Ensuring Streams Flow*

Alastair Telford and David Turner

The Computing Laboratory, The University,
Canterbury, Kent, CT2 7TNF, UK
E-Mail: A.J.Telford@ukc.ac.uk
Tel: +44 1227 827590 Faz: +44 1227 762811
http://www.cs.ukc.ac.uk/people/staff/ajt/ESFP/

Abstract. It is our aim to develop an elementary strong functional pro-
gramming (ESFP) system. To be useful, ESFP should include structures
such as streams which can be computationally unwound infinitely of-
ten. We describe a syntactic analysis to ensure that infinitely proceeding
structures, which we shall term codata, are productive. This analysis is an
extension of the check for guardedness that has been used with definitions
over coinductive types in Martin-Lot’s type theory and in the calculus of
constructions. Qur analysis is presented as a form of abstract interpre-
tation that allows a wider syntactic class of corecursive definitions to be
recognised as productive than in previous work. Thus programmers will
have fewer restrictions on their use of infinite streams within a strongly
normalizing functional language.

1 Introduction

We aim to develop an Elementary Strong Functional Programming (ESFP) sys-
tem. That is, we wish to exhibit a language that has the strong normalization
(every program terminates) and Church-Rosser (reduction strategies converge)
properties whilst avoiding the complexities (such as dependent types, computa-
tionally irrelevant proof objects) of Martin-Lof’s type theory [11,20]. We would
like our language to have a type system straightforwardly based on that of
Hindley-Milner [6,14] and to be similar in usage to a language such as Miranda!
[22]. The case for such a language is set out in [25] — briefly, we believe that
such a language will allow direct equational reasoning whilst being sufficiently
elementary to be used for programming at the undergraduate level.

For such a language to be generally useful, it must be capable of programming
input/output and, more generally, interprocess communication. The methods

* This work was supported by the UK Engineering and Physical Sciences Research
Council grant number GR/L03279. We would also like to thank members of the
Theoretical Computer Science group at the University of Kent at Canterbury for
their discussions in connection with this work, particularly Andy King, Erik Poll
and Simon Thompson. Eduardo Giménez, of INRIA, France, has also been most
helpful in explaining his ideas and how they have been implemented within the Coq
system.

Miranda is a trademark of Research Software Limited.

2 Alastair Telford and David Turner

of doing this in Miranda, Haskell [21] etc., typically involve infinite lists (or
streams), or other non-well-founded structures.

However, in languages such as Miranda, the presence of infinite objects de-
pends upon the use of the lazy evaluation strategy in that terms are only evalu-
ated as far as is necessary to obtain the result of a program. In those languages,
infinite objects are syntactically undifferentiated from their finite counterparts
and, indeed, are of the same type. For example, in Miranda, the lists [1] and
[1..] both have the type [num], despite the fact that the latter is an infinite
list (of all the positive integers).

It is apparent that such structures pose problems if we wish to construct a
language that is strongly Church-Rosser. Firstly, how can we ensure that our
programs reach a normal form? Secondly, how do we do so without relying on a
particular evaluation method, as is the case with Miranda etc.? Finally, should
infinite objects have the same type as their finite counterparts?

We have argued in [25] that infinite structures, which we call codata, should
be kept in a separate class of types from the finite ones (data), reflecting the fact
that they are duals of one another, semantically. We have formulated rules for
codata in an elementary term language in [24]. These rules ensure that programs
involving codata and corecursion will be strongly Church-Rosser. However, we
would like the ESFP source language to permit more free-wheeling definitions,
which it should then be possible to translate into the intermediate language. We
now need a compile-time check to ensure that these definitions are well-formed
in the sense that the extraction of any piece of data from the codata structure
will terminate. This means that, for example, the heads of infinite lists must
be well-defined. Or, to put it another way, there is a continuous “flow” of data
from the stream. Coquand [2] in Type Theory, and Giménez [5], in the Calculus
of (Inductive) Constructions, have used the idea of guardedness, first proposed
by Milner in the area of process algebras [15], to produce methods for checking
whether corecursive terms are normalizable.

