7

TN

conc([], [al, X), conc(X, [bl, Y), fail 27

**%%x2: conc([], [a]l, X) 27

*okk] e

conc([], [al, X), conc(X, [b], Y), fail 27

x%x2: conc([], [al, X) 27

|2

EEE

X = [a]

conc([], [al, X), conc(X, [b], Y), fail 2S,7?

*x**x2: conc([], [al], X) 2S

[2

T

X = [a]

conc([], [al, X), conc(X, [b], Y), fail 2S,7?

*xx2: conc([], [al, X) 2S

38

|2 X = [a]
xxx3: conc([a], [b], Y) 7

***x1: conc([], [al, X), conc(X,
*x%x2: conc([], [al, X) 2S

[2 X = [a]

*xx3: conc([a], [b], Y) 17

***x1: conc([], [al, X), conc(X,
x%x2: conc([], [al, X) 2S
[2 X = [a]
*xx3: conc([a], [b], Y) 17
**xx4: conc([], [b], T1_1) 7

***x1: conc([], [al, X), conc(X,
*x%x2: conc([], [al, X) 2S
[2 X = [a]
*xx3: conc([a], [b], Y) 17
**xx4: conc([], [b], T1_1) 27

***x1: conc([], [al, X), conc(X,
*x%x2: conc([], [al, X) 2S

[2 X = [a]

*xx3: conc([a], [b], Y) 17
**x*x4: conc([], [b]l, T1_1) 2S
|2 Ti_1 = [b]

xxx1: conc([], [al, X), conc(X,
xxx2: conc([], [a]l, X) 2S
[2 X = [a]
***3: conc([al, [b], Y) 17
1 Y = [a,b]
**xx4: conc([], [b], T1_1) 2S
|2 Ti_1 = [b]

***x1: conc([], [al, X), conc(X,
*x%x2: conc([], [al, X) 2S
[2 X = [a]
*xx3: conc([a], [b], Y) 1S
|1 Y = [a,b]
**x*x4: conc([], [b]l, T1_1) 2S
|2 Ti_1 = [b]

x%xx1: conc([], [al, X), conc(X,

[b],

[b],

[b],

[b],

(b],

[b],

(b],

39

Y,

Y,

Y,

fail

fail

fail

fail

fail

fail

fail

25,17

25,17

25,17

25,17

25,17

25,18,7

25,18,7

**xx2: conc([], [a], X) 2S

|2 X = [a]

**xx3: conc([a], [b], Y) 1S

1 Y = [a,b]

**x*x4: conc([], [b]l, T1_1) 2S
|2 Ti_1 = [b]

*xx5: fail 7

***x1: conc([], [al, X), conc(X,
**¥x2: conc([], [al, X) 2S
2 X = [al
**xx3: conc([a], [b], Y) 1S
|1 Y = [a,b]
**xx4: conc([], [b], T1_1) 2S
|2 Ti_1 = [b]
x%5: fail F

[b], Y), fail 2S,1S,F

*xxx1: conc([], [al, X), conc(X,
**xx2: conc([], [al, X) 2S
2 X = [al
*x*x3: conc([al, [bl, Y) 1S
1 Y = [a,b]
**xx4: conc([], [b], T1_1) 2S
|2 Ti_1 = [b]
x%5: fail F

[bl, Y), fail 28,1S87?,F

***x1: conc([], [al, X), conc(X,
**xx2: conc([], [a], X) 2S
2 X = [al
**x*x3: conc([a], [b], Y) 187
1 Y # [a,b]
**x*x4: conc([], [b]l, T1_1) 287
|2 Ti_1 # [b]
*xx5: fail F

[b], Y), fail 2S,1S87,F

***x1: conc([], [al, X), conc(X,
**¥x2: conc([], [al, X) 2S
2 X = [al
**x%x3: conc([a], [b], Y) 187
|1 Y # [a,b]
**x*x4: conc([], [b]l, Ti1_1) 2SFb
|2 Ti_1 # [bl
x%5: fail F

[b], Y), fail 2S,1S87,F

40

*xx1: conc([], [al], X), conc(X, [b], Y), fail 287,1SFb,F
x%xx2: conc([], [al, X) 2S
|2 X = [al
**x%x3: conc([a]l, [b]l, Y) 1SFb
1 Y # [a,b]
**xx4: conc([], [b], T1_1) 2SFb
|2 Ti_1 # [b]
**x5: fail F

x%*x1: conc([], [al, X), conc(X, [bl, Y), fail 2S7?,1SFb,F
***x2: conc([], [al, X) 2S7
|2 X # [a]
*xx3: conc([a], [b], Y) 1SFb
[1 Y # [a,b]
**x*x4: conc([], [b]l, Ti_1) 2SFb
|2 Ti_1 # [b]
**xx5: fail F

*xx1: conc([], [al, X), conc(X, [b], Y), fail 2SFb,1SFb,F
*xx2: conc([], [al, X) 2SFb
[2 X # [a]
**x%x3: conc([a]l, [b]l, Y) 1SFb
[1 Y # [a,b]
*xx4: conc([], [b], T1_1) 2SFb
|2 Ti_1 # [b]
**xx5: fail F

*xx1: conc([], [al, X), conc(X, [b], Y), fail 2SFb,1SFb,F
*xx2: conc([], [al, X) 2SFb
|2 X # [a]
**x%x3: conc([a]l, [b]l, Y) 1SFb
1 Y # [a,b]
**xx4: conc([], [b], T1_1) 2SFb
|2 Ti_1 # [b]
*xx5: fail F
no

41

Example 9: Disjunctive goals.
Points to note:

1. A disjunctive goal (such as the goal labelled ‘***2’ in this example) has
a goal status field consisting of two sub-fields — one for each disjunct —
separated by a ‘;’. If the second disjunct is not tried, the second subfield
will be blank.

2. If the first attempt to satisfy a compound disjunct (i.e. a disjunct con-
sisting of more than one goal, like the first disjunct in this example) fails,
this is indicated by an ‘F’ in the corresponding subfield of the goal status
field for the disjunction. Failure of a disjunct on backtracking would be
indicated by ‘Fb’; and failure of a first attempt to satisfy a disjunct con-
sisting of a single goal would be indicated by the code for the failure mode
of that goal, e.g. ‘Fm’, ‘Fu’, or ‘Fs’.

N.B. See also Example 10, which shows how variable bindings associated with
disjunctive goals are displayed.

Program clauses as shown in database window:

1 q(a)

1 r(a)

1 t(a)

1 pX):-
(@(X),r(X),s(X);t(X)),
fail.

