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CREDIBLY IDENTIFYING SOCIAL EFFECTS:
ACCOUNTING FOR NETWORK FORMATION AND

MEASUREMENT ERROR
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University of Warwick, Institute for Fiscal Studies and CAGE

Bansi Malde*

University of Kent, and Institute for Fiscal Studies

Abstract. Understanding whether and how connections between agents (networks) such as declared
friendships in classrooms, transactions between firms, and extended family connections, influence
their socio-economic outcomes has been a growing area of research within economics. Early methods
developed to identify these social effects assumed that networks had formed exogenously, and were
perfectly observed, both of which are unlikely to hold in practice. A more recent literature, both
within economics and in other disciplines, develops methods that relax these assumptions. This paper
reviews that literature. It starts by providing a general econometric framework for linear models of
social effects, and illustrates how network endogeneity and missing data on the network complicate
identification of social effects. Thereafter, it discusses methods for overcoming the problems caused
by endogenous formation of networks. Finally, it outlines the stark consequences of missing data on
measures of the network, and regression parameters, before describing potential solutions.

Keywords. Networks; Social effects; Econometrics; Endogeneity; Measurement error; Sampling
design

1. Introduction

Networks – connections between agents – are an ubiquitous part of life. Student’s academic achievement
is influenced by their friends and classmates; employee productivity by interactions with other team
members; individuals learn about new products and opportunities from their acquaintances and friends;
firms cooperate and compete with other firms in developing new innovations; and so on. Understanding
the nature and magnitude of the effects of networks is key to constructing meaningful models and
designing effective policies. A particular interest lies in identifying social effects – direct spillovers from
the outcomes of one agent to the outcomes of others.

Early empirical work seeking to identify social effects used data with limited information on networks,
typically information on membership of mutually exclusive groups such as classrooms, neighbourhoods,
or villages. Estimating social effects with this type of data suffers from two key limitations. First,
identifying the social effect is complicated by the reflection problem – a form of simultaneity where
it is not possible to identify who is influencing whom (Manski, 1993). Second, since more detail
on interactions within a group is not available, studies (implicitly) assume that all agents within a group
interact with one another in the same way. However, the composition of the group on both observed and
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2 ADVANI AND MALDE

unobserved dimensions could influence within-group interactions, and through this the actual outcome.
Ignoring variation in interactions within such groups can lead to misleading conclusions and policy design,
as shown in recent work by Carrell et al. (2013).

More recently, a growing body of research within empirical economics uses data which directly measure
interactions between pairs of agents (network data hereon) to sidestep these issues. This growth has been
spurred by the increasing availability of such data, as well as the development of methods to identify
and estimate social effects with such data. Starting with Bramoullé et al. (2009) and De Giorgi et al.
(2010), methods have been developed to overcome the reflection problem. They show how information
on network structure can be used to break the simultaneity, and obtain the necessary exclusion restrictions
for parameter identification. These methods, reviewed in detail by Advani and Malde (2014), Topa and
Zenou (2015) and Boucher and Fortin (2015), impose strong restrictions on the network formation process
and the quality of the data.

In particular, the network is assumed to be exogenous conditional on observed agent- and network-level
characteristics, and to be fully and perfectly observed by the researcher. Both assumptions are unlikely
to hold in practice. In a schooling context, for example, personality traits which are rarely observed by
a researcher might influence both a child’s choice of friends and her schooling performance. Estimates
of the influence of a child’s friends’ outcomes on her outcomes will be biased if her choice of friends
is not accounted for. Similarly, accurately collecting fine-grained information on all connections is very
costly and logistically challenging, making it rare to observe a complete, perfectly measured network.
This has important implications for identification of social effects using restrictions based on the network
structure: for example, the methods proposed by Bramoullé et al. (2009) and De Giorgi et al. (2010)
rely on information of who is not connected with whom to provide exclusion restrictions. Missing or
mismeasured data on link status will impair the ability of these methods to yield unbiased and consistent
social effect estimates.

The issue of endogenous link formation has long been recognized in the empirical literature, while that
of measurement error has received increasing attention recently. In this paper, we provide an overview
of a range of econometric methods to deal with network endogeneity and measurement error when
estimating linear models of social effects. The majority of empirical work on social effects uses linear
models, motivating our focus on this class of model.1 Whilst the process of network formation is of
interest in its own right, our interest is in identifying causal social effects, for which endogenous network
formation is a clear confounder. We therefore focus on methods that deal with the endogeneity in network
formation when estimating social effects, rather than all methods to model and estimate network formation
processes. We draw on methods developed in a broad range of disciplines, including economics, sociology
and mathematics, and express ideas in a manner that can be easily understood by economists.

We begin by laying out a general linear econometric model of social effects, separately for individual-
level and network-level outcomes. The individual-level specification nests a number of economic models
that have been applied in the literature. These specifications clarify the social effect parameters of interest,
and allow us to illustrate the consequences of endogenous link formation and measurement error in the
network on social effect estimates.

Next, we provide a brief overview of strategies to deal with endogenous network formation. We do not
hope or attempt to provide a comprehensive review of this now large and expanding literature. Instead, we
discuss, in a general way, four common approaches, using specific examples to illustrate ideas. The first
approach exploits exogenous variation arising from random assignment of interventions or links. Though
this provides clean identification, random assignment may not often be feasible. The second approach
exploits local shocks to network structure induced by natural- and quasi-experiments such as policy rules,
or unanticipated deaths of agents. When such variation is not available, a third approach – instrumental
variables – may be promising. This involves finding a variable which affects the link formation decision
but has no direct influence on the outcome of interest. However, such a variable may not be available in
many contexts. A final strand of the literature thus jointly models link and action choices. Approaches
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CREDIBLY IDENTIFYING SOCIAL EFFECTS 3

within this literature model these choices either sequentially, or simultaneously. In the former case, a
natural solution to account for bias arising from the self-selection of link is the control function where one
estimates the selection bias term, and ‘controls’ for it when estimating the social effect model. However,
where multiple equilibria are possible, this approach requires additional assumptions about equilibrium
selection.

Thereafter, we discuss the challenge posed by imperfectly measured networks. Missing data, due to
the sampling method or otherwise, have important consequences for both measurement of statistics of
the network, and the parameter estimates of social effect models. This is because networks consist of two
interrelated objects: agents (nodes) and links. A sampling strategy over one of these objects defines the
(conditional) sampling process over the other. This means that econometric and statistical methods for
estimation and inference developed under classical sampling theory are often not applicable to network
data. We first discuss the implications of missing data for the estimation of network statistics and regression
parameters. Thereafter, we review the methods available to correct for these problems, and the conditions
under which they can be applied.

Given the breadth of research in these areas alone, we naturally have to make some restrictions to
narrow the scope of what we cover. We do not cover methods for estimating social effects when networks
are conditionally exogenous. Surveys by Blume et al. (2010), Advani and Malde (forthcoming), Topa
and Zenou (2015) and Boucher and Fortin (2015) more than amply cover this ground. In our discussion
of endogeneity, we touch lightly on issues of network formation; a fuller treatment of network formation
can be found in Advani and Malde (2014), Graham (2015), de Paula (forthcoming) and Chandrasekhar
(2015). Similarly, whilst we discuss briefly models in which characteristics of the network structure are
important, a fuller treatment can be found in Jackson et al. (2017). Finally, we do not survey findings on
the size, magnitude or heterogeneity of the social effects found in applied economics: other reviews more
than amply cover these, for example, Epple and Romano (2011) and Sacerdote (2011) provide surveys
of peer effects in education, while Chuang and Schechter (2015) provide a survey of applied work on
networks in developing countries.

The rest of the paper is organized as follows. Section 2 lays out a general linear econometric model of
social effects, separately for individual- and network-level outcomes. Section 3 considers methods to deal
with endogenous formation of network links. Section 4 considers the implications of measurement error
in the network, and outlines some of the methods that have been proposed to account for these. Section 5
provides some concluding remarks, considers some of the limits of what is currently known about
econometric methods for linear social effect models and offers some potential directions for future work.

2. Conceptual Framework

We begin by laying out a general linear econometric model of social effects, separately for individual- and
network-level outcomes. These nest a number of the key empirical specifications used in the literature,
and elucidate the parameters of interest. We draw on these specifications to outline some of the common
assumptions imposed to identify the parameters of interest. Thereafter, we illustrate the implications of
endogenous network formation and measurement error in the network.