We argue that their notion of guardedness is too restrictive for programming
practice in that it precludes definitions such as:

evens 4 2 ¢ (comap (+2) evens) (1)

Here, <) is the coconstructor for infinite lists and comap is the mapping function
over infinite lists. Clearly, we can extract the nth positive even number from such
a list, yet evens is unguarded according to the definitions used by Coquand and
Giménez. Their notions of guardedness would appear to be sufficient for their
purpose of reasoning about infinite objects, particularly within the Coq system
[1], but are too limiting for programming in practice.

We have extended the idea of guardedness so that applications to the recur-
sive call will not necessarily mean that they will be rejected as being ill-defined.
To do this we have formulated the guardedness detection algorithm as an abstract
interpretation. In particular, definitions of the form of (1) will be detected as be-
ing guarded. Conversely, our analysis is sound in that it will disallow definitions

Ensuring Streams Flow 3

such as:
def

bh = 1< (cotl bh)
Here cotl is the tail function over infinite lists.
Whilst it is undecidable whether a corecursive function is well-defined the
extension to guardedness that we present here makes programming with infinite
objects more straightforward in a strongly normalizing functional language.

Overview of this Paper. In Sect. 2 we give a summary of the theory behind
infinite objects in strongly normalizing systems. We then show in Sect. 3 how
the idea of guardedness can be extended by using an abstract interpretation.
Examples of how the analysis detects whether a corecursive function is well-
defined are given in Sect. 4. This is followed in Sect. 5 by a proof that our
analysis is sound and in Sect. 6 we present our conclusions and suggestions for
future work.

2 Infinite Objects

In this section we summarise how infinite objects have been represented in func-
tional programming languages such as Miranda and Haskell and in systems based
upon type theory. In general, infinite objects may be seen as the greatest fixed
points of monotonic type operators. This, together with more details on the
relationship between data and codata can be found in [17]. Here, however, we
seek a concrete form of infinite data structures which does not rely upon the
greatest fixpoint model and, moreover, does not rely on either a particular eval-
uation strategy or a type-theoretic proof system to have a sound semantics. We
describe how we propose to represent infinite objects in an elementary strong
functional language and why this requires the automatic syntactic check upon
infinite recursive definitions that we present in the following sections.

2.1 Functional Programming and Infinite Data

Functional programming languages, such as Miranda, have exploited the idea
of lazy evaluation to introduce the idea of infinite data structures. Hughes has
pointed out the programming advantages of infinite lists in [9]. The disadvantages
of these methods is that they rely upon a fixed evaluation strategy. In Miranda,
definitions such as

ones = 1 : ones

only produce useful results with a lazy evaluation strategy (i.e. based upon call-
by-name): a strict evaluation strategy (based upon call-by-value) would produce
an undefined (“bottom”) result for an evaluation of such a definition. There is
also no guarantee that the streams will generate an arbitrary number of objects.
For example, the following is a legal definition in Miranda:

ones’ = 1 : tl ones’

4 Alastair Telford and David Turner

However, it is only possible to evaluate the head of this list, whilst the rest is
undefined. We have argued, in [25], that the existence of such partial objects
greatly complicates the process of reasoning about infinite objects.

2.2 Guarded Infinite Objects

Coquand [2] in Type Theory and Giménez [5] in the Calculus of Constructions
produced syntactic checks upon the definitions of infinite data structures which
they called guardedness. (Giménez makes additional restrictions in order to cope
with difficulties arising from impredicative types in the Calculus of Construc-
tions.) The idea is similar to that formulated by Milner [15] for process algebras
in that a check is made that recursive calls only occur beneath constructors.
However, the work of both Coquand and Giménez is intended only to produce
definitions of infinite structures that can be used within a proof system such
as Coq [1] in order to prove coinductive propositions i.e. types of infinite struc-
tures. Their definitions of guardedness are, however, insufficient for a practical
programming system. For example, we would not be allowed the following:

ints = 1 : map (+1) ints

This is due to the application of map to ints.
Conversely, the reasoning system of Sijtsma [18], being purely semantics-

based, is not implementable as an automatic means of detecting whether a codata
definition is productive.