Goal: 7- p(a).

Development of the TTT trace:
x**x1: p(a) 7
x**x1: p(a) 17

**x1: p(a) 17
**xx2: (q(a),r(a),s(a);t(a)) 7

x**x1: p(a) 17
**xx2: (q(a),r(a),s(a);t(a)) 7;

42

***x1: p(a) 17
*+xx2: (q(a),r(a),s(a);t(a))
***3: q(a) 7

***x1: p(a) 17
*+xx2: (q(a),r(a),s(a);t(a))
**x3: q(a) 17

x*kx1: p(a) 17
**%x2: (q(a),r(a),s(a);t(a))
**xx3: q(a) 18

***x1: p(a) 17

**%x2: (q(a),r(a),s(a);t(a))
***3: q(a) 1S
*xxx4: r(a) 7

***x1: p(a) 17

**%x2: (q(a),r(a),s(a);t(a))
**x3: q(a) 1S
*xx4: r(a) 17

***x1: p(a) 17

**%x2: (q(a),r(a),s(a);t(a))
**x3: q(a) 1S
*xx4: r(a) 1S

***x1: p(a) 17

*+xx2: (q(a),r(a),s(a);t(a))
***3: q(a) 1S
**xx4: r(a) 18
**xx5: s(a) 7

***x1: p(a) 17

**x2: (q(a),r(a),s(a);t(a))
***3: q(a) 1S
*x**x4: r(a) 1S
***x5: s(a) Fu

***x1: p(a) 17

*x*xx2: (q(a),r(a),s(a);t(a))
***3: q(a) 1S
**xx4: r(a) 187
**xx5: s(a) Fu

***x1: p(a) 17

xxx2: (q(a),r(a),s(a);t(a))
***3: q(a) 1S
*x**4: r(a) 1SFb
***x5: s(a) Fu

***x1: p(a) 17

*x*xx2: (q(a),r(a),s(a);t(a))
***3: q(a) 187
**xx4: r(a) 1SFb
**xx5: s(a) Fu

***x1: p(a) 17

**xx2: (q(a),r(a),s(a);t(a))
***3: q(a) 1SFb
**xx4: r(a) 1SFb
**xx5: s(a) Fu

x**x1: p(a) 17

*xx2: (q(a),r(a),s(a);t(a))
***3: q(a) 1SFb
**xx4: r(a) 1SFb
**xx5: s(a) Fu

x**x1: p(a) 17
x*x2: (q(a),r(a),s(a);t(a))
**%x3: q(a) 1SFb
**xx4: r(a) 1SFb
*xx5: s(a) Fu
***x6: t(a) 7

x**x1: p(a) 17
xxx2: (q(a),r(a),s(a);t(a))
**%3: q(a) 1SFb
**xx4: r(a) 1SFb
**xx5: s(a) Fu
***x6: t(a) 17

***x1: p(a) 17
**xx2: (q(a),r(a),s(a);t(a))
**%3: gq(a) 1SFb
**xx4: r(a) 1SFb
**xx5: s(a) Fu
*xx6: t(a) 1S

***x1: p(a) 17
*xx2: (q(a),r(a),s(a);t(a))
***3: q(a) 1SFb
**xx4: r(a) 1SFb
**xx5: s(a) Fu
*xx6: t(a) 1S

x**x1: p(a) 17
*xx2: (q(a),r(a),s(a);t(a))
**%3: gq(a) 1SFb
**xx4: r(a) 1SFb
**xx5: s(a) Fu
*xx6: t(a) 1S
*kx7: fail 7

***x1: p(a) 17
*xx2: (q(a),r(a),s(a);t(a))
***3: q(a) 1SFb
**xx4: r(a) 1SFb
**xx5: s(a) Fu
*xx6: t(a) 1S
*kx7: fail F

x**x1: p(a) 17
*xx2: (q(a),r(a),s(a);t(a))
**%3: gq(a) 1SFb
**xx4: r(a) 1SFb
**xx5: s(a) Fu
*xx6: t(a) 1S
*xx7: fail F

F;S

F;S?

45

***x1: p(a) 17
xxx2: (q(a),r(a),s(a);t(a))
**%3: q(a) 1SFb
**xx4: r(a) 1SFb
**xx5: s(a) Fu
***x6: t(a) 187
*xx7: fail F

x**x1: p(a) 17
*xx2: (qa),r(a),s(a);t(a))
***3: q(a) 1SFb
**xx4: r(a) 1SFb
**xx5: s(a) Fu
*xx6: t(a) 1SFb
*xx7: fail F

***x1: p(a) 17
*x*xx2: (q(a),r(a),s(a);t(a))
**%3: q(a) 1SFb
**xx4: r(a) 1SFb
**xx5: s(a) Fu
*x*6: t(a) 1SFb
*xx7: fail F

x*x1: p(a) 1Fs
*xx2: (q(a),r(a),s(a);t(a))
***3: q(a) 1SFb
**xx4: r(a) 1SFb
**xx5: s(a) Fu
*xx6: t(a) 1SFb
*xx7: fail F

***x1: p(a) 1Fs
*x*xx2: (q(a),r(a),s(a);t(a))
**%3: q(a) 1SFb
**xx4: r(a) 1SFb
**xx5: s(a) Fu
*xx6: t(a) 1SFb
*xx7: fail F
no

F;S?

F;S?

F;SFb

F;SFb

F;SFb

46

4.5 Default controls on trace output

In both the spy and Dichev tracers, it is possible to specify that tracing
output should be restricted to certain predicates only. However, the default
behaviour — i.e. if the tracer is just started without any additional specific
control information — is to trace every predicate (except for system predicates,
which are not shown by either the EPTB, or many implementations of the spy).
In many cases, the practical effect of this is a huge and unwieldy trace, which
makes it difficult to home in with precision on the source of any bugs that are
present. (N.B. In the spy and the EPTB, the quantity of output can be reduced
by the use of the ‘skip’ command: when applied to a goal which has just been
called, it suppresses display of any subgoals called in evaluating that goal, so
that only the outcome of its evaluation (success or failure, plus any bindings
that result) is shown. However, the ‘skip’ command is not applied by default -
it has to be input explicitly by the user — and so there is a tendency for it to
be used less frequently than its benefits would merit.)

The TTT trace output in its basic form (illustrated earlier in section 4.3.1) is
already compact — in most cases, at least as compact as the spy trace output,
and in many cases, more compact, particularly when backtracking occurs. Even
so, however, unrestricted tracing of predicates will still tend to generate traces
of considerable size: hence, as already indicated in section 4.1.5, it is desirable
to introduce some other means of restricting the output generated. This will
be achieved by various defaul t controls on the information made visible in the
trace. Examples 10 and 11 deal with such controls.