Throughout we use the following notation. A network (or graph), g = (Ng, E g), is defined by a set of
nodes, Ng , and the edges (or links) Eg between them. The nodes represent agents (individuals, households,
firms or countries), and the edges represent the links between pairs of nodes (e.g. friendship, kinship,
coworking, economic transactions). We index networks by g, and nodes within a network g by i ∈ Ng .
The number of nodes in network g is Ng , and the number of edges is Eg . We define GN as the set of
all possible networks on N nodes. We consider binary networks where any (ordered) pair of nodes i, j
is either linked, Gij,g= 1, or not linked, Gij,g= 0. If Gij,g= 1 then j is described as being a neighbour
of i . We denote by neii,g = { j : Gij,g = 1} the neighbourhood of node i , which contains all nodes with
whom i is linked. di,g = |{ j : Gij,g = 1}| is the number of neighbours, or degree, of i . Nodes that are
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4 ADVANI AND MALDE

neighbours of neighbours will often be referred to as ‘second degree neighbour’. Typically it is convenient
to assume that Gii,g := 0 ∀i ∈ g. Edges may be directed, so that Gij,g is not necessarily the same as
Gji,g; in this case the network is a directed graph (or digraph). The network can be represented by an
Ng × Ng adjacency matrix, Gg , with typical element Gij,g; and whose leading diagonal is normalized to
0. We also define the influence matrix, G̃g , as the row-stochastised adjacency matrix.2 Elements of this
matrix are defined as G̃ij,g = d−1

i,g Gij,g.

2.1 Individual-Level Models

Common specifications of individual-level linear social effect models can be written as a special case of
the following equation:

Y = αι + w y(G,Y )β + Xγ + wx(G,X)δ + Zη + Lν + ε (1)

Y is an
∑M

g=1 Ng × 1 vector stacking individual outcomes of nodes across all networks (indexed
by g = 1, . . . ,M). X = (X

′
1, . . . , X

′
M )

′
is an

∑M
g=1 Ng × K matrix of K individual-level observable

characteristics that influence a node’s outcome and potentially that of others in the network. G =
diag{Gg}g=M

g=1 is a block-diagonal matrix with the adjacency matrices of each network along its leading
diagonal, and zeros on the off-diagonal. The block-diagonal nature of G means that only the characteristics
and outcomes of nodes in the same network are allowed to influence a node’s outcome. w y(G,Y )
and wx(G,X) are functions of the adjacency matrix, and the outcome and observed characteristics,
respectively. These functions indicate how network features, interacted with outcomes and exogenous
characteristics of other nodes in the network, influence the outcome. Z is an

∑M
g=1 Ng × Q matrix of

Q network-level observed variables that influence nodes’ outcomes. The matrix L = diag{ιg}g=M
g=1 is an∑M

g=1 Ng × M matrix where each column is an indicator for being in a particular network. ν = {νg}g=M
g=1

is a vector of network-specific effects, unobserved by the econometrician but known to nodes; and ε is a
vector stacking the (unobservable) error terms for all nodes across all networks. In any given specification
only one of Z and L can be included.

This representation nests a range of models estimated in the economics literature:
Local Average Model: This model arises when a node’s outcomes are influenced by the average

behaviour and characteristics of its direct neighbours.3 This happens, for example, when social effects
operate through a desire for a node to conform to the behaviour of its neighbours. This implies that
w y(G,Y ) = G̃Y and wx(G,X) = G̃X above. Bramoullé et al. (2009) and De Giorgi et al. (2010) provide
conditions for identifying model parameters when the network is conditionally exogenously formed.

Local Aggregate Model: When there are strategic complementarities or substitutabilities between
a node’s outcomes and the outcomes of its neighbours, one can obtain the local aggregate model. In
this case, a node’s outcome depends on the aggregate outcome of its neighbours, which corresponds to
w y(G,Y ) = GY in equation (1). wx(G,X) is typically defined to be G̃X . See Calvó-Armengol et al.
(2009), Lee and Liu (2010), Liu et al. (2014b), and Bramoullé et al. (2014) for details on identification
conditions when the network is conditionally exogenously formed.

Hybrid Local Model: This class of models nests both the local average and local aggregate
models, which allows the social effect to operate through both a desire for conformism and through
strategic complementarities/substitutabilities. In the notation of equation (1), it implies that w y(G,Y ) =
[GY , G̃Y ], while wx(G,X) is typically defined to be G̃X . Liu et al. (2014a) provide identification
conditions when the model is conditionally exogenously formed.

Models with Network Statistics: Networks may influence node outcomes (and consequently aggregate
network outcomes) through statistics of the network beyond those depending on direct neighbours only.4

For instance, the DeGroot (1974) model of social learning implies that an individual’s eigenvector
centrality, which measures a node’s importance in the network by how important its neighbours are,
determines how influential it is in affecting the behaviour of other nodes.
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CREDIBLY IDENTIFYING SOCIAL EFFECTS 5

Denoting a specific network statistic by ωr , where r indexes the statistic, some possible specialisations
of w y(G,Y )β in equation (1) for node i in network g include:

�

∑R

r=1
ωr

i,gβr : R different network statistics, without any reference to outcomes (e.g. Banerjee et al.,
2013; Cruz et al., forthcoming); or

�

∑R

r=1

∑
j �=i

G̃ij,g y j,gω
r
j,gβr : the average of neighbours’ outcomes weighted by R different network

statistics (e.g. Cai et al., 2015); or
�

∑R

r=1

∑
j �=i

Gij,g y j,gω
r
j,gβr : the sum of neighbours’ outcomes weighted by R different network

statistics.

Analogous definitions can be used for wx(G,X)δ.
The social effect parameter in equation (1) is β: the effect of a function of a node’s neighbours’

outcomes (e.g. an individual’s friends’ schooling performance) and the network. This is also known as
the endogenous effect, to use the term coined by Manski (1993). This parameter is often of policy interest
since the presence of endogenous effects implies there is a social multiplier: the aggregate effects of
changes in X , wx(G,X) and Z are amplified beyond their direct effects, captured by γ , δ and η. The
parameter δ, capturing the effect of neighbours’ characteristics, is known as the exogenous or contextual
effect, while η and ν capture a correlated effect, common to everyone in the same network.

Identification of the social effect parameter depends on the restrictions imposed on the relationship
between the error terms, ν and ε, and the right-hand side variables in equation (1). These restrictions
reflect assumptions on common unobserved shocks and on the network formation process. For example,
E[νg| Xg, Zg, Gg] = 0 ∀ g ∈ {1, . . . ,M} implies nodes sort into networks exogenously, conditional on
individual-level and network-level observables, while E[εi,g| Xg, Zg, Gg] = 0 ∀ i ∈ Ng; g ∈ {1, . . . ,M}
implies that the network is exogenous, conditional on individual-level and network-level observable
characteristics of all nodes in network g.

The former assumption can be relaxed when data on a large number of networks are available:
unobservable characteristics determining sorting into networks can be accounted for using network-level
fixed effects, as in panel data specifications. A number of methods, that rely primarily on variation in
network structure, have been developed to identify the social effect parameters in such models using
observational data and under the assumption that the network is conditionally exogenous and well-
measured. The interested reader is directed to Advani and Malde (forthcoming), Topa and Zenou (2015)
and Boucher and Fortin (2015) for more details.

2.2 Network-Level Models

Researchers might also be interested in aggregate network-level outcomes, in which case the following
specification is typically estimated:

ȳ = φ0 + w̄ ȳ(G)φ1 + X̄φ2 + w̄ X̄ (G,X)φ3 + u (2)

where ȳ is an (M × 1) vector stacking the aggregate outcome of the M networks, w̄ ȳ(G) is a matrix of
R̄ network statistics (e.g. average number of links per node, also known as average degree) that directly
influence the outcome, X̄ is an (M × K ) matrix of network-level characteristics, and w̄ X̄ (G,X) is a term
interacting the network-level characteristics with the network statistics.5 φ1 captures how the network-
level aggregate outcome varies with specific network features while φ2 and φ3 capture, respectively, the
effects of the network-level characteristics and these characteristics interacted with the network statistic(s)
of interest on the outcome.

The key parameter of interest is typically φ1: the effect of a network statistic, such as network density,
on the aggregate network outcome. The key identification assumption is that E[ug|Gg, X̄g] = 0, which
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6 ADVANI AND MALDE

will not hold if there are unobserved variables in u that affect both the formation of the network and the
outcome ȳ; or if the network statistics are mismeasured.