2.3 Infinite Objects in ESFP

In ESFP, unlike in functional programming languages such as Haskell, we sep-
arate finite structures (data) from their infinite counterparts (codata). This is
due to the fact that we cannot rely upon a lazy evaluation strategy to provide a
computationally useful semantics for infinite structures. Indeed we seek reduction
transparency. It is claimed that pure functional languages have the advantage of
referential transparency over their imperative counterparts in that the meaning
of expressions is independent of context. Reduction transparency goes further in
that the semantics of expressions is independent of reduction order.

As in Coquand’s approach for type theory [2], we have maintained the pivotal
role of constructors in introducing codata. Thus, although we have separated
codata from data, we have maintained similar syntactic forms to that of Haskell
and Miranda. For example, the following is the type of infinite lists:

codata Colist a i, & Colist a

Functions upon codata use corecursion: that is they recurse on their results
rather than their inputs.

We need to check that an ESFP program will type check according to a set
of rules that also serve to define an intermediate term language into which the

Ensuring Streams Flow 5

Introduction rule

suS;{y:S, zuS=>&T F X =T}
Fix(y=s)z. X = &T

Side condition: X must be purely introductory with regard to z.
Write Fixyz. X for Ay’ .Fix(y =9y")z. X

Elimination rule
a:&AFla: A
Computation rule

L (Fix(y=s)z. X) > X[s/y, (Fixyz.X)/z]

Normal form
Fixs' F' : &T

where s’ and F’ are both normal forms.

Fig. 1. Rules for codata.

top-level language may be translated. These rules, given in natural deduction
style, are shown in Fig. 1 and were first given in [24]. They are derived from
those of Mendler and others [13] for the Nuprl system, a variant of type theory.

Briefly, recursive occurrences of a type are replaced with their suspension
(denoted with a &). This terminology comes from the fact that each layer of the
structure lies dormant (“in suspension”) until the function is applied. We keep
separate reductions upon elements of an infinite structure from the structure’s
construction. Data or codata used to construct parts of the structure is state
information. An infinite data structure will consist of:

— The data at its topmost level.

— A function to generate the next level of the structure, given some state
information.
This is the suspended part of the structure.

Parts of a suspended structure can only be obtained by applying the unwind
function ({) to produce a normal form of a type T, C e .. .e,, where each e; is
in normal form. Typically, some of the e; will be the normal forms of suspensions
of type T', &T'. We have, in effect, made the lazy evaluation strategy that was
implicit in the Haskell definition above, explicit in our approach. This method
thus is also similar to simulations of lazy evaluation that have been produced
for strict languages such as ML, as may be seen in [16].

It is the problem of guaranteeing the side condition of “X must be purely
introductory with regard to z” in the introduction rule that will concern us in
the rest of this paper. Indeed, it is this condition that determines whether our
codata definitions are “productive” or not in the sense that normal forms can
be produced when they are unwound. In [24] the restriction is a purely syntactic

6 Alastair Telford and David Turner

one only constructors and no destructors are permitted. This is similar to
Coquand’s definition of guardedness. It would be more convenient to extend
this in a way that is driven by semantic considerations. Formally, we have the
following definition:

Definition 1. Suppose that we have, f :: Ay — ... > A,, = &T', where n > 0,

and that T is a sum of product types (i.e. T A ZZZ” C;Tt.. .TiN(i), where

N(i) > 0). Then f is productive if and only if
(Var = AT . an = A7) (L (far...an) = Ciel .. eND)

where C; is a constructor of type T', — is the reflexive, transitive closure of
Bn-reduction and each e is in normal form. Here, Al denotes all the reducible
elements of type A; (see Definition 2 below). In addition, each e'Z is reducible.

This definition of productivity can be extended to closed expressions in the
obvious way.

In tandem with the above, we have a definition of what it means for an
expression to be reducible.

Definition 2. An expression, e, is reducible if one of the following applies:-

1. e is data and is normalizable i.e. is convertible to normal form.
2. e is codata and is productive.

We ensure productivity (which is a property of the term model semantics
of the ESFP rules) by defining an extension of Coquand and Giménez’s idea of
guardedness. This will serve as an abstraction of the property of productivity
which is clearly undecidable.