Example 10: Illustration of default curbs on output.

The program in this example is intended as an economical way of representing
the following undirected graph:

a Cc

ARVARY
b d

The top-level procedure ‘link(X,Y)’ is intended to succeed if there is a path
(possibly empty, if X and Y are the same node) in the graph which connects
the nodes X and Y. Points to note:

1. This example illustrates how the trace output develops if the trace is
started without any specific instructions being issued by the user concern-
ing the information to be made visible. The default behaviour under these
circumstances is for the tracer to show only the basic trace output for the
top-level goal itself, and its immediate sub-goals. If any of the immediate
subgoals does not behave as expected, the user can then issue commands

47

to examine the subtree descending from that node in more detail. The de-
fault command in such circumstances will be to reveal just one more layer
down, so that the user can go through the same process at that level, once
again expanding any goal nodes which are not behaving as expected, and
ignoring any that appear to be correct. In this way, the location of any
bug can be found rapidly by means of a top-down, informed depth-first
search of the proof tree.

2. Even if the top-level call is to a recursive procedure, the default behaviour
is as described in point 1 above, i.e. only the immediate subgoals of the top-
level goal would be shown, and any recursive calls to the same procedure
below that level would not be made visible unless requested. However,
as illustrated by Example 11, it will be possible to issue a command re-
questing in advance that all calls to a particular procedure or procedures
should be made visible.

3. Note that anonymous variables have a numerical suffix added, so that they
can be distinguished from one another.

4. To make it easier to see the relative indentation of different goals when
the trace output is quite large, the user will be able to request that the
space to the left of indented goals (usually blank) should be filled with
vertical line characters. This example illustrates the resulting appearance
of the trace output.

5. Variable bindings associated with successful evaluations of disjunctive
goals are labelled with ‘D1’ or ‘D2’, indicating that they resulted from
the success of the first or second disjunct, respectively. See for example
goals “***6’ and “**11°.

Program clauses as shown in database window (except for missing 2nd clause
of ‘same_path’, and any comments, which would not be shown):

1 directed_edge(c,b).
directed_edge(c,d).
3 directed_edge(a,b).

1 edge(X, Y):-
directed_edge (X, Y); directed_edge(Y, X).

1 member(X, [X|_1).
member (X, [_|T]):-
member (X, T).

/* same_path(X, Y, Forbidden_node_list) is true if X and Y are

48

the same node, or there is a path in the graph from X to Y
which doesn’t contain any of the nodes in
Forbidden_node_list. */

1 same_path(X, X, _).
same_path(X, Y, _):- edge(X, Y). /* As bug, miss out this
clause. */
2 same_path(X, Z, Forbidden_intermediate_nodes):-
edge(X, Y),
not (member (Y, Forbidden_intermediate_nodes)),
same_path(Y, Z, [Y|Forbidden_intermediate_nodes]).

/* link(X, Y) is true if the nodes X and Y are linked (N.B. any
node is linked to itself. The ‘edge’ subgoals here are to
check that X and Y are somewhere in the graph. 3rd arg. to
‘same_path’ is a list of nodes that shouldn’t be used in
finding a path from X to Y - this prevents looping.

*/

1 1link(X, Y):-
edge(X,),
edge(Y,),

same_path(X, Y, [X,Y]).

Goal: ?- link(a,d).

Complete TTT trace, assuming user requests all goals to be shown
(65 lines long - the corresponding spy trace is 96 lines):

**x*1: link(a,d) 1Fs

[**x*2: edge(a, _1) 1SFb

|11 1 #0b

[|***3: (directed_edge(a, _1) ; directed_edge(_1, a)) SFb;Fm
[1IDL _1 #b

|| [***4: directed_edge(a, _1) 3SFb

(1113 1 #b

|| [**43: directed_edge(_1, a) Fm

[**%5: edge(d, _2) 1SFb

[11 2 #c

[| ***6: (directed_edge(d, _2) ; directed_edge(_2, d)) Fm;SFb
| I1D2 2 #c

|| [**x7: directed_edge(d, _2) Fm

|| |**%8: directed_edge(_2, d) 2SFb

49

(1112 2 #c
[**x*9: same_path(a, d, [a,d]) 2Fs
[1*%10: edge(a, Y_1) 1SFb

[111 Y 1#5D

[|1**11: (directed_edge(a, Y_1) ; directed_edge(Y_1, a)) SFb;Fm
| ID1 Y 1#bD
[**12: directed_edge(a, Y_1) 3SFb
|13 Y 1#b

[**x42: directed_edge(Y_1, a) Fm
*13: not(member(b, [a,d])) SFb
*%x14: member (b, [a,d]) 2Fs

| *%15: member(b, [d]) 2Fs

| |**%16: member(b, []) Fm

*17: same_path(b, d, [b,a,d]) 2Fs
**18: edge(b, Y_2) 1SSFb

[1 Y2#c
|1 Y2 #a
[**19: (directed_edge(b, Y_2) ; directed_edge(Y_2, b)) Fm;SSFb
| ID2 Y 2 # c

| ID2 Y2 # a

[| **20: directed_edge(b, Y_2) Fm

[|**21: directed_edge(Y_2, b) 1SFb/3SFb

(111 Y 2 #c

113 Y2 #a

*%22: not(member(c, [b,a,d])) SFb

| ¥*x23: member(c, [b,a,d]) 2Fs

| | **%24: member(c, [a,d]) 2Fs

| | | *%25: member(c, [d]) 2Fs

[1||*%*26: member(c, []1) Fm

**27: same_path(c, d, [c,b,a,d]) 2Fs

|
|
|
|
|
|
|
|
|
|
|
|
|
|

**38: directed_edge(Y_3, c) Fm
*31: not(member(b, [c,b,a,d])) F
*%32: member (b, [c,b,a,d]) 2S
| **%33: member (b, [b,a,d]) 1S
*34: not (member(d, [c,b,a,d])) F

**28: edge(c, Y_3) 1SSFb

1 Y3 #b

1 Y 3 #d

[**29: (directed_edge(c, Y_3) ; directed_edge(Y_3, c)) SSFb;Fm
| ID1 Y3 #0D

[IDI Y_3 #d

[| **30: directed_edge(c, Y_3) 1SFb/2SFb
111 Y 3#5D

[111 Y 3 #d

[

*

|

|

*

I
Il
Il
[
| |*
[
Il
Il
||+
[
[
Il
Il
Il
[
[
[
Il
Il
[
[
[
Il
Il
Il
[
[
Il
Il
Il
[
[
[
Il
Il
[
[
[
Il

