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y, we believe thatsuch a language will allow direct equational reasoning whilst being su�cientlyelementary to be used for programming at the undergraduate level.For such a language to be generally useful, it must be capable of programminginput/output and, more generally, interprocess communication. The methods? This work was supported by the UK Engineering and Physical Sciences ResearchCouncil grant number GR/L03279. We would also like to thank members of theTheoretical Computer Science group at the University of Kent at Canterbury fortheir discussions in connection with this work, particularly Andy King, Erik Polland Simon Thompson. Eduardo Gim�enez, of INRIA, France, has also been mosthelpful in explaining his ideas and how they have been implemented within the Coqsystem.1 Miranda is a trademark of Research Software Limited.



2 Alastair Telford and David Turnerof doing this in Miranda, Haskell [21] etc., typically involve in�nite lists (orstreams), or other non-well-founded structures.However, in languages such as Miranda, the presence of in�nite objects de-pends upon the use of the lazy evaluation strategy in that terms are only evalu-ated as far as is necessary to obtain the result of a program. In those languages,in�nite objects are syntactically undi�erentiated from their �nite counterpartsand, indeed, are of the same type. For example, in Miranda, the lists [1] and[1..] both have the type [num], despite the fact that the latter is an in�nitelist (of all the positive integers).It is apparent that such structures pose problems if we wish to construct alanguage that is strongly Church-Rosser. Firstly, how can we ensure that ourprograms reach a normal form? Secondly, how do we do so without relying on aparticular evaluation method, as is the case with Miranda etc.? Finally, shouldin�nite objects have the same type as their �nite counterparts?We have argued in [25] that in�nite structures, which we call codata, shouldbe kept in a separate class of types from the �nite ones (data), re
ecting the factthat they are duals of one another, semantically. We have formulated rules forcodata in an elementary term language in [24]. These rules ensure that programsinvolving codata and corecursion will be strongly Church-Rosser. However, wewould like the ESFP source language to permit more free-wheeling de�nitions,which it should then be possible to translate into the intermediate language. Wenow need a compile-time check to ensure that these de�nitions are well-formedin the sense that the extraction of any piece of data from the codata structurewill terminate. This means that, for example, the heads of in�nite lists mustbe well-de�ned. Or, to put it another way, there is a continuous \
ow" of datafrom the stream. Coquand [2] in Type Theory, and Gim�enez [5], in the Calculusof (Inductive) Constructions, have used the idea of guardedness, �rst proposedby Milner in the area of process algebras [15], to produce methods for checkingwhether corecursive terms are normalizable.We argue that their notion of guardedness is too restrictive for programmingpractice in that it precludes de�nitions such as:evens def= 2} (comap (+2) evens) (1)Here, } is the coconstructor for in�nite lists and comap is the mapping functionover in�nite lists. Clearly, we can extract the nth positive even number from sucha list, yet evens is unguarded according to the de�nitions used by Coquand andGim�enez. Their notions of guardedness would appear to be su�cient for theirpurpose of reasoning about in�nite objects, particularly within the Coq system[1], but are too limiting for programming in practice.We have extended the idea of guardedness so that applications to the recur-sive call will not necessarily mean that they will be rejected as being ill-de�ned.To do this we have formulated the guardedness detection algorithm as an abstractinterpretation. In particular, de�nitions of the form of (1) will be detected as be-ing guarded. Conversely, our analysis is sound in that it will disallow de�nitions



Ensuring Streams Flow 3such as: bh def= 1} (cotl bh)Here cotl is the tail function over in�nite lists.Whilst it is undecidable whether a corecursive function is well-de�ned theextension to guardedness that we present here makes programming with in�niteobjects more straightforward in a strongly normalizing functional language.Overview of this Paper. In Sect. 2 we give a summary of the theory behindin�nite objects in strongly normalizing systems. We then show in Sect. 3 howthe idea of guardedness can be extended by using an abstract interpretation.Examples of how the analysis detects whether a corecursive function is well-de�ned are given in Sect. 4. This is followed in Sect. 5 by a proof that ouranalysis is sound and in Sect. 6 we present our conclusions and suggestions forfuture work.2 In�nite ObjectsIn this section we summarise how in�nite objects have been represented in func-tional programming languages such as Miranda and Haskell and in systems basedupon type theory. In general, in�nite objects may be seen as the greatest �xedpoints of monotonic type operators. This, together with more details on therelationship between data and codata can be found in [17]. Here, however, weseek a concrete form of in�nite data structures which does not rely upon thegreatest �xpoint model and, moreover, does not rely on either a particular eval-uation strategy or a type-theoretic proof system to have a sound semantics. Wedescribe how we propose to represent in�nite objects in an elementary strongfunctional language and why this requires the automatic syntactic check uponin�nite recursive de�nitions that we present in the following sections.2.1 Functional Programming and In�nite DataFunctional programming languages, such as Miranda, have exploited the ideaof lazy evaluation to introduce the idea of in�nite data structures. Hughes haspointed out the programming advantages of in�nite lists in [9]. The disadvantagesof these methods is that they rely upon a �xed evaluation strategy. In Miranda,de�nitions such asones = 1 : onesonly produce useful results with a lazy evaluation strategy (i.e. based upon call-by-name): a strict evaluation strategy (based upon call-by-value) would producean unde�ned (\bottom") result for an evaluation of such a de�nition. There isalso no guarantee that the streams will generate an arbitrary number of objects.For example, the following is a legal de�nition in Miranda:ones' = 1 : tl ones'