2.3 Implications of Network Endogeneity and Measurement Error

The assumption that the network is conditionally exogenous implies, first, that there are no unobserved
(to the econometrician) agent-specific factors influencing both an agent’s choice of connections and the
outcome of interest; and second, that agents do not take into account the influences of their neighbours on
the outcome of interest when choosing their links. Both of these are very strong requirements. To see this
more easily, consider the following example. Suppose we have observational data on farming practices
amongst farmers in a village, and want to identify the factors that influence take-up of a new, potentially
risky technology. The data might show that more connected farmers are also more likely to adopt the
technology. However, without further analysis we cannot necessarily interpret this as being caused by the
network. There could be some underlying unobserved variable that is correlated with both the outcome
and the network. For example, more risk-loving people, who might be more likely to adopt the technology,
may also be more sociable, and thus have more connections. Alternatively, more connected farmers might
also be more interested in learning about innovative practices, and choose to have more connections for
this reason! Both of these violate the condition that E[εi,g| Xg, Zg, Gg] = 0 ∀ i ∈ g; g ∈ {1, . . . ,M} in
Equation (1). Section 3 describes potential solutions to this endogeneity problem in more detail.

Measurement error in G can also invalidate the assumption that E[εi,g| Xg, Zg, Gg] = 0 ∀ i ∈ g; g ∈
{1, . . . ,M}, and hence bias parameter estimates. Suppose the observed network, G∗, is a noisy measure
of the true underlying network, G, such that G∗ = G + ξ (G). Estimation of equation (1) would be based
on the mismeasured network, G∗, with the measurement error term (or a function of it) subsumed into the
error term, ε, in equation (1). Clearly, then E[εi,g| Xg, Zg, G∗

g] �= 0, leading to bias in the social effect
parameter estimates. Moreover, the measurement error in the network is likely to be non-classical, so that
it is not independent of the true network.

A simple example illustrates this. Surveys often place an upper limit, ψ , on the number of links a node
can report, leading to some links of agents with many connections to be recorded as not existing. In the
absence of other error, the number of misclassified links for node i can be expressed as

∑
j ξ (G)ij =

max{0,∑ j Gi j − ψ}. Thus, the measurement error necessarily depends on the structure of the true
network, making it non-classical. The consequences of measurement error on parameter estimates will
thus be quite complex. Section 4 considers this in more detail, and outlines some potential solutions.

3. Dealing with Endogeneity of Network Formation

We now discuss approaches taken to identify social effects whilst relaxing the assumption that the network
is exogenous. Specifically, we allow for the possibility that network links are chosen, and that these choices
might be related to the unobservables determining individuals’ outcomes.6 We discuss four approaches
taken in the literature to deal with this form of endogeneity, providing examples of where they have been
used, and discussing their limitations.

3.1 Random Assignment

The first method is random assignment, either of some intervention provided to a subset of nodes in the
network, or of links in the network. Random assignments of interventions have been used to study a wide
range of questions, including the diffusion of innovations in social networks (Aral and Walker, 2012;
Oster and Thornton, 2012; Cai et al., 2015; among others), social learning (Godlonton and Thornton,
2012), sharing of resources and savings (Comola and Prina, 2017; Angelucci et al., forthcoming), peer
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CREDIBLY IDENTIFYING SOCIAL EFFECTS 7

effects in exercise (Babcock et al., 2015), peer effects in education (Angelucci et al., 2010; Babcock and
Hartman, 2010) and peer monitoring (Breza and Chandrasekhar, 2015).

In these designs, also known as partial population experiments, (Moffitt, 2001), researchers randomly
assign a subset of nodes in a network to receive a treatment. Untreated nodes in the network will be
indirectly exposed to the treatment through their interactions with treated nodes. This indirect exposure
will vary with the position of the untreated nodes in the pre-treatment network relative to nodes that were
randomly assigned the treatment. Since the treatment is randomly assigned, conditional on their network
position the exposure levels of untreated nodes will be orthogonal to the network structure. Thus, a
reduced form social effect can be identified by comparing the outcomes of untreated nodes with the same
network position but different levels of exposure to the treatment.7 The identified reduced form social
effect need not solely capture the spillover of neighbours’ outcomes on a node’s own outcome: it may
also capture other channels through which the intervention may influence those neighbours. For example,
in the case of the adoption of innovations, a treatment such as providing information to a subset of the
network could influence innovation take-up through both diffusion of information, as well as through
the adoption decisions of the initially informed nodes (see Banerjee et al., 2013), making it difficult to
separately identify the endogenous social effect without further modelling.

Randomly assigned treatments can only be used to identify social effects if the treatment does not
also change the social network. Recent work by Comola and Prina (2017), Delavallade et al. (2016)
and Dupas et al. (forthcoming) shows that interventions may alter the network of interactions, so that a
randomly assigned treatment will not be orthogonal to the final network structure. Use of the pre-treatment
network does not solve the problem: treatment effects identified based on the pre-treatment network may
be misleading since they ignore the effects on network structure. This is shown by Comola and Prina
(2017), who extend the local average model to allow for the network to change in response to a treatment.
This extended model allows for the recovery of both the total treatment effect, and the social effect.
However, the randomly assigned treatment can no longer be used to identify the social effect. To recover
this parameter, Comola and Prina (2017) propose to, first, exploit the panel dimension of their network
data to account for time-invariant unobserved variables that influence both network formation and the
outcome of interest. Second, to account for time-varying unobservables, they use predicted changes in
the network (partly due to the treatment) as an instrument for the actual changes. This is similar to the
strategy in König et al. (2014), described in detail in Section 3.3.

A third set of designs relies on variation arising from randomly assigned links. While this strategy has
been widely applied in laboratory experiments of network effects, recent work has applied this to real-life
contexts, or exploited real-life contexts where this occurs, including classrooms (Carrell et al., 2009),
dorm rooms (Sacerdote, 2001), sport partners (Guryan et al., 2009) and among firm managers (Fafchamps
and Quinn, 2016). Random assignment to a group is likely to increase interactions among those assigned
to the same group, and through this affect the social effect of interest. Social effect parameters identified
using this variation would thus not be subject to biases associated with endogenous network formation.

Nonetheless, researchers still need to account for unobserved network shocks in order to obtain
consistent estimates of the social effect.8 To account for these confounders, existing studies use pre-
randomization, rather than contemporaneous, values of outcomes and characteristics. In particular, they
estimate reduced-form specifications of the following type:

Y post = αι̃ + w y(G,Y pre)β̃ + Xpreγ̃ + wx(G,Xpre)δ̃ + ε̃post (3)

where the subscript post indicates variables measured after random assignment to the network, and pre
indicates variables measured before random assignment. When shocks are i.i.d., the pre-randomization
outcome Y pre, will be uncorrelated with current unobserved shocks, allowing for identification of the
reduced form social effect parameter, β̃. This need not solely capture the spillover of peers’ outcomes
on a node’s own outcome. It will also capture other channels through which past peer outcomes may
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8 ADVANI AND MALDE

influence the node’s current outcome, so that β̃ �= β in equation (1). For example, in a classroom setting,
a teacher may put in more effort to teach a class with higher past performance, leading to β̃ > β.

There are two further limitations to this approach. First, forced creation of links is very difficult to
achieve in practice: links can only be encouraged (or discouraged) by the random assignment rule. The
formation of more complex network structures such as transitive or intransitive triads is not currently well
understood, making it difficult to use this method to generate exogenous variation in these. Second, the
identified parameter will capture a local, rather than average, effect.9 In particular, the experiment allows
researchers to study the effect of altering an agent’s randomly chosen group members on his outcome. If
agents form links only with a subset of group members, and make this choice non-randomly (e.g. they
choose those that provide the highest net value), these estimates will not be very informative about the
likely social effect when the group is constructed in another way, making it difficult to draw credible
policy recommendations.

This is demonstrated in the work of Carrell et al. (2013), who use peer effects estimated in an earlier
paper (Carrell et al., 2009) to ‘optimally assign’ a random sample of Air Force Academy students to
squadrons, with the intention of maximizing the achievement of lower ability students. In fact, test
performance in the ‘optimally assigned’ squadrons turned out to be worse than in the unconditionally
randomly assigned squadrons! The authors suggest that this finding is driven by a failure to account for
the choice of links formed by individuals within squadrons.10

3.2 Quasi-Experimental Approaches

A second approach exploits natural or quasi-experiments that generate local shocks in network structure
that can be argued to be independent of nodes’ network formation propensities as well as of common
network-level unobserved variables.11 Examples include unanticipated deaths of individuals (Patnam,
2013, for board members; Mohnen, 2016, for super-star scientists), policy-based reassignments of students
to schools (Hoxby and Weingarth, 2005), the Nazi expulsion of Jewish scientists (Waldinger, 2010, 2012)
and natural disasters such as the 2011 Great East Japan earthquake (Carvalho et al., 2016). This method
recovers a social effect parameter by comparing outcomes of agents affected by a shock to their local
network with those of agents with similar pre-shock characteristics (including local network structure)
who do not face a shock to their local network. The key underlying assumption is that agents with similar
pre-shock observed characteristics and local network structure would have faced a similar trend in their
outcomes in the absence of the shock.