50

[1]]]%%35: member(d, [c,b,a,d]) 28
[11]]|**36: member(d, [b,a,d]) 2S
[1111]1*%%37: member(d, [a,d]) 2S
[11111]]%%38: member(d, [d]) 1S
[|1%%39: not(member(a, [b,a,d])) F
||]]*%40: member(a, [b,a,d]) 2S

[||]]|*%41: member(a, [a,d]) 1S

no

Development of trace with default restrictions on trace
output (assuming user keeps hitting the ‘return’ key):

x%%x1: link(a, d) 7
**x*x1: link(a, 4d) 17

*x%x1: link(a, d) 17
**xx2: edge(a, _1) 1S
[1 1 =D

**x*x1: link(a, 4) 17
**xx2: edge(a, _1) 1S
[1 1=5>D

*x**x5: edge(d, _2) 7

**x*x1: link(a, 4) 17
**xx2: edge(a, _1) 1S

[1 1 =D
**x5: edge(d, _2) 1S
1 2=c

***9: same_path(a, d, [a,d]) 7

*x%x1: link(a, d) 17
**xx2: edge(a, _1) 1S

[1 1 =D
*x**x5: edge(d, _2) 1S
1 2=c

***9: same_path(a, d, [a,d]) 2Fs

At this point, the user may identify the bug, simply by

seeing the result of goal number ‘***9’, and without having
seen any of the distracting details of the subtree involved

in evaluating that goal. However, if the bug is not identified,

51

the user can request more details of the

be shown.
**x*x1: link(a, d) 17

***2: edge(a, _1) 1S

|1 _1 =D

*x*xx5: edge(d, _2) 187

|1 2 #c

***9: same_path(a, d, [a,d])
**x*x1: link(a, d) 17

*x*xx2: edge(a, _1) 1S

|1 _1 =D

*x*xx5: edge(d, _2) 1SFb

[1 2#c

***9: same_path(a, d, [a,d])
*%x1: link(a, d) 17

*x*xx2: edge(a, _1) 187

|1 _1 #0Db

*x**5: edge(d, _2) 1SFb

[1 2#c

***9: same_path(a, d, [a,d])
**x*1: link(a, d) 17

*x**2: edge(a, _1) 1SFb

|1 _1 #0Db

**x5: edge(d, _2) 1SFb

|1 2 #c

***9: same_path(a, d, [a,d])
**x%x1: link(a, d) 1Fs

**xx2: edge(a, _1) 1SFb

|1 1 #0bD

*x*xx5: edge(d, _2) 1SFb

[1 2#c

***9: same_path(a, d, [a,d])

2Fs

2Fs

2Fs

2Fs

2Fs

92

subtree of

“x%x%x9° to

*%x1: link(a, d) 1Fs
*x%x2: edge(a, _1) 1SFb

[1 1#b

*x**x5: edge(d, _2) 1SFb

[1 2#c

***9: same_path(a, d, [a,d]) 2Fs

no

Example 11: Focussing attention on a predicate.

In the spy and EPTB tracers, it is possible to make visible only calls to
certain specified procedures. A similar facility will be available in the TTT,
although in this case, it is suggestedthat the general principle of minimising the
amount of trace output should be waived slightly, so that not just the calls to
the specified procedures are shown, but also the siblings and immediate subgoals
of any such calls, together with the top-level goal and its immediate subgoals.
The effect of this approach is that calls to the specified procedure or procedures
are not seen in total isolation, but rather as they are located within the overall
context of the computation, which is arguably useful for debugging purposes in
many instances. The resulting trace is still typically quite small, being usually
considerably smaller than a trace showing all calls.

It will be possible to alter dynamically (i.e. during the execution of the trace)
the procedure or procedures focussed upon — a feature not available in either
the spy, the EPTB or the TPM.

This example illustrates the ‘focussing’ process in concrete terms. It is ass-
umed that the user has requested that every call to the procedure ‘same_path’
should be displayed: the tracer will then output the minimum ‘context tree’
necessary to show all such calls . The final length of the trace is 23 lines, as
opposed to a length of 65 lines for the full trace (which was shown previously
at the start of Example 10).

Program clauses and goal as in Example 10.
Complete TTIT trace:

**x%x1: link(a, d) 1Fs
**x2: edge(a, _1) 1SFb

[1 1 #6b
**x5: edge(d, _2) 1SFb
1 2#c

***9: same_path(a, d, [a,d]) 2Fs
**10: edge(a, Y_1) 1SFb

33

|1 Y 1#bD
*%13: not (member(b, [a,d])) SFb
**17: same_path(b, d, [b,a,d]) 2Fs
**18: edge(b, Y_2) 1SSFb
|1 Y 2 #c
[1 Y2 #a
*%x22: not (member(c, [b,a,d])) SFb
**27: same_path(c, d, [c,b,a,d]) 2Fs
**28: edge(c, Y_3) 1SSFb
|1 Y3 #b
|1 Y 3 #d
**x31: not (member(b, [c,b,a,d])) F
*%34: not (member(d, [c,b,a,d])) F
*%39: not (member(a, [b,a,d])) F
no

4.6 Display of extra information

As described earlier in section 4.1.5, the user will be able to request — either
prospectively or retrospectively — the display of additional information beyond
the basic, default output. The examples in this section indicate some possible
kinds of additional information that could be requested.

Example 12: Showing immediate subgoals of a goal.

Program clauses and goal: as Example 10.
Trace output before command:

**x*x1: link(a, d) 17

***2: edge(a, _1) 1S <---- goal selected
1 1 =D

**x5: edge(d, _2) 18

[1 2 =c

Trace output after command:

*x%x1: link(a, d) 17

*x*xx2: edge(a, _1) 1S <---- goal selected

|1 _1 =D

*x**3: (directed_edge(a, _1) ; directed_edge(_1, a)) S;
*x**x5: edge(d, _2) 1S

|1 2 =c

54

Example 13: Showing entire subtree of a goal.

Program clauses and goal: as Example 10.
Trace output before command:

x%x1: link(a,d) 17

**xx2: edge(a, _1) 1S <---- goal selected
[1 _1=5

*x**x5: edge(d, _2) 1S

1 2=c

***9: same_path(a, d, [a,d]) 7
Trace output after command:

**x%1: link(a,d) 17
**xx2: edge(a, _1) 1S
|1 1 =D
**%3: (directed_edge(a, _1) ; directed_edge(_1, a)) S;
[IDL _1=0D
*x**4: directed_edge(a, _1) 3S
|3 _1 =D
**xx5: edge(d, _2) 1S
|1 2=c

***9: same_path(a, d, [a,d]) 7

Example 14: Showing instantiation of a clause.