4 Alastair Telford and David TurnerHowever, it is only possible to evaluate the head of this list, whilst the rest isunde�ned. We have argued, in [25], that the existence of such partial objectsgreatly complicates the process of reasoning about in�nite objects.2.2 Guarded In�nite ObjectsCoquand [2] in Type Theory and Gim�enez [5] in the Calculus of Constructionsproduced syntactic checks upon the de�nitions of in�nite data structures whichthey called guardedness. (Gim�enez makes additional restrictions in order to copewith di�culties arising from impredicative types in the Calculus of Construc-tions.) The idea is similar to that formulated by Milner [15] for process algebrasin that a check is made that recursive calls only occur beneath constructors.However, the work of both Coquand and Gim�enez is intended only to producede�nitions of in�nite structures that can be used within a proof system suchas Coq [1] in order to prove coinductive propositions i.e. types of in�nite struc-tures. Their de�nitions of guardedness are, however, insu�cient for a practicalprogramming system. For example, we would not be allowed the following:ints = 1 : map (+1) intsThis is due to the application of map to ints.Conversely, the reasoning system of Sijtsma [18], being purely semantics-based, is not implementable as an automatic means of detecting whether a codatade�nition is productive.2.3 In�nite Objects in ESFPIn ESFP, unlike in functional programming languages such as Haskell, we sep-arate �nite structures (data) from their in�nite counterparts (codata). This isdue to the fact that we cannot rely upon a lazy evaluation strategy to provide acomputationally useful semantics for in�nite structures. Indeed we seek reductiontransparency. It is claimed that pure functional languages have the advantage ofreferential transparency over their imperative counterparts in that the meaningof expressions is independent of context. Reduction transparency goes further inthat the semantics of expressions is independent of reduction order.As in Coquand's approach for type theory [2], we have maintained the pivotalrole of constructors in introducing codata. Thus, although we have separatedcodata from data, we have maintained similar syntactic forms to that of Haskelland Miranda. For example, the following is the type of in�nite lists:codata Colist a def= a}Colist aFunctions upon codata use corecursion: that is they recurse on their resultsrather than their inputs.We need to check that an ESFP program will type check according to a setof rules that also serve to de�ne an intermediate term language into which the



Ensuring Streams Flow 5Introduction rule s :: S; fy :: S; x :: S ) &T ` X :: TgFix (y = s)x:X :: &TSide condition: X must be purely introductory with regard to x.Write Fix y x:X for �y0 :Fix (y = y0)x:XElimination rule a :: &A ` # a :: AComputation rule # (Fix (y = s)x:X)! X[s=y; (Fix y x:X)=x]Normal form Fix s0 F 0 :: &Twhere s0 and F 0 are both normal forms.Fig. 1. Rules for codata.top-level language may be translated. These rules, given in natural deductionstyle, are shown in Fig. 1 and were �rst given in [24]. They are derived fromthose of Mendler and others [13] for the Nuprl system, a variant of type theory.Brie
y, recursive occurrences of a type are replaced with their suspension(denoted with a &). This terminology comes from the fact that each layer of thestructure lies dormant (\in suspension") until the function is applied. We keepseparate reductions upon elements of an in�nite structure from the structure'sconstruction. Data or codata used to construct parts of the structure is stateinformation. An in�nite data structure will consist of:{ The data at its topmost level.{ A function to generate the next level of the structure, given some stateinformation.This is the suspended part of the structure.Parts of a suspended structure can only be obtained by applying the unwindfunction (#) to produce a normal form of a type T , C e1 : : : en, where each ei isin normal form. Typically, some of the ei will be the normal forms of suspensionsof type T , &T . We have, in e�ect, made the lazy evaluation strategy that wasimplicit in the Haskell de�nition above, explicit in our approach. This methodthus is also similar to simulations of lazy evaluation that have been producedfor strict languages such as ML, as may be seen in [16].It is the problem of guaranteeing the side condition of \X must be purelyintroductory with regard to x" in the introduction rule that will concern us inthe rest of this paper. Indeed, it is this condition that determines whether ourcodata de�nitions are \productive" or not in the sense that normal forms canbe produced when they are unwound. In [24] the restriction is a purely syntactic