In addition, this method also requires that agents choose not to directly respond to the shock.12

Importantly, non-response in this case includes both, not adjusting links in response to the shock, and
not ex ante choosing links strategically to (unobservably) insure against the probabilistic exogenous
link destruction process. This can be difficult to satisfy in practice: in the case of the unanticipated
deaths of board members, for example, the former restriction would imply that company boards do
not immediately fill the emerging vacancy with a similarly connected new board member, while the
latter restriction would imply ignoring the board member’s age and health status when hiring. Finally,
if there is heterogeneity in the social effect, this approach provides only a local social effect, based on
an average over the links that change as a result of the shock. This may not be representative of the
average social effect if, for example, older board members have more influence and are more likely
to die.

3.3 Instrumental Variables

An alternative approach is to use instrumental variables: variable(s) correlated with the endogenous
network covariate, w y(G,Y ) in equation (1) but excluded from the equation itself. Applications of
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this approach include Munshi and Myaux (2006), Hoxby (2000), Mihaly (2009), König et al. (2014),
Acemoglu et al. (2015), Patacchini and Zenou (2016) and Cohen-Cole et al. (forthcoming).

As ever with instrumental variables, their effectiveness as a solution to endogeneity relies on
having a good instrument: a variable which has strong predictive power for the network covariate
but does not enter the outcome equation directly. This will generally be easiest to find when there
are some exogenous constraints that make particular edges much less likely to form than others,
despite their strong potential benefits. For example, when studying fertility in rural Bangladesh,
Munshi and Myaux (2006) exploit strong social norms that prevent the formation of cross-religion
edges even where these might otherwise be very profitable. The restrictions on cross-religion
connections mean that having different religions is a strong predictor that two women are not
linked.

Another approach in the education literature, pioneered by Hoxby (2000), and applied by Bifulco
et al. (2011) and Patacchini and Zenou (2016), makes use variation in the composition of peers
in different cohorts in the same grades in a school. The underlying argument is that parents may
choose a school based on the observed average composition of a cohort, but they will not know the
actual composition of a new cohort: differences between the average and realized composition are an
‘unexpected shock’. Similarly, cohort composition is not subject to biases arising from schools assigning
students of different types to specific classrooms or teachers. Thus, the unexpected variation in cohort
composition can be used as an instrument for the composition of a child’s peers. A concern with this
strategy is that cohort composition could affect achievement through other channels, for example, by
changing teachers’ behaviour. Hoxby (2000) offers a useful test for this. Specifically, if there are multiple
groups (e.g. race), and the effects of group composition on achievement operate solely through an
endogenous social effect, then the effects of changing the share of say black students should be the
same as that of changing the share of Asian students, given the average achievement of each race
group.

Alternatively, secondary motivations for forming edges that are unrelated to the primary outcome could
be used to obtain independent sources of variation in edge formation probabilities. An application of this
approach is Cohen-Cole et al. (forthcoming), who consider multiple outcomes of interest, but where
agents can form only a single network which influences all of these. Recent work by König et al. (2014)
instead makes use of instruments based on the network adjacency matrix predicted from a dyadic network
formation model. In their study of spillovers from R&D collaborations between firms connected by a web
of collaboration agreements (and who also might compete with one another), link formation is modelled
as a function of variables that do not otherwise affect the outcome. Specifically, they use indicators for
having collaborated on R&D in the past, having a common collaborator in the past, and lagged measures
of firms’ technological proximity.

Importantly, this type of solution can only be employed when the underlying network formation
model has a unique equilibrium, so there is only one network structure consistent with the characteristics
(observed and unobserved) of the agents and environment. When multiple equilibria are possible –
generally the case when the incentives for a pair of agents to link depend on the state of the other potential
links – instrumental variable solutions cannot be used without imposing some equilibrium selection rule.
Issues of uniqueness in network formation models, and how one might estimate the these models, are
discussed in Advani and Malde (2014). Care must also be taken when interpreting the estimated social
effect, particularly in the presence of effect heterogeneity, since instrumental variables generally identify
a local social effect. In particular, the estimated β̂I V will be a weighted average of individual-specific
βi ’s, with more weight given to agents for whom the network covariate of interest is induced to change
most by the instrument. Hence, the estimated social effect would be larger than the unweighted average
social effect if these agents are also those whose outcomes are most responsive to those of their peers (or
vice versa).
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3.4 Jointly Modelling Link and Action Choices

3.4.1 Sequential Link and Action Choices

Another method that has been proposed (Blume et al., 2015) and implemented in recent work is the
control function. Endogenous linking decisions create selectivity bias in social effect estimates. Control
function methods propose to correct this by including an estimated selectivity bias term, estimated from a
first stage network formation model, as an additional regressor in the main equation of interest (Heckman,
1979; Lee, 1983; Heckman and Robb, 1985). Recent work by Goldsmith-Pinkham and Imbens (2013),
Arduini et al. (2015), Horrace et al. (2016) and Hsieh and Lee (2016) extends control function methods
to a networks context. The selection correction term is a non-linear function of the predicted network, and
thus of variables determining link choice. Identification of the social effect parameter can be achieved
even in the absence of a variable that influences the outcome only through link choices (an exclusion
restriction) by relying on functional form assumptions. The presence of an exclusion restriction, however,
may make identification more credible.

The key challenge in operationalizing this method is specifying a sufficiently tractable first-stage model
of link formation. This is a result of the size of the joint distribution of edges: for a directed binary network
this is a N (N − 1)-dimensional simplex with 2N (N−1) points of support (potential networks).13 Recent
advances in specifying and estimating network formation models are detailed in Advani and Malde
(2014), Graham (2015), Chandrasekhar (2015) and de Paula (forthcoming).

Context-specific features can potentially help simplify the first-stage model. For example, Horrace
et al. (2016) consider the performance of a sports team, where the network is taken to be the set of
players that play in the same game for one team. The team size is fixed, and relatively small, so that the
network formation process can be modelled as the choice of selecting a fixed number of players from
a longer list. Under the assumption that the team manager’s choice of players is solely a function of a
random shock he observes, but which is not observed by the researcher, parametric and semi-parametric
selection correction approaches suggested by Lee (1983) and Dahl (2002) can be applied to account for
endogenous link formation.14 As explained above, identification of model parameters relies on functional
form assumptions.

Other studies including Goldsmith-Pinkham and Imbens (2013), Hsieh and Lee (2016) and Arduini
et al. (2015) use dyadic models of link formation.15 The former two studies incorporate a ‘strategic’
element to network formation, whereby linking decisions are allowed to depend on the status of other links
in the network. Goldsmith-Pinkham and Imbens (2013) assume that links are formed homophilously –
individuals who have more similar characteristics are more likely to be friends – but they also allow network
covariates to enter the link formation model. Similarity can be based on the observed characteristics,
X , and/or on one (binary) unobserved characteristic, ς . By imposing parametric restrictions on the
distribution of the unobservable, they are able to characterize a parametric distribution for (Y , G).
Likelihood estimation can then be used to recover the parameters. The presence of network covariates
makes this computationally difficult to estimate directly, since the space of possible networks is large,
making the denominator in the likelihood function difficult to compute. A Bayesian Markov Chain Monte
Carlo (MCMC) approach is used to overcome this, by providing an estimate for the denominator based
on a sample of networks.

Hsieh and Lee (2016) consider linking decisions in directed networks in a framework similar to
Goldsmith-Pinkham and Imbens (2013), though crucially they allow for decisions to be affected by
multiple unobserved variables. Linking decisions are assumed to be homophilous, and are influenced
by dyad-specific characteristics, C, individual characteristics, X , and unobserved network statistics such
as transitivity. Assuming that the unobservable terms in the social effects and the network formation
equations are joint normally distributed, Hsieh and Lee (2016) are able to characterize the conditional
distribution of (Y , G|X,C; θ ), where θ is a vector of model parameters from both the network formation
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and social effect equations. The dyad-specific characteristics appear only in the link formation model,
and thus provide exclusion restrictions for the identification of model parameters. As with Goldsmith-
Pinkham and Imbens (2013), likelihood estimation using maximum likelihood is computationally difficult,
necessitating the use of a Bayesian MCMC approach.