3 Detecting Guardedness by Abstract Interpretation

definition is guarded. Rather than work with a concrete semantics? of infinite
data structures (which may be expressed via our unwind function, for instance),
we use a simpler, abstract semantics, whereby the meaning of a stream is given
as a single ordinal. We do this by a form of backwards analysis which Hughes and
others® have used to detect properties such as strictness within lazy functional
programs. The point of a backwards analysis is that abstract properties, such
as the guardedness levels that we shall define below, flow from the outputs of
programs to the inputs. This reflects the intuitive way we think about infinite
streams: the resulting list, produced rather than analysed by the function, is

? The Cousots [3] have shown how different semantic views of infinite structures may
be related through abstract interpretation.

% [8] gives a good summary of abstract interpretation and backwards analysis in par-
ticular and [7] gives further details of backwards analysis.

Ensuring Streams Flow 7

neither guarded nor is it split up into its component parts. Therefore we know
that the guardedness level of the result is 0. We thus use 0 as an input to
our guardedness functions in order to determine whether the recursive call(s) is
guarded. If it is safely guarded by a constructor then the resulting guardedness
level will be greater than 0.

3.1 The Abstract Guardedness Domain, A

The abstract guardedness domain, A, is a complete lattice defined as the set,
Z U {—w,w}, where —w and w are the bottom and top points of the lattice,
respectively. The usual ordering on Z applies to the rest of the lattice. We refer
to elements of the lattice as guardedness levels and we call the greatest lower
bound operator (which is necessarily both associative and commutative), min.

The guardedness levels represent the depth at which recursion occurs in the
program graph. —w indicates an unlimited or unknown number of destructions,
whilst w indicates that an infinite number of constructors will occur before a re-
cursive call is encountered. No one program will use the whole lattice of guard-
edness levels since we will only have strictly finitary definitions in our source
language.

We also have an associative and commutative addition operation, which is
used to combine guardedness levels:

def
—WHAT = —w

rtaw ™ w (x € ZU{w})

de
THAY ;fa:+zy (r,y € 7)

3.2 Guardedness Functions

We define mappings, called guardedness functions, which transform guardedness
levels. This transformation is based upon the syntax of a function definition in
the source language. We assume that codata in our source-level language is based
upon a sugaring of the following abstract syntax of expressions:

ex=x|c|Are|Cer...en| fe|caseeof (p1 = e1)...(pn — en)

Each ¢ is a primitive constant and each p; is a pattern match. Each source
function definition will give rise to a number of guardedness functions. These
functions are defined via an abstract semantic operator, G, which maps from
expressions to A.

Definition 3. Assume that a function definition has the form, f z, ...z, = E.
Then the guardedness functions of f are defined, relative to a vector h of

8 Alastair Telford and David Turner

actual parameter functions, as follows:

de
1 h0 ™ G(f,B.n)
FroY G, B Ry (i>0)
fFhow (i > 0)

fFrhg® geasfno (gg{0w})i>0)

In the above, fg# is the principal (or zeroth) guardedness function of f. It
measures the degree to which the recursive call of f is guarded by constructors
within its own definition.

Definition 4. We say that a function f is guarded (relative to a vector, h, of
actual parameter functions) if and only if

FERO>A0

The other guardedness functions, fi#, where ¢ > 0, reflect the extent to
which the parameters of f are guarded within its definition. These auziliary
guardedness functions are important in that they allow us to determine whether
functions passed as parameters to f will be guarded within f. It is by this

mechanism of auxiliary guardedness functions that we can determine whether

functions of the form, f... o (comap ... f)..., are guarded.

The set of guardedness functions thus produced will in general be recursive.
However, since these functions operate upon a complete lattice, A, and can be
shown to be continuous (see [19]), their greatest fized point exists. This is found
by forming a descending Kleene chain®.

The G operator is used to define the guardedness functions over the syntactic
form of expressions in the source language. In defining this operator, we also
need, in general, a vector of actual parameter functions, h. This reflects the fact
that our function definitions may be higher-order, as is the case with comap
which applies a function to every element of a list. In practice, however, we shall
often omit this vector where it is inessential or empty.