6 Alastair Telford and David Turnerone | only constructors and no destructors are permitted. This is similar toCoquand's de�nition of guardedness. It would be more convenient to extendthis in a way that is driven by semantic considerations. Formally, we have thefollowing de�nition:De�nition 1. Suppose that we have, f :: A1 ! : : :! An ! &T , where n � 0,and that T is a sum of product types (i.e. T def= Pi=mi=1 Ci T 1i : : : TN(i)i , whereN(i) � 0). Then f is productive if and only if(8a1 :: Ar1 : : : an :: Arn) ((# (f a1 : : : an))� Ci e1i : : : eN(i)i )where Ci is a constructor of type T , � is the re
exive, transitive closure of��-reduction and each eji is in normal form. Here, Ari denotes all the reducibleelements of type Ai (see De�nition 2 below). In addition, each eji is reducible.This de�nition of productivity can be extended to closed expressions in theobvious way.In tandem with the above, we have a de�nition of what it means for anexpression to be reducible.De�nition 2. An expression, e, is reducible if one of the following applies:-1. e is data and is normalizable i.e. is convertible to normal form.2. e is codata and is productive.We ensure productivity (which is a property of the term model semanticsof the ESFP rules) by de�ning an extension of Coquand and Gim�enez's idea ofguardedness. This will serve as an abstraction of the property of productivitywhich is clearly undecidable.3 Detecting Guardedness by Abstract InterpretationIn this section we de�ne an abstract interpretation to detect whether a functionde�nition is guarded. Rather than work with a concrete semantics2 of in�nitedata structures (which may be expressed via our unwind function, for instance),we use a simpler, abstract semantics, whereby the meaning of a stream is givenas a single ordinal. We do this by a form of backwards analysis which Hughes andothers3 have used to detect properties such as strictness within lazy functionalprograms. The point of a backwards analysis is that abstract properties, suchas the guardedness levels that we shall de�ne below, 
ow from the outputs ofprograms to the inputs. This re
ects the intuitive way we think about in�nitestreams: the resulting list, produced rather than analysed by the function, is2 The Cousots [3] have shown how di�erent semantic views of in�nite structures maybe related through abstract interpretation.3 [8] gives a good summary of abstract interpretation and backwards analysis in par-ticular and [7] gives further details of backwards analysis.



Ensuring Streams Flow 7neither guarded nor is it split up into its component parts. Therefore we knowthat the guardedness level of the result is 0. We thus use 0 as an input toour guardedness functions in order to determine whether the recursive call(s) isguarded. If it is safely guarded by a constructor then the resulting guardednesslevel will be greater than 0.3.1 The Abstract Guardedness Domain, AThe abstract guardedness domain, A, is a complete lattice de�ned as the set,Z [ f�!; !g, where �! and ! are the bottom and top points of the lattice,respectively. The usual ordering on Z applies to the rest of the lattice. We referto elements of the lattice as guardedness levels and we call the greatest lowerbound operator (which is necessarily both associative and commutative), min.The guardedness levels represent the depth at which recursion occurs in theprogram graph. �! indicates an unlimited or unknown number of destructions,whilst ! indicates that an in�nite number of constructors will occur before a re-cursive call is encountered. No one program will use the whole lattice of guard-edness levels since we will only have strictly �nitary de�nitions in our sourcelanguage.We also have an associative and commutative addition operation, which isused to combine guardedness levels:�! +A x def= �!x+A ! def= ! (x 2 Z[ f!g)x+A y def= x+Zy (x; y 2 Z)3.2 Guardedness FunctionsWe de�ne mappings, called guardedness functions, which transform guardednesslevels. This transformation is based upon the syntax of a function de�nition inthe source language. We assume that codata in our source-level language is basedupon a sugaring of the following abstract syntax of expressions:e ::= x j c j �x:e j Ce1 : : : en j f e j case e of (p1 ! e1) : : : (pn ! en)Each c is a primitive constant and each pi is a pattern match. Each sourcefunction de�nition will give rise to a number of guardedness functions. Thesefunctions are de�ned via an abstract semantic operator, G, which maps fromexpressions to A.De�nition 3. Assume that a function de�nition has the form, f x1 : : : xn def= E.Then the guardedness functions of f are de�ned, relative to a vector h of