As illustrated by this example, the TTT will use the same method as the
EPTB for showing the instantiation of a clause and the bindings of its variables.
Points to note:

1. The clause before and after instantiation resulting from matching with a
goal is represented by two adjacent lines with ‘... prefixes, so that they
stand out clearly from the lines representing goals, which have prefixes
containing ‘*’ characters, such as ‘***2’,

2. Clause variables are shown as they appear in the clauses of the program,
except for the addition of numerical suffixes. These suffixes allow clause
variables associated with different invocations of the same clause to be
clearly distinguishable from one another.

3. The bindings of clause variables after matching with a goal can be seen
by comparing the corresponding arguments in the lines representing the

35

clause before and after matching. To facilitate comparison, the corre-
sponding arguments are shown in vertical alignment with one another.
For example, immediately after the head of clause 2 of ‘conc’ matches
goal *¥**2’ the variable H_2 is bound to the value ‘b’; the variable L_2 is
bound to [c]; and the variable T1_2 is unbound, since it is shown simply
as ‘T'1.2’ in both ‘before matching’ and ‘after matching’ lines.

4. Each pair of lines showing the instantiation of a clause before and after
matching with a goal is immediately preceded by a line containing a ‘clause
status field’ (e.g. the line ‘|17 in this example). This field serves to identify
the clause involved, and is identical to the corresponding subfield of the
associated goal’s ‘goal status field’. Thus in this example, ‘17’ appears
also in the goal status field of the goal numbered “***2’. The clause status
field has a line to itself, because if a clause has been resatisfied several
times on backtracking, the sequence of ‘S’ characters indicating this may
require more space than would be available if the clause status field were
shown as a prefix on one of the two lines displaying the clause before or
after matching with a goal.

Program as shown in ‘database window’:

1 conc([HIT], L, [HIT1]):-
conc(T, L, T1).
2 conc([], L, L).

Goal: ?- conc([a,b]l, [c], L).
TTT trace before command:

x%xx1: conc([a,b], [c], L) 17

*xx2: conc([b]l, [c], T1_1) 17 <-- Clause 2 of this goal selected
**%*x3: conc([], [c], T1_2) 2S by cursor on ‘2’
|2 T1_2 = [c]

TTT trace after command:

*x*x1: conc([a,b], [c], L) 17
**xx2: conc([b], [c], T1_1) 17
[17
|.... conc([H_2|T_2], L_2, [H_2|T1_2]):- conc(T_2, L_2, T1_2).
|.... conc([b |[] 1, [c], [|T1_2]):- conc([] , [c], T1_2).
**%*x3: conc([], [c], T1_2) 2S
|2 T1_2 = [c]

96

Example 15: Showing current binding history of a variable.

Points to note:

1. On request from the user, successive bindings of a variable in the course
of a single attempt to satisfy a goal are shown separated by ’=’ characters
(as for example the two bindings of ‘L’ in this example). Usually a single
line will suffice to show the sequence of bindings, but if not, additional
lines may be added as necessary. The ordering of binding values is such
that the rightmost value in the lowermost line of values for a variable rep-
resents its most recent binding (e.g. in this trace, ‘[a,b|T1-2]’ is the most
recent binding of the variable ‘L’).

Program and goal as Example 14.
TTT trace before command:

x%xx1: conc([a,b], [c], L) 17 <--- Variable L selected by cursor
*%%x2: conc([b], [c], T1_1) 17 on ‘L’.
***3: conc([], [c], T1_2) 2S
|2 T1_2 = [c]

TTT trace after command:

x%xx1: conc([a,b], [c], L) 17
[2 L = [alT1_1] = [a,b|T1_2]
*xx2: conc([b], [c], T1_1) 17
**%x3: conc([], [c], T1_2) 2S
|2 T1_2 = [c]

Example 16: Showing full details as trace advances.
Program and goal as Example 14.

Development of the TTT trace:

x%x%x1: conc([a,b], [c], L) 7

**xx1: conc([a,bl, [c], L) 17

[1 L = [alT1_1] =

[17

|.... conc([H_1|T_1], L_1, [H_1|T1_1]):- conc(T_1, L_1, T1_1).
|.... conc([a |[bl], [c]l, [a IT1_11):- conc([bl, [c]l, Ti_1).

57

*okk] e
[1
[17

*okk] e
1
[17

*okkD
[1
[17

*okk] e

1
[1?

*okkD
1
[17
[
[....

*okk] e

1
17

*okkD
1
[17
[
[....

*kk3

conc([a,b], [c], L) 17
L = [alT1_1] =

. conc([H_1|T_1], L_1, [H_1|T1_1]):- conc(T_1, L_1, T1_1).
... conc(la [[b]], [c], [a |T1_11):- conc([b], [c]l, T1_1).
x*x%x2: conc([b], [c], L) 7

conc([a,b], [c], L) 17
L = [alT1_1] =

. conc([H_1|T_1], L_1, [H_1|T1_11):- conc(T_1, L_1, T1_1).
. conc([a |[bl]l, [c], [a |T1_1]):- conc([b]l, [c], T1i_1).

conc([b], [c], T1_1) 17
Ti_1 = [b|T1_2] =

. conc([H_2IT_2], L_2, [H_2|T1_2]):- conc(T_2, L_2, T1_2).
. conc([b [[1 1, [c], [IT1_2]):- conc([l, [c], T1_2).

conc([a,b], [c], L) 17
L = [alT1_1] = [a,bIT1_2] =

. conc([H_1|T_1], L_1, [H_1|T1_11):- conc(T_1, L_1, T1_1).
. conc([a |[bl]l, [c]l, [a |IT1_1]):- conc([b]l, [c], T1i_1).

conc([b], [c], T1_1) 17
Ti_1 = [b|T1_2] =

conc([H_2IT_2], L_2, [H_2|T1_2]):- conc(T_2, L_2, T1_2).
conc([b |[1 1, [cl, [[T1_2]):- conc([1, [cl, T1_2).

conc([a,b], [c], L) 17
L = [alT1_1] = [a,bIT1_2] =

conc([H_1|T_1], L_1, [H_1|T1_1]):- conc(T_1, L_1, T1_1).
conc([a |[bl], [c]l, [a |T1_1]1):- conc([b]l, [c], T1_1).
conc([b], [c], T1_1) 17