Arduini et al. (2015) consider two further ways of modelling the first stage: (i) a dyadic link
formation model of Graham (2017), which assumes homophilous link formation and agent-specific
unobserved heterogeneity, and (ii) a model where the link formation probability is a function of the node’s
characteristics only. The former assumption requires parametric estimation, while the latter method allows
for semi-parametric estimation. They derive the asymptotic properties of the estimators, and evaluate their
effectiveness in correcting for endogeneity using simulations.

3.4.2 Simultaneous Link and Action Choices

A final method for accounting for endogeneity also relies on jointly modelling link formation and action
choices though, contrary to the control function approach, links and actions are simultaneously chosen.
This approach is taken by Boucher (2016) and Badev (2017), who model peer effects among adolescents
in extracurricular activities and smoking choice respectively, allowing agents to choose their action
(activity/smoking decisions) simultaneously with their links. In both cases, the action and link decisions
will generally be non-separable.

In Boucher (2016), agents get utility directly from links, from playing an action (activity choice) close
to their type, and from conforming on action to the actions of the people they are linked to. He shows
that, close to the optimum, utility is (locally) differentiable with respect to the action. Intuitively, since
the action can be changed smoothly, while linking decisions are binary, utility should change smoothly
with changes in the action around the optimum.16 To also study link choice, Boucher shows that the game
can be characterized by a potential function. He provides bounds on the maximum of this function, and
assumes that this maximum is associated with the equilibrium that will be selected in practice. He then
estimates (by quasi-maximum likelihood estimation) the equation determining the action combined with
the network formation equation, for both of the bounds on the network. In practice when the network is
sparse each bound will give similar answers: this is the case in his context.

In Badev (2017) link choice is strategic even in the absence of the action choice (smoking), since the
value of a link to someone depends also on their links. Combining the individual utility functions with
a random matching process between individuals and myopic decision-making, he shows that behaviour
will converge to a k-player Nash stable state in finite time.17 Adding Gumbel distributed preference
shocks instead implies convergence to a stationary distribution over the set of possible network states, in
particular one that is invariant to the choice of k. With these shocks the model maps to an Exponential
Random Graph Model (see Section 4.2.4 for more details), for which an analytical characterization of
the likelihood function is possible. However, as with the models discussed in the previous subsection,
the large number of potential networks makes exact calculation of the denominator of the likelihood
function computationally infeasible. Instead, as above, this is approximated using MCMC methods, and
then maximum likelihood estimation can be used for this approximated likelihood function.

4. Measurement Error

The second challenge complicating identification of social effect parameters in network data is that of
measurement error in the network. Measurement error can arise from a number of sources including: (1)
missing data due to sampling method, (2) mis-specification of the network boundary, (3) top-coding of
the number of edges, (4) mis-coding or mis-reporting and (5) non-response. We refer to the first three
as sampling-induced error and the latter two as non-sampling-induced error. It is important to account
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for these since, as we will show below, measurement error can induce important biases in measures of
network statistics and in parameter estimates.

We focus on summarizing the consequences of sampling-induced measurement error, and outlining
methods proposed in the literature to deal with these. Though a number of issues remain unresolved, this
literature offers useful guidance to researchers planning to collect data to uncover social effects in terms
of (i) how to construct a sample; and (ii) what data to collect and from whom. Note also that there is
a large econometric and statistical literature on non-sampling induced measurement error, which could
potentially apply or be extended to network contexts, for example, Chen et al. (2011) provide an overview
of methods for dealing with misreporting in binary variables. However, these issues have been less studied
in a networks context, and are thus not covered here.18

Measurement error issues arising from sampling are particularly problematic in the context of network
data, since these data comprise of information on interrelated objects: nodes and edges. All sampling
methods, other than a full census, sample at least one of these objects in a way that depends on the
network structure: defining a random sampling process over one induces a particular process over the
other.19 To illustrate how this may happen, consider taking a random sample of nodes from a star network,
which consists of a single central node directly connected to N − 1 other peripheral nodes, with no other
connections between them. If we were to randomly sample half the nodes in the network, we would sample
the central node half the time. However, if we were to randomly sample half the links, we would always
sample the central node, since every edge is connected to this node, and sample peripheral nodes roughly
half the time only. Thus, random sampling of edges would lead to a higher chance of sampling nodes
with many edges, giving a different sampling distribution for nodes compared to when directly sampling
nodes. This means that methods for estimation and inference developed under classical sampling theory
are often not applicable to network data.

In practice, censuses of networks that economists wish to study are rare, and feasible to collect only
in a minority of cases (e.g. small classrooms or villages). Collection of data on the complete network is
typically too expensive and cumbersome. Moreover, when data are collected from surveys, it is common
to censor the number of edges that can be reported by nodes. Finally, to simplify data collection, one
may erroneously limit the boundary of the network to a specified unit, for example, village or classroom,
thereby missing edges connecting to nodes beyond this boundary. Section 4.1 outlines the consequences
of missing data due to sampling on estimates of social effects and on network statistics. Until recently
most research on these issues was done outside economics, so we draw also on research from other fields,
including sociology, statistical physics and computer science. In Section 4.2, we then outline a number
of methods developed to help deal with the consequences of measurement error.

Much of our discussion in the subsequent sections will consider two specific ways of constructing
a network graph from sampled nodes. Given a sample of nodes, one could consider including only the
edges among pairs of sampled nodes, generating an induced subgraph. Alternatively, one could include
all edges of sampled nodes, including non-sampled nodes connected to sampled nodes within the network
graph. This generates a star subgraph. These are displayed in Figure A1 in Appendix A. Panel (a) of the
figure shows the network from which nodes are randomly sampled, while the shaded circles and dark
lines in panels (b) and (c) display the network that emerges under star subgraph sampling and induced
subgraph sampling, respectively.

4.1 Measurement Error Due to Sampling

4.1.1 Local Network Models

Missing data, for sampling or non-sampling reasons, can generate important biases in the estimates of
social effects in the local average, local aggregate and hybrid local models. Identification strategies for
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the social effect in these models exploit variation in network structure, typically using the exogenous
characteristics of indirect neighbours as instruments for the outcomes of a node’s direct neighbours
(w y(G,Y ) in equation (1)). For example, in the local average model Bramoullé et al. (2009) suggest
using the average exogenous characteristics of second- and third-degree neighbours, G̃

2
X and G̃

3
X ,

as instruments for the endogenous G̃Y (G̃
3
X is needed when we wish to account for network fixed

effects). Critically, identification comes from knowledge of which edges are definitely not present. When
data are missing or misclassified, one may not know definitively which nodes are only indirectly linked,
complicating the use of this strategy.

Goldsmith-Pinkham and Imbens (2013) propose a test for measurement error in the network when more
than one observation of the network is available. This will be the case, for example, in longitudinal network
studies where the network is elicited on multiple occasions over time. The basic intuition underlying their
test is that if measurement error is unconditionally random, and a link is absent in one observation of
the network, there is a higher probability that it is missing spuriously (and hence was mismeasured)
in the first observation if it is present in the second observation. If this is the case, we would expect
these mismeasured links’ characteristics and outcomes to also affect a node’s outcome. To illustrate
their method more formally, we introduce some additional notation: let G A and G A′

denote the first and
second measurements of the adjacency matrix related to the outcome of interest; and GB denote a matrix
that indicates which links are absent in G A but present in G A′

. The presence of unconditionally random
measurement error can be tested by estimating the following equation for linear w y and wx :

Y = αι + w y(G A,Y )β + Xγ + wx(G A,X)δ + w y(GB,Y )βB

+wx(GB,X)δB + Zη + Lν + ε (4)

If G A is well measured, links that are present in G A′
but not in G A should not influence the outcome

of interest, Y . Hence, the coefficients on their outcomes and characteristics, βBand δB , should be 0.
Non-zero coefficients would be indicative of measurement error in the network. Note though that these
coefficients could be non-zero even in the absence of measurement error if, for example, outcomes are
correlated over time and the two measurements correspond to adjacency matrices collected at two points
in time. Any such alternative explanations should be carefully considered when using this strategy to test
for measurement error.