8 Alastair Telford and David Turneractual parameter functions, as follows:f#0 h 0 def= G(f; E;h)f#i h 0 def= G(xi; E;h) (i > 0)f#i h ! def= ! (i � 0)f#i h g def= g +A f#i h 0 (g 62 f0; !g; i � 0)In the above, f#0 is the principal (or zeroth) guardedness function of f . Itmeasures the degree to which the recursive call of f is guarded by constructorswithin its own de�nition.De�nition 4. We say that a function f is guarded (relative to a vector, h, ofactual parameter functions) if and only iff#0 h 0 >A 0The other guardedness functions, f#i , where i > 0, re
ect the extent towhich the parameters of f are guarded within its de�nition. These auxiliaryguardedness functions are important in that they allow us to determine whetherfunctions passed as parameters to f will be guarded within f . It is by thismechanism of auxiliary guardedness functions that we can determine whetherfunctions of the form, f : : : def= : : : (comap : : : f) : : :, are guarded.The set of guardedness functions thus produced will in general be recursive.However, since these functions operate upon a complete lattice, A, and can beshown to be continuous (see [19]), their greatest �xed point exists. This is foundby forming a descending Kleene chain4.The G operator is used to de�ne the guardedness functions over the syntacticform of expressions in the source language. In de�ning this operator, we alsoneed, in general, a vector of actual parameter functions, h. This re
ects the factthat our function de�nitions may be higher-order, as is the case with comapwhich applies a function to every element of a list. In practice, however, we shalloften omit this vector where it is inessential or empty.De�nition 5 (The G operator). Suppose that we have a named entity, f ,which may be either a function or a variable name. We de�ne the G opera-tor, which produces the guardedness level of f relative to an expression in thesource language, E, and a vector of actual parameter functions, h, in Fig. 2. Thede�nition of G involves the auxiliary operators, S, F and P , described below.Commentary on the G Operator De�nition. Clauses (8) and (9) extendthe de�nitions of Guardedness given by Coquand and Gim�enez. (8) permitsa function F (which may possibly be f itself) to be applied to an expressioninvolving f . (9) allows the possibility of corecursion occurring within the switchexpression of a case.4 This contrasts with most abstract interpretations which deal with least �xed pointsand ascending chains. However, we have used the de�nitions here to retain compat-ibility with Coquand's approach.



Ensuring Streams Flow 9G(f; f;h) def= 0 (2)G(f; c;h) def= ! (3)G(f; x;h) def= ! (4)G(f; fname;h) def= S(f; fname; hi) (5)G(f; �x:E;h) def= G(f; E;h) (6)G(f; C a1 : : : an;h) def= 1 + i=nmini=1 G(f; ai;h) (7)G(f; F a;h) def= F(f; F; 1; hai;h) (8)G(f; case s of hp1; e1i : : : hpn; eni;h) def= min( i=nmini=1 min(G(f; ei;h);P (pi; ei)h g); g) (9)where g = G(f; s;h)Fig. 2. De�nition of the G operator.Function applications. In clause (8) F is the guardedness function applicator :it is a function which constructs a guardedness function application from thecorresponding application in the source program. The basic idea is that the ithauxiliary guardedness function is applied to the guardedness level of the ithactual parameter. Where the ith auxiliary guardedness function does not exist,due to applications which return a function as their result, we must instead safelyapproximate using the nom# function. This will return �! on all inputs apartfrom !.We must also consider the possibility that the function, f , whose guardednesswe are investigating, may occur in the body of the function F being applied.We thus have another operator, S, the substituted guardedness level of f in F .It is intended to ensure that functions are guarded within mutually recursivede�nitions. If, F y1 : : : yp def= E0 then S(f; F;a) def= G(f; E0;a). Thus with theapplication of a named function, fname , say, we obtain the following:G(f; fname a1 : : : an;h) = min(S(f; fname ; b); i=nmini=1 N (f; fname ; i;a;h))Here, b = a[h=x] and the auxiliary function, N , produces the guardedness levelof the application of a named function to a parameter:N (f; fname ; i;a;h) def= � fname#i b g if i � Arity(fname)nom# g otherwiseHere, g = G(f; ai;h). The substitution required to produce b consists of substi-tuting actual parameters for their formal counterparts.Similarly, we may obtain for corecursive applications:G(f; f a1 : : : an;h) = min(0; i=nmini=1 N (f; f; i;a;h))