Definition 5 (The G operator). Suppose that we have a named entity, f,
which may be either a function or a variable name. We define the G opera-
tor, which produces the guardedness level of f relative to an expression in the
source language, F, and a vector of actual parameter functions, h, in Fig. 2. The
definition of G involves the auxiliary operators, S, F and P, described below.

Commentary on the G Operator Definition. Clauses (8) and (9) extend
the definitions of Guardedness given by Coquand and Giménez. (8) permits
a function F (which may possibly be f itself) to be applied to an expression
involving f. (9) allows the possibility of corecursion occurring within the switch
expression of a case.

4 This contrasts with most abstract interpretations which deal with least fixed points
and ascending chains. However, we have used the definitions here to retain compat-
ibility with Coquand’s approach.

Ensuring Streams Flow 9

G(f,£,h) £ o (2)
G(f.c.h) 2 w (3)
G(f.2.h) 2w (4)
G(f, fname, k) < S(f, fname, () (5)
G(f, e B, h) 2 G(f, E, h) (6)
g(f,cm...an,h)"éf1+r£i’§g(f,a,-,h) ()
G(f,Fa,h) 2 F(f,F1,(a), h) (8)

G case sof (p1,e1) - (pu,en),) L min(minmin(G(7, ei, h), P (pi,e:) hg).,9) (9)
where g = G(f, s, h)

Fig. 2. Definition of the G operator.

Function applications. In clause (8) F is the guardedness function applicator:
it is a function which constructs a guardedness function application from the
corresponding application in the source program. The basic idea is that the ith
auxiliary guardedness function is applied to the guardedness level of the ith
actual parameter. Where the ith auxiliary guardedness function does not exist,
due to applications which return a function as their result, we must instead safely
approximate using the nom# function. This will return —w on all inputs apart
from w.

We must also consider the possibility that the function, f, whose guardedness
we are investigating, may occur in the body of the function F' being applied.
We thus have another operator, S, the substituted guardedness level of f in F.

It is intended to ensure that functions are guarded within mutually recursive

definitions. If, F y; ...y, B then S(f,F,a) et (f,E',a). Thus with the

application of a named function, fname, say, we obtain the following:
i=n
G(f, fname a; . ..a,, h) = min(S(f, fname, b),nlj{l/\/(ﬁfnum@, i,a,h))

Here, b = a[h/z] and the auxiliary function, NV, produces the guardedness level
of the application of a named function to a parameter:

. # o .
N(f, fname,i,a, h) "< fnam;i by ifis Arlty(fname)
nom# g otherwise

Here, g = G(f, a;, h). The substitution required to produce b consists of substi-
tuting actual parameters for their formal counterparts.
Similarly, we may obtain for corecursive applications:

G(f.] - -ay. h) = min(0, min (/. f.i,a, h)

10 Alastair Telford and David Turner

This means that f can be applied to a call of itself and still be guarded, pro-
vided that its auxiliary guardedness functions return appropriate results on the
guardedness levels of the actual parameters.

In higher-order functions, the function applied may be one of the parameters

to the function. This is dealt with by substituting the corresponding element of

h for the variable, so that we have F(f,z;,i,a, h) =l (f.hj,i,a,h). Where we

do not know the actual parameter functions that comprise h, an abstraction will
be constructed over h. Examples of this will be seen in Sect. 4 where the second
argument of comap is applied in the definition of the Hamming function. This
method of dealing with general applications, including higher-order constructs,
comes from [7] and is explained further in [19].

case ezpressions. (9) extends the class of definitions that are allowed in that
the recursive call may conceivably occur in the switch, s, of the case expression.
This means that the guardedness of s, relative to the recursive call is paramount
when considering the guardedness of the whole expression: the case expression
cannot be productive if the switch is not productive. This is why the resulting
guardedness level is the minimum of the guardedness level of the switch together
with the guardedness level of the rest of the components of the case expression.
Even if the switch is productive, we have to ensure that each part of the struc-
ture that may be split up by this pattern matching process is in turn guarded.
This is done by defining the pattern guardedness function, P, for every pattern,
expression pair in the case statement. P is defined as follows:

def 7:N(Z) j j
P (pi.ei) RO = min (G (v, ei,h) — D(vi.pi))
Here, D is the level of destruction function of the infinite object, f i.e. the
depth of a pattern matching variable where depth is measured by the number
of constructors. It is defined as follows:

de i=n
Dw,Caqr...q0) 2 1+ I}.la:;(,D(U:%)
i=
Here, max and — are the dual operations to min and +, respectively. In the
definition of P, above, v] € Var(p;) where Var(p;) is the set of variables in the

pattern, p;. In addition, N (i) e |Var(p;)|.
4 Example of Guardedness Analysis
In this section we show how guardedness functions may be used to detect whether

certain streams are well-defined or not. As a substantial example, we look at
the Hamming function which, in the form that we give, cannot be detected as