Measurement error in the network due to sampling implies that the matrices G and G̃ are misspecified.
In particular, when some links are missing, any two nodes would appear to be, on average (weakly),
further apart in the sampled network than they are in the true underlying network. This measurement error
carries over to the endogenous covariate G̃Y in the local average model, as well as the instruments G̃

2
X

and G̃
3
X . Further, since it is common to both the endogenous covariate and instrument, the instrument

will be unable to purge the social effect parameter of bias (Chandrasekhar and Lewis, 2016). Simulations
by Chandrasekhar and Lewis (2016) and Liu (2013) suggest (respectively) that these biases can be very
large in local average and local aggregate models, with the magnitude falling as the proportion of the
network sampled increases, and as the number of networks in the sample increases. Both papers also offer
simple, direct solutions to this issue when data are available on a star subgraph: these are described in
Section 4.2.1.

Patacchini et al. (2017) also use simulations to consider the robustness of social effect estimates in a
model with heterogeneous social effects. Their data include a high proportion of missing nodes. Contrary
to the simulations in Chandrasekhar and Lewis (2016) and Liu (2013), their simulations add new links
to the observed network, some of which lead to mistakenly classifying neighbours as neighbours-of-
neighbours. They show that their findings on peer effects hold qualitatively, though they over-estimate
the magnitude of one type of peer effect. Such simulations offer one way for researchers to check the
robustness of social effects estimates to missing data.
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4.1.2 Network Statistics

Missing data arising from partial sampling can generate non-classical measurement error in measured
network statistics, which in turn biases estimates of social effects. A number of studies, primarily in fields
outside economics, have investigated the implications of sampled network data on measures of network
statistics and model parameters. The following broad facts emerge from this literature:

1. Network statistics computed from samples containing moderate (30–50%) and even relatively high
(∼70%) proportions of nodes in a network can be highly biased. Sampling a higher proportion of
nodes in the network generates more accurate network statistics. Simulation evidence from studies
including Galaskiewicz (1991), Costenbader and Valente (2003), Lee et al. (2006), Kim and Jeong
(2007) and Chandrasekhar and Lewis (2016) indicates biases that are very large in magnitude, and
which go in different directions, depending on the statistic being studied.20 For example, the average
path length – the average number of links one has to go through on the shortest path between any pair
of nodes – was found to be over-estimated by 100% when constructed from an induced subgraph
with 20% of nodes in the true network. Table A1 in Appendix A provides a more detailed summary
of findings from these papers for some commonly used network statistics for data collected via
random sampling of nodes as either a star subgraph or an induced subgraph.

2. Measurement error due to sampling varies with the underlying network structure. This is apparent
from work by Frantz et al. (2009), who investigate the robustness of a variety of centrality measures
to missing data when data are drawn from a range of underlying network structures: uniform random,
small world, scale-free, core-periphery and cellular networks (see Appendix B for definitions). They
find that the accuracy of centrality measures varies with the structure. Small world networks are
especially vulnerable to missing data, since they have relatively high clustering and a few ‘bridging’
edges that reduce path lengths between nodes that would otherwise be distant. The estimated
centrality statistics are therefore very sensitive to sampling the nodes that are part of a bridge. By
contrast, centrality measures are less vulnerable to missing data when the underlying network is
‘scale-free’.

3. The magnitude of error in network statistics that is due to sampling varies with the sampling method.
Lee et al. (2006) compare the results of estimating network statistics using data collected via induced
subgraph sampling, random sampling of nodes, random sampling of edges and snowball sampling
(see Appendix C for more details on sampling strategies). They draw samples from networks with
a power-law degree distribution, that is, where the fraction of nodes having k edges, P(k), is
asymptotically proportional to k−γ , and usually 2 < γ < 3. This distribution allows for ‘fat tails’,
that is, the proportion of nodes with very high degrees constitutes a non-negligible proportion of all
nodes. Lee et al. (2006) show that the sampling method impacts the magnitude and direction of bias
in network statistics. For instance, random sampling of nodes and edges leads to over-estimation of
the size of the exponent of the power-law degree distribution, which implies an over-estimation of
the number of nodes with large degrees. Conversely, snowball sampling, which is less likely to find
nodes with low degrees, underestimates this exponent.

4. Parameters in economic models using mismeasured network statistics are subject to substantial
bias. Sampling induces non-classical measurement error in the measured statistic, that is, the
measurement error is not independent of the true network statistic. Chandrasekhar and Lewis
(2016) suggest that sampling-induced measurement error can generate upward bias, downward bias
or even sign switching in parameter estimates. The bias is large in magnitude: for statistics such as
degree, clustering and centrality measures, they find that the mean bias in parameters in network-
level regressions ranges from over-estimation bias of 300% for some statistics to attenuation bias
of 100% for others when a quarter of network nodes are sampled. As with network statistics,
the bias becomes smaller in magnitude as the proportion of the network sampled increases. The
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magnitude of bias is somewhat smaller, but nonetheless substantial, for node-level regressions.
Table A2 summarizes the findings from the literature on the effects of random sampling of nodes
on parameter estimates.

5. Top-coding of edges or incorrectly specifying the boundary of the network biases network statistics.
Network data collected through surveys often place an upper limit on the number of edges that can
be reported. Moreover, limiting the network boundary to an observed unit, for example, a village
or classroom, will miss nodes and edges beyond the boundary. Kossinets (2006) investigates, via
simulations, the implications of top-coding of reported edges and boundary misspecification. He
considers a number of network statistics, including average degree, clustering and average path
length. Both types of error cause average degree to be under-estimated, and average path length
to be over-estimated. No bias arises in the estimated clustering parameter when only top-coding is
present.

Overall, the literature indicates that even relatively little missing data (e.g. observing 75% of nodes)
may generate severe non-classical measurement error in network statistics, as well as severely biased
parameter estimates, highlighting the need for a census of the network. However, this can be very costly
or infeasible to collect. Work in disciplines outside economics, as well as recent work in economics, has
proposed a number of possible methods for dealing ex post with the consequences of missing data. We
review this literature in the next subsection.

4.2 Correcting for Measurement Error

Having considered the problems posed by missing data on both the network and parameter estimates, we
now discuss methods for dealing with measurement error ex post, that is, once data have been collected.
These can be divided into four broad classes: (1) direct corrections, (2) design-based corrections, (3)
likelihood-based corrections and (4) model-based corrections. We summarize the underlying ideas for
each of these, and discuss their advantages and drawbacks.

4.2.1 Direct Corrections

As we saw earlier, missing data on network connections generate measurement error in both the
endogenous regressor and the network-based instruments in local network models, thereby inducing
bias in social effects. Chandrasekhar and Lewis (2016) suggest a simple, direct correction for this issue
for the local average model when the network data available are a star subgraph collected from a random
sample of nodes, and outcome data are available for all agents. In particular, they suggest restricting
the estimation sample to include only the initially sampled nodes. For these nodes, data on all their
neighbours (and the neighbours’ outcomes) are observed, meaning that the regressor G̃Y will not be
subject to measurement error. The key instruments for identification, G̃

2
X and G̃

3
X , can be constructed

as usual using all the observed data. They will be mismeasured, but, crucially, the measurement error in the
instruments will now not be correlated with the regressor, making them valid instruments. However, the
measurement error in the instruments weakens the first-stage correlation with the endogenous regressors,
particularly when the amount of missing data on the network is high, leading to a weak instrument
problem. In this case, other methods, including model-based corrections, could be applied.

For the local aggregate model, an alternative solution exists when network fixed effects are not
necessary. In the absence of measurement error, the standard approach to identification uses node degree
(GL), along with the network-based instruments, G2 X and GG̃X as instruments for the mismeasured
endogenous regressor GY . This provides over-identification, since only one instrument is needed in the
absence of network fixed effects. When data from a star subgraph are available, node out-degree is still
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typically well-measured, meaning that it can be used as the only instrument for GY , and the noisier
mismeasured instruments using indirect neighbours can be ignored. This is supported by Monte Carlo
simulation evidence in Liu (2013), which shows that estimates recovered using this strategy are very
similar to the parameters from the pre-specified data generating process.

Liu et al. (forthcoming) suggest a solution for the case where there the network and covariates are
perfectly observed, but outcome data are available for a sub-sample only. They note that the reduced form
equation for the local average model, when restricted to the observations for whom complete outcome
data are available, involves regressing the outcome on a non-linear transformation of X and G̃X . Such
data are consistent with survey designs that collect network information and some key covariates from all
nodes and detailed outcome data from a sample. Drawing on an argument in Wang and Lee (2013), they
show that model parameters can be consistently estimated from the transformed reduced form equation
using nonlinear least squares. Monte Carlo simulations suggest the method works well.