10 Alastair Telford and David TurnerThis means that f can be applied to a call of itself and still be guarded, pro-vided that its auxiliary guardedness functions return appropriate results on theguardedness levels of the actual parameters.In higher-order functions, the function applied may be one of the parametersto the function. This is dealt with by substituting the corresponding element ofh for the variable, so that we have F(f; xj ; i;a;h) def= F(f; hj ; i;a;h). Where wedo not know the actual parameter functions that comprise h, an abstraction willbe constructed over h. Examples of this will be seen in Sect. 4 where the secondargument of comap is applied in the de�nition of the Hamming function. Thismethod of dealing with general applications, including higher-order constructs,comes from [7] and is explained further in [19].case expressions. (9) extends the class of de�nitions that are allowed in thatthe recursive call may conceivably occur in the switch, s, of the case expression.This means that the guardedness of s, relative to the recursive call is paramountwhen considering the guardedness of the whole expression: the case expressioncannot be productive if the switch is not productive. This is why the resultingguardedness level is the minimum of the guardedness level of the switch togetherwith the guardedness level of the rest of the components of the case expression.Even if the switch is productive, we have to ensure that each part of the struc-ture that may be split up by this pattern matching process is in turn guarded.This is done by de�ning the pattern guardedness function, P , for every pattern,expression pair in the case statement. P is de�ned as follows:P (pi; ei)h 0 def= j=N(i)minj=1 (G(vji ; ei;h)�D(vji ; pi))Here, D is the level of destruction function of the in�nite object, f i.e. thedepth of a pattern matching variable where depth is measured by the numberof constructors. It is de�ned as follows:D(v; v) def= 0D(v; x) def= �!D(v; C q1 : : : qn) def= 1 + i=nmaxi=1 D(v; qi)Here, max and � are the dual operations to min and +, respectively. In thede�nition of P , above, vji 2 Var(pi) where Var(pi) is the set of variables in thepattern, pi. In addition, N(i) def= jVar(pi)j.4 Example of Guardedness AnalysisIn this section we show how guardedness functions may be used to detect whethercertain streams are well-de�ned or not. As a substantial example, we look atthe Hamming function which, in the form that we give, cannot be detected as



Ensuring Streams Flow 11being guarded by the de�nitions of Coquand [2] or Gim�enez [5]. The Hammingfunction, ham is de�ned as the list of positive integers that have only 2 and 3 astheir prime factors | further details on such a function can be found in [4]. Itand functions used in its de�nition are given in a Haskell-like syntax in Fig. 3.The type Colist here consists of the streams of integers. Further examples ofguardedness analysis, including a demonstration that both comap and comergeare guarded, may be found in [19].ham :: Colistham def= 1}(comerge (comap (�2) ham) (comap (�3) ham))comap :: (Int ! Int)! Colist ! Colistcomap f (a}y) def= (f a)}(comap f y)comerge :: Colist ! Colist ! Colistcomerge l@(a}x)m@(b}y) def=case compare a b ofLT! a}(comerge xm)EQ! a}(comerge x y)GT! b}(comerge l y)Fig. 3. De�nition of the Hamming function.In the analyses that follow we shall assume that the guardedness functionsof purely recursive functions such as compare will be the identity guardednessfunction. We shall omit the vector of actual parameter functions except wherenecessary and refer to larger expressions by E, E0, E00 etc. We shall also assumethat de�nition via pattern matching is a sugaring of nested case statements.Analysis of Auxiliary Guardedness Functions of comap and comerge.In order to analyse the ham function we shall need to know the level of guard-edness of the second argument of comap and of both of the two arguments ofcomerge . comap#2 hhi 0 = G(l; case l of (a}y)! E0)= min(G(l; E0; hhi);P (a}y; E0) hhi 0; 0)G(l; E0; hhi) = G(l; (fa)}(comap f y); hhi) = !P (a}y; E0) hhi 0 = min(G(a;E0; hhi)� 1;G(y; E0; hhi)� 1)G(a;E0; hhi) = 1 +F(a; f; 1; hai; hhi)= 1 + h#1 0G(y; E0; hhi) = 1 + comap#2 hhi 0It follows that,