Ensuring Streams Flow 11

being guarded by the definitions of Coquand [2] or Giménez [5]. The Hamming
function, ham is defined as the list of positive integers that have only 2 and 3 as
their prime factors further details on such a function can be found in [4]. It
and functions used in its definition are given in a Haskell-like syntax in Fig. 3.
The type Colist here consists of the streams of integers. Further examples of
guardedness analysis, including a demonstration that both comap and comerge
are guarded, may be found in [19].

ham :: Colist

ham < 1 (comerge (comap (x2) ham) (comap (x3) ham))

comap :: (Int — Int) — Colist — Colist
def

comap f (aQy) = (fa)d(comap fy)

comerge :: Colist — Colist — Colist

comerge 1Q(az) mQ(bdy) “

case compare ab of
LT — a{(comerge x m)
EQ — a{(comerge T y)
GT — b (comerge ly)

Fig. 3. Definition of the Hamming function.

In the analyses that follow we shall assume that the guardedness functions
of purely recursive functions such as compare will be the identity guardedness
function. We shall omit the vector of actual parameter functions except where
necessary and refer to larger expressions by E, E', E" etc. We shall also assume
that definition via pattern matching is a sugaring of nested case statements.

Analysis of Auxiliary Guardedness Functions of comap and comerge.
In order to analyse the ham function we shall need to know the level of guard-
edness of the second argument of comap and of both of the two arguments of
comerge.

comap? (h) 0 = G(I, case I of (ady) — E')

=min(G(l, E', (h)), P (ady, E') (h) 0,0)
G E" (h) = G(1, (fa)O(comap fy),(h)) = w
P (ay, E') (h) 0 = min(G(a, E', (h)) = 1,G(y, ', (h)) = 1)

G(a, E',(h)) = 1+ F(a, f,1,(a), (h))
=1+h70

G(y, E', (h)) = 1+ comap¥ (h)0

It follows that,

12 Alastair Telford and David Turner

comap¥ (h) 0 = min(h¥ 0, comap? (h) 0,0)

comerge? 0 = G(1, case | of (apx) — E')
= min(P (adx, E') 0,0)

P (adz,E') 0 = min(G(a, E') — 1,G(z,E") — 1)
G(a, E") = G(a,case m of (bJy) — E")
= G(a, case compare ab of E'")
=min(l + G(a,a),1 + G(a,a),w) =1
G(x,E") = min(1 + comergef& 0,1+ comergef& 0,w)
Thus,
comergef& 0 = min(1 — 1, min(1 4+ cnmergef& 0,1+ comergef& 0,w)—1,0)
= min(0, (:0777,67’.(161‘FE 0,0)
The greatest fixpoint of the functional corresponding to this equation is 0.

Likewise, comerge;# 0 =min(G(b,E") — 1,G(y, E") — 1,0), and the solution
to this is also 0.

Analysis of the Main Function, ham.

ham# 0 =1+ G(ham, comerge (comap (X2) ham) (comap (x3) ham))

= 1+ min(S(ham, comerge),
(comerge? G(ham, (comap (x2) ham))),
(comerge? G(ham, (comap (x3) ham))))

= 1+ min(w, G(ham, comap (x2) ham), G(ham, comap (x3) ham))

3

(The above follows since comergef& and comergef both give 0 when applied to 0
and ham does not occur within the definition of comerge or any functions called
through comerge.)

G(ham, comap (x2) ham) = comap? ((x2))0 = GFP F#

where F# = \f.(min((x2)7 0, f,0)). Now, GFP F# =0, since (x2)¥0=0,
and so G(ham, comap (x2) ham) = 0. Similarly, G(ham, comap (x3) ham) = 0,
and thus we obtain,

ham# 0=1+min(w,0,0) =1

Therefore, ham is guarded.