4.2.2 Design-Based Corrections

Design-based corrections rely on features of the sampling design to correct for sampling-induced
measurement error. They are appropriate for correcting network-level statistics that can be expressed as
totals or averages, such as average degree and clustering (Frank; 1978, 1980a, 1980b, 1981; Thompson,
2006).21 Based on Horvitz-Thompson estimators, which use inverse probability-weighting to compute
unbiased estimates of population totals and means from sampled data, they can be used to correct for
the non-random sampling of either nodes or edges provided that the sample inclusion weights of the
non-randomly sampled object can be calculated.

Formulae for node- and edge-inclusion probabilities are available for the random node and edge
sampling schemes (see Kolaczyk, 2009). Recovering sample inclusion probabilities when using snowball
sampling – where a sample is constructed by first collecting information on the neighbours of some
(randomly) selected agents, then gathering information on the neighbours of these neighbours and
so on (see Appendix C for more) – is typically not straightforward after the first step of sampling.
This is because every possible sample path that can be taken in subsequent sampling steps must be
considered when calculating the sample-inclusion probability, making this exercise very computationally
intensive. However, Markov chain resampling methods make it feasible to estimate the sample inclusion
probabilities (see Thompson, 2006, for more details). An application of this method in economics is given
by Mastrobuoni and Patacchini (2012) and Mastrobuoni (2015), who use a Markov chain–based method
to correct for non-random selection of nodes into a sample of mobsters followed by law enforcement
officials in the United States. They model the sample construction of mobsters as a snowball sample,
which can further be modelled as a Markov chain. The stationary distribution of the Markov chain of
the sample inclusion probabilities provides the likelihood of a node i being found when following any
randomly selected edge in the network.22

Frank (1978, 1980a, 1980b, 1981) derives unbiased estimators for a range of graph statistics.
Chandrasekhar and Lewis (2016) characterize the biases in parameter estimates from linear univariate
models for a range of network statistics, and provide guidance on how these biases may be corrected.
They show that attenuation biases can be easily corrected by estimating the variance of the measurement
error, and offer corrections for the scaling biases based on their characterisation. They further show that
for four statistics – average degree, clustering coefficient, support and average graph span – estimators of
social effect parameters are consistent when raw network statistics are replaced by their design-corrected
counterparts. Numerical simulations suggest that this method reduces greatly the sampling-induced bias
in parameter estimates.

A key drawback to this procedure is that it is not possible to compute Horvitz–Thompson estimators for
network statistics that cannot be expressed as totals or averages. This includes node-level statistics, such

Journal of Economic Surveys (2017) Vol. 00, No. 0, pp. 1–29
C© 2017 The Authors. Journal of Economic Surveys published by John Wiley & Sons Ltd.



CREDIBLY IDENTIFYING SOCIAL EFFECTS 17

as eigenvector centrality, many of which are of interest to economists. Likelihood-based and model-based
corrections offer alternative solutions that are more feasible in these cases.

4.2.3 Likelihood-Based Corrections

Likelihood-based corrections can also be applied to correct for measurement error. Such methods have
been used to correct specific network-based statistics such as out-degree and in-degree. Conti et al. (2013)
correct for sampling-induced measurement error in in-degree by adjusting the likelihood function. To
do so, they first specify a process for outgoing and incoming edge nominations to obtain the outgoing
and incoming edge probabilities. Specifically, they assume that outgoing (incoming) edge nominations
from i to j are a function of i’s ( j’s) observable preferences, the similarity between i and j’s observable
characteristics (capturing homophily), and a scalar unobservable for i and j . They allow for correlations
between i’s observable and j’s unobservable characteristics (and vice versa). When edges are binary, the
out-degree and in-degree have binomial distributions with the success probability given by the calculated
outgoing and incoming edge probabilities. Random sampling of nodes to obtain a star subgraph generates
measurement error in the in-degree, but not in the out-degree. However, since the true in-degree is
binomially distributed, and nodes are randomly sampled, the observed in-degree has a hypergeometric
distribution conditional on the true in-degree. Knowledge of these distributions allows the specification
of the joint distribution of the true in-degree, the true out-degree, and the mismeasured in-degree. Pseudo-
likelihood functions can be specified allowing for parameters to be consistently estimated via maximum
likelihood methods.

4.2.4 Model-Based Corrections

Model-based corrections provide an alternative approach to correcting for measurement error. Such
corrections involve specifying a model that maps the mismeasured network to the true network. Parameters
of the model are estimated from the partially observed network data and the available data on the
characteristics of nodes and edges. The estimated parameters are subsequently used to predict the value of
non-sampled edges, essentially imputing the missing values. Network formation models usually recover
the probability of a link, meaning that the predicted network is a matrix of probabilities. The predicted
network can then be used in place of the mismeasured network to obtain an estimate of the social effect.
To do this it is crucial to have information on individual characteristics (e.g. gender, ethnicity) that are
predictive of link formation for all nodes in the network. It is also important that the network formation
model estimated is sufficiently flexible to accurately capture the observed network(s).

When covariates on all nodes in the network are available, Chandrasekhar and Lewis (2016) derive
conditions that must be satisfied for this approach to yield consistent estimates of the social effect
parameter when allowing for the first stage network formation process to be heterogeneous across
networks. In particular, the estimator of the network formation parameters must converge uniformly to
the true parameters. This imposes restrictions on the available data – in particular, the number of networks
must grow slower than the size of the networks – and on the first stage network formation model, assuming
that data are missing at random.

Chandrasekhar and Lewis (2016) analyse three different classes of network formation models to derive
the conditions under which they generate consistent social effect estimates. These models are known to
have asymptotic frames which allow for consistent parameter estimation.23

The first model is the conditional edge independence model (Fafchamps and Gubert, 2007; Goldsmith-
Pinkham and Imbens, 2013; among others), where links form independently, conditional on covariates. The
probability of a link is typically modeled as a function of node- and link-level covariates. Chandrasekhar
and Lewis (2016) show this model satisfies the conditions for uniform convergence as long as the level
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of interdependence in covariates between a pair of nodes goes to 0 as the (social) distance between the
two nodes increases to infinity. However, these models typically fail to generate clustering levels similar
to those seen in real-life social networks.

A second class of models are the subgraph generated models of Chandrasekhar and Jackson (2016),
which model the network to be the union of different network features (pairs, triangles, etc.) that each
form with a certain probability. Chandrasekhar and Lewis (2016) shows that this model satisfies the
conditions for uniform convergence given an assumption on convergence rates is satisfied. This class of
models does not require information on node-level covariates.

A final class of models considered is the group or block model, where the link formation probability
is a function of group-specific parameters. A group is defined based on the values of a combination of
(bounded) characteristics (e.g. high educated females aged < 40 years). In other words, the model can
be thought of one with group-fixed effects and a growing number of groups, which allows for substantial
flexibility in characterizing the underlying network formation process. However, since the number of
parameters to be estimated can grow with the network size, Chandrasekhar and Lewis (2016) show
that sufficiently fast convergence can only be achieved for network-level analysis, not for node-level
analysis.

It should be noted that misspecification of the first stage model could undermine the ability of this
method to correct for measurement error. In particular, conditional edge independence models may not
be well suited to correcting measurement errors in network clustering, but may be sufficient in correcting
measurement error in average degree. Thus, the characteristic one is trying to correct should be taken into
consideration when choosing the first stage model. Simulations in Chandrasekhar and Lewis (2016) show
that model based corrections work well in greatly reducing and almost eliminating biases in social effect
parameters arising from missing data for a number of social effect models including the local average
model.

5. Conclusion

Networks are thought to play an important role in shaping the preferences, behaviour and outcomes
of agents. Uncovering empirical evidence in support of this has proven to be difficult, particularly
when using information on membership of mutually exclusive groups as the key measure for social
interactions. A burgeoning literature in economics has turned instead to using network data – data with
detailed information on agents and the links between them – to uncover this evidence. However, there
exist important challenges that are not present in other contexts. In this paper we outline econometric
methods for working with network data to identify social effects: the influence of a node’s neighbours on
its choices. We focus particularly on methods for dealing with the endogenous formation of links, and
solutions to account for measurement error.