12 Alastair Telford and David Turnercomap#2 hhi 0 = min(h#1 0; comap#2 hhi 0; 0)comerge#1 0 = G(l; case l of (a}x)! E0)= min(P (a}x;E0) 0; 0)P (a}x;E0) 0 = min(G(a;E0)� 1;G(x;E0)� 1)G(a;E0) = G(a; case m of (b}y)! E00)= G(a; case compare a b of E000)= min(1 + G(a; a); 1 + G(a; a); !) = 1G(x;E0) = min(1 + comerge#1 0; 1 + comerge#1 0; !)Thus,comerge#1 0 = min(1� 1;min(1 + comerge#1 0; 1 + comerge#1 0; !)� 1; 0)= min(0; comerge#1 0; 0)The greatest �xpoint of the functional corresponding to this equation is 0.Likewise, comerge#2 0 = min(G(b; E00)� 1;G(y; E00)� 1; 0), and the solutionto this is also 0.Analysis of the Main Function, ham.ham#0 0 = 1 + G(ham ; comerge (comap (�2) ham) (comap (�3) ham))= 1 +min(S(ham ; comerge);(comerge#1 G(ham ; (comap (�2) ham)));(comerge#2 G(ham ; (comap (�3) ham))))= 1 +min(!;G(ham ; comap (�2) ham);G(ham ; comap (�3) ham))(The above follows since comerge#1 and comerge#2 both give 0 when applied to 0and ham does not occur within the de�nition of comerge or any functions calledthrough comerge .)G(ham ; comap (�2) ham) = comap#2 h(�2)i 0 =GFP F#where F# = �f:(min((�2)#1 0; f; 0)). Now, GFP F# = 0, since (�2)#1 0 = 0,and so G(ham ; comap (�2) ham) = 0. Similarly, G(ham ; comap (�3) ham) = 0,and thus we obtain, ham#0 0 = 1 +min(!; 0; 0) = 1Therefore, ham is guarded.5 Soundness and CompletenessIt is necessary to show that any function that is detected as being guarded byour abstract interpretation will indeed be productive in the sense that it will



Ensuring Streams Flow 13be possible to obtain the normal form of any element of the structure within a�nite time. The following result does indeed show that our analysis is sound.Theorem 6 (Due to Coquand, 1993). If we assume that all data terms arenormalizable then a codata function, f , will be productive for any set of inputsif it is guarded and its de�nition includes only reducible functions apart from f .Proof. The proof is by structural induction over the forms of de�ning expres-sions. We shall give a sketch of part of the proof | further details are in [19].The base cases over primitive constants and variables are trivial, as is theabstraction case given clause (6) in the de�nition of G.As an example of one of the extensions, we take the case of (named) functionapplications. Since the application is guarded, if n � Arity(fname),0 < G(f; fname a1 : : : an;h)= min(S(f; fname ; b); i=nmini=1 N (f; fname ; i;a;h))� G(f; E[b1=x1 : : : bn=xn]; b) (10)Here, fname x1 : : : xn def= E, and b consists of a with the components of hsubstituted for corresponding free variables. The last inequality (10) is proved in[19]. Since E[b1=x1 : : : bn=xn] must, by assumption, include only reducible terms(including possibly fname) apart from f , E[b1=x1 : : : bn=xn] must be productiveby the induction hypothesis. Consequently, the application must be productive.Now, if n > m, where m = Arity(fname), then, since the application isguarded, for all 1 � i � n�m, nom#G(f; am+i;h) = !. Thus, G(f; am+i;h) = !.It follows that for any G, where we add the de�nition, Gx def= (fname b1 : : : bi)x,with b as above, G#1 must produce ! on this input too. It then follows similarlyto the inequality (10) that Gbi+1 is reducible and so fnamea1 : : : an is productive.Our Hamming function example showed that our analysis could detect aproductive de�nition as being guarded which would not ful�l the Coquand def-inition. The following result shows that our analysis is a complete extension ofCoquand's work.Theorem 7 (Completeness). For corresponding de�nitions in ESFP and Co-quand's type theory [2], if the de�nitions are guarded by Coquand's algorithmthen they will be detected as being guarded by our abstract interpretation.Proof. Coquand's de�nition of guardedness can be formalised as an abstractinterpretation, mapping from expressions to the abstract semantic domain, A.We can show, by structural induction over expressions that the abstract valueproduced by Coquand's analysis will always be less than or equal to that of ours.Full details are given in [19].
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