Ti_1 = [b|T1_2] =

conc([H_2IT_2]1, L_2, [H_2|T1_2]):- conc(T_2, L_2, T1_2).

conc([b [|[1 1, [c], [b [IT1_2]):- conc([], [c], T1_2).
: conc([], [c], T1_2) 7

98

*xx1: conc([a,b], [c], L) 17
1 L = [alT1_1] = [a,b|T1_2] =
[17
[.... conc([H_1|T_11, L_1, [H_1|T1_11):- conc(T_1, L_1, T1_1).
|.... conc([a |[b]], [c], [a IT11]):- conc([b], [c], T1_1).
xxx2: conc([b], [c], T1_1) 17
[1 Ti_1 = [b|T1_2] =
[17
|.... conc([H_2|T_2], L_2, [H_2]|T1_2]):- conc(T_2, L_2, T1_2).
[.... conc([b 011, [c], [IT1_2]1):- conc([], [cl, T1_2).
*xx3: conc([], [c], T1_2) 27
12 T1.2 = [c] =
[27
|.... conc([], L_3, L_3).
|.... conc([], [cl, [cl).

x%xx1: conc([a,b], [c], L) 17
11 L =[alTi_1] = [a,b|T1.2] =
[17
[.... conc([H_1|T_11, L_1, [H_1|T1_11):- conc(T_1, L_1, T1_1).
l.... conc([a I[b]], [e], [a IT1_11):- conc([bl, [cl, Ti_1).
**%x2: conc([b], [c], T1_1) 17
[t Ti_1t = [b|Tt_2] = [b,c] =
[17
|.... conc([H_2|T_2], L_2, [H_2|T1_2]):- conc(T_2, L_2, T1_2).
[.... conc([b 011, [c], [IT1_2]1):- conc([], [cl, T1_2).
**%%3: conc([], [c], T1 2) 27
12 T1.2 = [c] =
|27
|.... conc([], L_3, L_3).
|.... conc([], [cl, [cl).

39

x*xx1: conc([a,b], [c], L) 17

|1 L = [alT1_1] = [a,b|T1_2] = [a,b,c] =
|17

|.... conc([H_1IT_11, L_1, [H_1IT1_1]1):- conc(T_1, L_1, T1_1).

|.... conc([al[bl], [cl, [a IT1_11):- conc([b],

**%%x2: conc([b], [c], T1_1) 17
|1 Ti_1 = [b|T1_2] = [b,c] =
|17

[c], T1_1).

|.... conc([H_2IT_2], L_2, [H_2|T1_2]):- conc(T_2, L_2, T1_2).

[.... conc([b |01 1, [c], [IT1_2]1):- conc([],

**%*x3: conc([], [c], T1_2) 27
|2 T1_2 = [c] =

|27

|.... conc([], L_3, L_3).
|.... conc([1, [cl, [cl).

x*xx1: conc([a,b], [c], L) 17

|1 L = [alT1_1] = [a,b|T1_2] = [a,b,c] =
|17

[c], T1_2).

|.... conc([H_1IT_11, L_1, [H_1IT1_1]1):- conc(T_1, L_1, T1_1).

|.... conc([a |[bl], [c]l, [a |IT1_11):- conc([b],

*%%x2: conc([b], [c], T1_1) 17

[1 Ti_1 = [bIT1_2] = [b,c] =
[17

[c], T1_1).

|.... conc([H_2IT_2], L_2, [H_2|T1_2]):- conc(T_2, L_2, T1_2).

|[.... conc([b I[] 1, [c], [IT1_2]):- conc([],
**%*x3: conc([], [c], T1_2) 2S

|2 T1_2 = [c]

|28

|.... conc([], L_3, L_3).

|.... conc([1, [cl, [cl).

60

[c], T1_2).

*okk] e

[1
|17

*okk] e

conc([a,b], [c], L) 17
L = [alT1_1] = [a,b|T1_2] = [a,b,c] =

conc([H_1|T_11, L_1, [H_1|T1_11):- conc(T_1, L_1, T1_1).
conc([a [[bl], [c], [a IT1_1]):- conc([bl, [c], T1_1).

*xx2: conc([b], [c], T1_1) 1S

[1
18

Ti_1 = [b|T1_2] = [b,c]

conc([H_2IT_2]1, L_2, [H_2|T1_2]):- conc(T_2, L_2, T1_2).
conc([b |[1 1, [c], [IT1_2]):- conc([], [cl, T1_2).

**%*x3: conc([], [c], T1_2) 2S

|2

12S
...
...

[1
18

TN

[1

1S

T1_2 = [c]

conc([], L_3, L_3).
conc([], [cl, [cl).

conc([a,b], [c], L) 1S
L = [alT1_1] = [a,b|T1_2] = [a,b,c]

conc([H_1IT_11, L_1, [H_1|T1_11):- conc(T_1, L_1, T1_1).
conc([a |[bl], [c]l, [a IT1_11):- conc([bl, [cl, T1_1).
conc([bl, [c], T1_1) 1S

Ti_1 = [b|T1_2] = [b,c]

conc([H_2IT_2]1, L_2, [H_2|T1_2]):- conc(T_2, L_2, T1_2).
conc([b |[1 1, [c], [IT1_2]):- conc([], [cl, T1_2).

**%*x3: conc([], [c], T1_2) 2S

|2
|28

T1_2 = [c]

conc([], L_3, L_3).
conc([], [cl, [cl).

61

x%x1: conc([a,b], [c], L) 1S
|1 L = [alT1_1] = [a,b|T1_2] = [a,b,c]
|18
|.... conc([H_1IT_11, L_1, [H_1IT1_1]1):- conc(T_1, L_1, T1_1).
|.... conc([al[bl], [cl, [a IT1_11):- conc([bl, [cl, T1_1).
**x%x2: conc([b], [c], T1_1) 1S
|1 Ti_1 = [b|T1_2] = [b,c]
| 1S
|.... conc([H_2IT_2], L_2, [H_2|T1_2]):- conc(T_2, L_2, T1_2).
|[.... conc([b I[]1 1, [c]l, [b IT1_2]1):- conc([l, [cl, T1_2).
**%*x3: conc([], [c], T1_2) 2S
|2 T1_2 = [c]
|2S
|.... conc([], L_3, L_3).
[.... conc([], [c], [c]).

yes

4.7 Handling of assertion and retraction

One of the features available in the TTT will be its use of the ‘database win-
dow’ to show dynamic changes to the database brought about by the assertion
and retraction of clauses. (N.B. The Prolog database can also be changed as
a result of using the system predicate ‘consult’” — the tracer would have to be
able to deal with that as well, although the use of ‘consult’ is not considered in
this report.) This will be particularly useful for dealing with faulty programs
involving database modification, which are often difficult to debug with some
other tracers.