5 Soundness and Completeness

It is necessary to show that any function that is detected as being guarded by
our abstract interpretation will indeed be productive in the sense that it will

Ensuring Streams Flow 13

be possible to obtain the normal form of any element of the structure within a
finite time. The following result does indeed show that our analysis is sound.

Theorem 6 (Due to Coquand, 1993). If we assume that all data terms are
normalizable then a codata function, f, will be productive for any set of inputs
if it is guarded and its definition includes only reducible functions apart from f.

Proof. The proof is by structural induction over the forms of defining expres-
sions. We shall give a sketch of part of the proof further details are in [19].
The base cases over primitive constants and variables are trivial, as is the
abstraction case given clause (6) in the definition of G.
As an example of one of the extensions, we take the case of (named) function
applications. Since the application is guarded, if n < Arity(fname)

0 < G(f,fname ay ...an, h)
= min(S(/, faame, b), min N (f, fame, i, a, h))
<G(f,Ebi/z1...by/2,],b) (10)

Here, fname z1...x, = FE, and b consists of @ with the components of h
substituted for corresponding free variables. The last inequality (10) is proved in
[19]. Since E[by /21 ... by /2] must, by assumption, include only reducible terms
(including possibly fname) apart from f, E[bi/z; ...b,/x,] must be productive
by the induction hypothesis. Consequently, the application must be productive.

Now, if n > m, where m = Arity(fname), then, since the application is
guarded, for all 1 < i < n—m, nom#*G(f, amyi, h) = w. Thus, G(f, @i h) = w.
It follows that for any G, where we add the definition, Gz 4 (fnameby ... b;) x,

with b as above, Gf& must produce w on this input too. It then follows similarly
to the inequality (10) that G'b; 41 is reducible and so fnamea, . .. a, is productive.

Our Hamming function example showed that our analysis could detect a
productive definition as being guarded which would not fulfil the Coquand def-
inition. The following result shows that our analysis is a complete extension of
Coquand’s work.

Theorem 7 (Completeness). For corresponding definitions in ESFP and Co-
quand’s type theory [2], if the definitions are guarded by Coquand’s algorithm
then they will be detected as being guarded by our abstract interpretation.

Proof. Coquand’s definition of guardedness can be formalised as an abstract
interpretation, mapping from expressions to the abstract semantic domain, A.
We can show, by structural induction over expressions that the abstract value
produced by Coquand’s analysis will always be less than or equal to that of ours.
Full details are given in [19].

14 Alastair Telford and David Turner
6 Conclusions and Future Work

We have demonstrated that a form of abstract interpretation, which may be
shown to be sound, can be used to extend the notion of guardedness for infinite
data structures. Such a method can be incorporated within a compiler for an
elementary strong functional programming language to detect whether infinite
objects are productive or not.

We would expect to be able to perform a similar analysis for data i.e. the
least fixed points of inductive type definitions. This would naturally follow since
Giménez [5] defined the dual notion of guarded by destructors for recursive func-
tion definitions over data. Consequently, we would expect to be performing the
dual analysis (with least fixed points rather than greatest fixed points) over the
same abstract domain, A. It would also be worth comparing such an approach to
that of Walther recursion where a decidable test for a broader class of definitions
than primitive recursion has been established [12].

Another avenue for future research would be to investigate the meta-theoretic
properties of this analysis. We have employed a backwards analysis in the style
of Hughes [7] and it is unclear whether a forwards analysis would be sufficient
to obtain the same results. A reason why forwards analysis may be inadequate
for guardedness detection is that, for certain definitions, we have to determine
whether the head of a Colist is guarded. It is known that, using a standard
forward analysis, it is not possible to detect head-strictness of lists [10].

It also remains to show precisely the complexity of this abstract interpre-
tation process. We have suggested in [19] that the overhead of performing this
analysis should be polynomial in practice and so should not impact badly upon
any future compiler for an elementary strong functional language.

We conclude that a syntactic check for productivity in a simply-typed yet
expressive functional language is made feasible by the work presented.

References

1. The Coq project. World Wide Web page by INRIA and CNRS, France, 1996. URL:
http://pauillac.inria.fr/"coq/coq-eng.html.

2. T. Coquand. Infinite objects in type theory. In H. Barendregt and T. Nipkow,
editors, Types for Proofs and Programs (TYPES ’93), volume 806 of Lecture Notes
in Computer Science, pages 62-78. Springer-Verlag, 1993.

3. P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpre-
tation. In Proceedings of the 19th ACM Symposium on Principles of Programming
Languages, pages 83-94. ACM press, 1992.

4. E.W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

5. E. Giménez. Codifying guarded definitions with recursive schemes. In P. Dybjer,
B. Nordstréom, and J. Smith, editors, Types for Proofs and Programs (TYPES ’94),
volume 996 of Lecture Notes in Computer Science, pages 39 59. Springer-Verlag,
1995. International workshop, TYPES ’94 held in June 1994.

6. J.R. Hindley. The principal type scheme of an object in combinatory logic. Trans-
actions of the American Mathematical Society, 146:29 60, 1969.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

Ensuring Streams Flow 15

R.J.M. Hughes. Backwards analysis of functional programs. In D. Bjgrner, A.P.
Ershov, and N.D. Jones, editors, Partial Evaluation and Mized Computation, pages
187-208. Elsevier Science Publishers B.V. (North-Holland), 1988.

R.J.M. Hughes. Compile-time analysis of functional programs. In Turner [23],
pages 117 155.

R.J.M. Hughes. Why functional programming matters. In Turner [23], pages 17-42.

. S. Kamin. Head-strictness is not a monotonic abstract property. Information

Processing Letters, 41(4):195 198, 1992.

P. Martin-Léf. An intuitionistic theory of types: predicative part. In H.E. Rose
and J.C. Shepherdson, editors, Proceedings of the Logic Colloquium, Bristol, July
1973. North Holland, 1975.

D. McAllester and K. Arkoudas. Walther recursion. In M.A. Robbie and J.K.
Slaney, editors, 13th Conference on Automated Deduction (CADE 13), volume
1104 of Lecture Notes in Computer Science, pages 643 657. Springer-Verlag, 1996.
P.F. Mendler, P. Panangaden, and R.L. Constable. Infinite objects in type theory.
Technical Report TR 86-743, Department of Computer Science, Cornell University,
Ithaca, NY 14853, 1987.

A.J.R.G. Milner. Theory of type polymorphism in programming. Journal of Com-
puter and System Sciences, 17(3):348 375, 1978.

A.J.R.G. Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer-Verlag, 1980.

L.C. Paulson. ML for the Working Programmer. Cambridge University Press,
second edition, July 1996.

J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Technical Report
CS-R9652, CWI, Netherlands, CWI, PO Box 94079, 1090 GB Amsterdam, The
Netherlands, 1996.

B.A. Sijtsma. On the productivity of recursive list definitions. ACM Transactions
on Programming Languages and Systems, 11(4):633 649, October 1989.

A.J. Telford and D.A. Turner. Ensuring the productivity of infinite structures.
Technical report, University of Kent at Canterbury, 1997.

S.J. Thompson. Type Theory and Functional Programming. Addison-Wesley, 1991.
S.J. Thompson. Haskell: The Craft of Functional Programming. Addison-Wesley,
1996.

D.A. Turner. Miranda: A non-strict functional language with polymorphic types. In
J.P. Jouannaud, editor, Proceedings IFIP International Conference on Functional
Programming Languages and Computer Architecture, volume 201 of Lecture Notes

D.A. Turner, editor. Research Topics in Functional Programming, University of
Texas at Austin Year of Programming Series. Addison-Wesley, 1990.

D.A. Turner. Codata. Unpublished technical note (longer article in preparation),
February 1995.

D.A. Turner. Elementary strong functional programming. In P. Hartel and R. Plas-
meijer, editors, FPLE 95, volume 1022 of Lecture Notes in Computer Science.
Springer-Verlag, 1995. 1st International Symposium on Functional Programming
Languages in Education. Nijmegen, Netherlands, December 4-6, 1995.