The method used for labelling the clauses of a procedure, illustrated by Ex-
amples 17 to 19, allows the original and current clause sets for a procedure to
be easily identifiable. Each clause of a procedure is assigned a unique identify-
ing number, which it retains throughout the execution of the program, so that
different invocations of the same clause are readily identified as involving the
same clause, even from the trace window alone. (This is important, because it
means that a hard copy of the trace of the program can supply this information
on its own, without the need for any hard copies of the database window.)

Example 17: Assertion using ‘assert’ or ‘assertz’.

Points to note:

1. If a clause has been added to the database using ‘assert’ or ’assertz’ —
both of which will add it to the bottom of the database — this is indicated

WK

by a “z” next to its identifying number.

62

Initial p clauses as shown in database window:

pla, _).
p(b, c).
p(d, c).
p(d, d).
pe, £).

g w N

Goal: ?7- p(b, X), assert(p(e,g)), p(Y,g).
(N.B. ‘assertz’ would have the same effect here.)

Development of the TTT trace and database windows:

(N.B. The two windows will not appear side by side in the
tracer - if Ved is being used, one window will be above the
other, and on a Sun workstation, the windows could be
Sunview windows)
Trace window Database window
pla,).
p(b, c).
p(d, c).
p(d, 4d).
pe, £).

*x*xx1: assert(p(e,g)), p(Y,g) 7

g WN -

pla,).
p(b, c).
p(d, c).
p(d, 4d).
pe, £).

*x*xx1: assert(p(e,g)), p(Y,g) 7
*x%x2: assert(p(e,g)) 7

g WN -

*x*xx1: assert(p(e,g)), p(Y,g) S,7
***x2: assert(p(e,g)) S

pla,).
p(b, c).
p(d, c).
p(d, 4).
pe, £).
6z p(e, g).

g WwN -

63

*okk] e

*okkD
*kk3 2

*okk] e

*kkD
*%%3:

EEE

*okk2
k%32

|6z

EEEN

*okkD
k%32

|6z
yes

Example 18: Assertion using ‘asserta’.

assert(p(e,g)), p(Y,g)
assert(p(e,g)) S

assert(p(e,g)), p(Y,g)
assert(p(e,g)) S
p(Y,g) 627

assert(p(e,g)), p(Y,g)

assert(p(e,g)) S
p(Y,g) 628
Y=-¢e

assert(p(e,g)), p(Y,g)

assert(p(e,g)) S
p(Y,g) 628
Y=¢e

Points to note:

1. Regardless of whether it is asserted at the start or end of the database,
the first asserted clause of a procedure is given an identifying number
one greater than the number of the last of the original clauses for that
procedure. Thus in this example, in which there are 5 clauses for ‘p’ in
the database initially, the fresh clause is given the number 6.

2. If a clause has been asserted using ‘asserta’, this is indicated in the data-
base and trace windows by an ‘a’ character next to its identifying number

(as in ‘6a’ in this example).

3. Following the assertion or retraction of a clause, there is no renumbering
of any of the other clauses for the same procedure. However, if the ordinal

S5,6zS

S5,6zS

64

p(a,
p(b,
p(d,
p(d,
p(e,
p(e,

p(a,
p(b,
p(d,
p(d,
p(e,
p(e,

p(a,
p(b,
p(d,
p(d,
p(e,
p(e,

p(a,
p(b,
p(d,
p(d,
p(e,
p(e,

).
c).
c).
d).
£).
g).

).
c).
c).
d).
£).

g).

c).
c).
d).
£).
g .

).
c).
c).
d).
£).
g .

position of any other clause is altered as a result, and such a clause is
tried subsequently, the trace window indicates its ordinal position in the
database at the time of calling in parentheses, after its unique identifying
number. Hence in this example, after the assertion of clause ‘6a’ of ‘p’,
clause 2 becomes the third clause, and so its second invocation is indicated
by the appearance of ‘2(3)’ in the trace output.

4. Note that the original set of clauses for a procedure can always be easily
identified in the ‘database window’: its members are the clauses whose
identifying numbers have no ‘a’ or ‘z’ suffix attached.

Program: as Example 17.
Goal: ?7- p(b,c), asserta(p(e,g)), p(b,c).
Development of the TTT trace and database windows:

Trace window Database window

*x**x1: p(b,c), asserta(p(e,g)), p(b,c) 7 pla, _).
p(b, c).
p(d, c).
p(d, d).
pe, £).

O WN -

**x1: p(b,c), asserta(p(e,g)), p(b,c) ?
***x2: p(b,c) 7

pla,).
p(b, c).
p(d, c).
p(d, d).
p(e, £).

O WN -

**x1: p(b,c), asserta(p(e,g)), p(b,c) 27
***x2: p(b,c) 27

pa, _).
p(b, c).
p(d, c).
p(d, d).
p(e, £).

O WN -

65

*x*xx1: p(b,c), asserta(p(e,g)),
*okkD

*okk]

*kkD
*%%3:

EEE

*okkD
*kk3 2

*okok]

*kokD
*kk3
*kk4 :

EEE

*kkD
*kk3 2
*kkd

*okk]

*kokD
*kk3
*kk4 :

p(b,c)

p(b,c), asserta(p(e,g)),

p(b,c)

asserta(p(e,g))

p(b,c), asserta(p(e,g)),

p(b,c)

asserta(p(e,g))

p(b,c), asserta(p(e,g)),

p(b,c)

asserta(p(e,g))

p(b,c)

p(b,c), asserta(p(e,g)),

p(b,c)

asserta(p(e,g))

p(b,c)

p(b,c), asserta(p(e,g)),

p(b,c)

asserta(p(e,g))

p(b,c)

28

25

25

28

?

25

2(3)7

28

2(3)S

?

S

S

S

S

p(b,c)

p(b,c)

p(b,c)

p(b,c)

p(b,c)

p(b,c)

66

28,7

28,7

25,S8,7

28,8,7

2S,5,2(3)7

25,5,2(3)8

g WN -

g W N

p(a,
p(b,
p(d,
p(d,
p(e,

p(a,
p(b,
p(d,
p(d,
p(e,

p(e,
p(a,
p(b,
p(d,
p(d,
p(e,

p(e,
p(a,
p(b,
p(d,
p(d,
p(e,

p(e,
p(a,
p(b,
p(d,
p(d,
p(e,

p(e,
p(a,
p(b,
p(d,
p(d,
p(e,

).
c).
c).
d).
£).

2.
c).
c).
d).
£).

).
c).
c).
d).
f).

).
c).
c).
d).
£).

).
c).
c).
d).
f).

*¥x*x1: p(b,c), asserta(p(e,g)), p(b,c)

**%x2: p(b,c) 28
***3: asserta(p(e,g)) S
*x**x4: p(b,c) 2(3)S

yes

Example 19: Retraction.

Points to note:

1. When a clause is retracted, it is still shown in the database window, but
is marked with a # character to show that it is no longer current. Hence
the current set of clauses is easily identifiable from the ‘database window’:
its members are the clauses with no # prefix to their identifying number.

2. The clause heads are aligned with each other, and the clause numbers
are left-justified in a field wide enough to accommodate clause labels such
as ‘999z’. To maintain readability, it is important to have at least one
blank column preceding the clause heads: hence using a # suffix to the
clause label rather than a # prefix would not save any space, because it
would require a two-column gap between clause labels and clause heads.
Also, a # character at the start of a line stands out more clearly than one

somewhere in the middle of a line.

Program: as Example 17.

Goal: ?- retract(p(X,c)), p(d,d)

Development of the TTT trace and database windows:

Trace window

*x*xx1: retract(p(X,c)), p(d,d) 7

67

28,5,2(3)8

Database window

O WN -

O WN -

o
o)

p(a,
p(b,
p(d,
p(d,
p(e,

p(e,
p(a,
p(b,
p(d,
p(d,
p(e,

).
c).
c).
d).
f).

g).
.
c).
c).
d).
f).

**x1: retract(p(X,c)), p(d,d) 7 | 1 pa, _).
*x**x2: retract(p(X,c)) 7 | 2 p(b, c).
| 3 p(d, c).
| 4 p@d, 4).
| 5 pe, £).

|

|
***1: retract(p(X,c)), p(d,d) 8,7 | 1 pa, _).
*x**x2: retract(p(X,c)) S | #2 p(b, c).
| X=5b | 3 p(d, o).
| 4 p@d, 4).
| 5 pe, £).

|

|
*x**x1: retract(p(X,c)), p(d,d) S,7 | 1 pla, _).
*x**x2: retract(p(X,c)) S [#2 p(b, c).
| X=b | 3 p(d, c).
***3: p(d,d) 7 | 4 p(d, d).
| 5 ple, £).

|

|
*x**x1: retract(p(X,c)), p(d,d) S,4(3)7 | 1 pla, _).
***2: retract(p(X,c)) S | #2 p(b, ¢).
| X=b | 3 p(d, c).
wkx3: p(d,d) 4(3)7 | 4 p, d).
| 5 pe, £).

|

|
*x*xx1: retract(p(X,c)), p(d,d) S,4(3)S | 1 p(a,).
***2: retract(p(X,c)) S [#2 p(b,).
| X=b | 3 pd, o).
wkx3: p(d,d) 4(3)S | 4 p(d, d).
| 5 ple,).

|

|
**x1: retract(p(X,c)), p(d,d) S,4(3)S | 1 p(a,).
*x**x2: retract(p(X,c)) S [#2 p(b, c).
| X=b | 3 p(d, o).
**xx3: p(d,d) 4(3)S | 4 p(d, d).
yes | 5 p(e, £).

68

5 Summary

Three existing tracers — the standard ‘spy’ tracer, the experimental EPTB
tracer and the CDL-TPM, a commercially available version of the graphical
TPM tracer — have been compared and criticised according to their general
features and characteristics, and their adherence to a set of informal design
principles. Evaluation of these tracers has led to the conception of a new tracer,
which incorporates the best aspects from them, together with some additional
features, whilst avoiding some of their shortcomings.

The new tracer, known as the ‘Textual Tree Tracer’ (TTT), will be textual,
non-linear, and indented. It will use a ‘sideways tree’ representation of the
proof tree, which facilitates correlation of the trace with the program clauses,
as displayed in a separate ‘database window’. Like the EPTB tracer, the TTT
will make available a considerable amount of information concerning variable
bindings and the matching of clauses — although only the most essential infor-
mation will be shown automatically. Like the TPM, the TTT will show very
clearly the flow of control, including backtracking and the effect of the cut, by
its use of a tree representation. A characteristic feature of the TTT will be its
extensive use of default controls to restrict the quantity of trace output made
visible. When combined with a basic notation that is already very compact
— producing in many cases a trace shorter than the ‘spy’ trace, even when all
goals are shown — this feature of default restriction will lead to very concise
program traces, which will help to focus the attention of the user by minimising
the amount of distracting information, thereby making it easier to locate bugs
more quickly.

69

References

[Byrd 80]

[Clocksin & Mellish 81]

[Dewar & Cleary 86]

[Dichev & du Boulay 89]

[Eisenstadt 84]

Byrd, L. (1980). Understanding the control flow
of Prolog programs. In S-A Tarnlund (Ed.)., Pro-
ceedings of the Logic Programming Workshop,
Debrecen, Hungary.

Clocksin, W.F. & Mellish, C.S. (1981). Program-
ming in Prolog. Springer-Verlag.

Dewar, A.D. & Cleary, J.G. (1986). Graphical
display of complex information within a Prolog
debugger. International Journal of Man Machine
Studies, 25, 503-521, 1986.

Dichev, C. & du Boulay, B. (1989). An enhanced
trace tool for Prolog. Cognitive Science Research
Paper No.138, University of Sussex.

Eisenstadt, M. (1984). A powerful Prolog trace
package. Proceedings of the Sixth European Con-
ference on Artificial Intelligence (ECAI-84), Pisa,
Ttaly, 1984.

[Eisenstadt, Hasemer & Kriwaczek] Eisenstadt, M., Hasemer, T., & Kriwaczek,

[Eisenstadt & Brayshaw 88]

[Rajan 86]

[Rajan 90]

F. (1985). An improved user-interface for Pro-
log. In B. Shackel (Ed.), Human-Computer In-
teraction. Amsterdam: Elsevier (North-Holland),
1985.

Eisenstadt, M. & Brayshaw, M. (1988). The
transparent Prolog machine (TPM): An execu-
tion model and graphical debugger for logic pro-
gramming. Journal of Logic Programming, 5 (4),
1988, pp. 277-342.

Rajan, T. (1986). The design of animated tracing
tools for novice programmers. Technical Report
16, Human Cognition Research Laboratory, The
Open University, Milton Keynes.

Rajan, T. (1990). Principles for the design of dy-
namic tracing environments for novice program-
mers. Instructional Science, 19 (4/5), pp. 377-406,
1990.

70