There have been a number of approaches taken to account for network endogeneity, including random
assignment of interventions or links, use of local network shocks, instrumental variables and jointly
modelling the choice of links and outcomes (either sequentially or simultaneously). The first three do
not require explicit specification of the process of network formation. Where they are feasible, they
can provide credible identification. However, randomly assigning interventions or links is frequently
infeasible; and exogenous local network shocks and suitable instruments might not be available in many
contexts. Explicit specification of the network formation model, as is required by the last method, provides
an alternative approach. This uses knowledge (or assumptions) about the payoffs from forming links to
provide a different route to identification. The challenges to this solution are not only in determining
what assumptions about payoffs are reasonable, but also technical. Such models are typically difficult
to estimate: they are slow to compute, and estimated parameters are frequently unstable. There is much
scope for future work in advancing these methods.
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Finally, the paper discussed the issue of measurement error, focusing particularly on sampling-induced
measurement error. Since networks comprise of interrelated nodes and edges, a particular sampling
scheme over one of these objects will imply a structure for sampling over the other. Hence, one must think
carefully in this context about how data are collected, and not simply rely on the usual intuitions that
random sampling will allow us to treat the sample as the population. When collecting census data is not
feasible, it will in general be necessary to make corrections for the induced measurement error, in order
to get unbiased parameter estimates. Whilst there are methods for correcting some network statistics for
some forms of sampling, again there are few general results, and consequently much scope for research.

Much work has been done to develop methods for working with network data, both in economics and in
other fields. Applied researchers can therefore take some comfort in knowing that many of the challenges
they face using these data are ones that have been considered before, and for which there are typically
at least partial solutions already available. Whilst the limitations of currently available techniques mean
that empirical results should be interpreted with some caution, attempting to account for social effects is
likely to be less restrictive than simply imposing that they cannot exist.
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1. These methods are less suited to discrete choice settings, such as those considered by Brock and
Durlauf (2001) and Brock and Durlauf (2007).

2. A row stochastic, or ‘right stochastic’, matrix is one whose rows are normalized so they each sum to
one.

3. The name ‘local average’ is used here to denote that only local (direct) connections affect an individual
directly, and the way in which they matter is only through the average outcome of these agents to
whom the individual directly connects.

4. For a survey of the main network statistics used and the contexts in which they are relevant, see
Jackson et al. (2017).

5. A discussion of the key network-level statistics used is provided by Jackson et al. (2017), where they
are described as ‘macro characteristics’ of the network.

6. It is important to note that this implies that individuals already have some information about the
unobservables. If these unobservables are identically distributed, are realized after the network
formation decisions are taken, and do not themselves depend on the network structure, then network
formation does not create an endogeneity problem. Goldsmith-Pinkham and Imbens (2013) suggest
a method to test for endogeneity.

7. A social effect can also be identified by comparing the outcomes of treated nodes with different levels
of exposure to other treated nodes. However, such an effect would have a different interpretation.

8. Researchers will also need to account for the reflection problem when information on interactions
within the network is not available.

9. Here we think of ‘local’ effects in terms of a local treatment effect, rather than in the sense of local
interactions.

10. Booij et al. (2017) and Tincani (2017) provide different interpretations of this result. The former
suggests that the problem with the assignment based on the results of Carrell et al. (2009) is that
the peer groups constructed fall far outside the support of the data used. Hence, predictions about
student performance come from extrapolation based on the functional form assumptions used, which
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should have been viewed with caution. Tincani (2017) suggests that the findings can be explained by
an education production function allowing for competition between students.

11. As with random assignment approaches, quasi-random assignment of interventions on a pre-specified
network have also been used to identify social effects. Examples of papers taking such an approach
include Banerjee et al. (2013).

12. One also needs access to panel data for the network, which may often not be available. Moreover,
measurement error in either round of network data will reduce the power of this strategy.

13. To give a sense of scale, for a network of more than seven agents the support of this space is larger
than the number of neurons in the human brain (estimated to be around 8.5 × 1010); with 13 agents
it is larger than the number of board configurations in chess (around 1046.25); and with 17 agents it is
larger than the number of atoms in the observed universe (around 1080).

14. They also develop a fixed effects approach, which can only be applied in contexts where the social
effect is heterogeneous.

15. In a dyadic model, the link choice is modelled to be a function of characteristics of each node (the
sum and/or difference), as well as characteristics of the link. Some models allow for node-specific
unobserved heterogeneity.

16. This requires that agents are not indifferent about any of their linking decisions, so are not at kink
points of their utility function, which they will not be generically.

17. A network is k-player Nash stable if any subset of k players is in a Nash equilibrium of the game
between them when only the links between the k players are decided together with their action
choices. This equilibrium concept is well suited in modelling myopic behaviour, but less so for
networks formed with the intention of influencing behaviour with a long horizon.

18. Comola and Fafchamps (2017) develop and implement a correction for this class of measurement
error in a networks context, while Patacchini et al. (2017) use simulations to assess the robustness of
estimated peer effects to misspecification of links and link types.

19. We consider a random sample to consist of independently and identically distributed units.
20. With the exception of average degree in a star subgraph, the evidence on the direction and magnitude

of biases described here come from simulation studies with specific designs. These may not always
hold for all network structures and sampling techniques, as explained below.

21. Chapter 5 of Kolaczyk (2009) provides useful background on these methods.
22. Mastrobuoni (2015) observes less than 20% of nodes in the whole network, which creates further

biases. He corrects for these by first taking logarithmic values of the network statistics (and his
outcome of interest), and then using instrumental variables. The logarithmic transformation accounts
for a scaling bias related to the proportion of the network sampled.

23. Importantly, they do not consider the properties of the so-called p∗-models (Wasserman and
Pattison, 2013) or exponential random graph models (ERGMs), which model the probability of
a link to depend on the links around it, since these models do not have a suitable asymptotic
frame.
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Appendix A: Additional Figures and Tables

# Nodes in sample = 15
# Edges in sample = 46

# Nodes in sample = 13
# Edges in sample = 34

# Nodes in sample = 6
# Edges in sample = 8

Average degree = 3.067 Average degree = 2.615 Average degree = 1.333
(a)Full Graph (b) Star Subgraph (c) Induced Subgraph

Figure A1. Star and Induced Subgraph.
Notes: Panel (a) of the figure shows the network from which nodes are randomly sampled. The shaded circles

and dark lines in panels (b) and (c) display the network that emerges under star subgraph sampling and
induced subgraph sampling, respectively, when 40% of nodes are sampled. The white circles and dotted lines

represent missing nodes and edges under the two different sampling schemes. The average degree is the
average number of edges that a researcher would get from dividing the number of sampled edges by the

number of sampled nodes.
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(a) Bipartite Network (b) Uniform Random (c) Scale-free (d) Core-periphery

(e) Cellular (f) Small world (g) K-Star (h) Clique

Figure A2. Network Topologies.

Table A1. Findings from Literature on Sampling-Induced Bias in Measures of Network Statistics

Statistic Measurement error in statistic

Star subgraph Induced subgraph

Network-level Statistics
Average degree Underestimated (–) if non-sampled nodes are

included in the calculation. Otherwise
sampled data provide an accurate measure.a

Underestimated (–).a

Average path length Not known. Over-estimated (+); network appears less
connected; magnitude of bias very large at
low sampling rates, and falls with sampling
rate.b

Clustering coefficient Attenuation (–) since triangle edges appear to
be missing.a

Little or no bias; random sampling yields same
share of connected edges between possible
triangles.a,b

Average graph span Overestimation (+) of the graph span: sampled
network is less connected than the true
network. At low sampling rates, graph span
may appear to be small, depending on how
nodes not in the giant component are
treated.a

Overestimation (+) of the graph span: sampled
network is less connected than the true
network. At low sampling rates, graph span
may appear to be small, depending on how
nodes not in the giant component are
treated.a

(Continued)
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Table A1. Continued

Statistic Measurement error in statistic

Star subgraph Induced subgraph

Node-level Statistics
Degree (in- and out-

in directed graphs)
In-degree and out-degree both underestimated

(–) if all nodes in sample included in
calculation. If only sampled nodes included,
out-degree is accurately estimated. In
undirected graphs, underestimation (–) of
degree for non-sampled nodes.c

Degree (in undirected graphs) of highly
connected nodes is underestimated (–).d

Degree centrality
(degree
distribution)

Not known. Overestimation (+) of exponent in scale-free
networks ⇒ degree of highly connected
nodes is underestimated. Rank order of
nodes across distribution considerably
mismatched as sampling rate decreases.d

Betweenness
centrality

Distance between true betweenness centrality
distribution and that from sampled graph
decreases with the sampling rate. At low
sampling rates (e.g. 20%), correlations can
be as low as 20%.c

Shape of the distribution relatively well
estimated. Ranking in distribution much
worse, i.e. nodes with high betweenness
centrality can appear to have low centrality.e

Eigenvector centrality Very low correlation between vector of true
node eigenvector centralities and that from
sampled graph.c

Not known.

Notes: Little bias refers to |bias| of <20%; large bias to |bias| of 20%; and very large bias to |bias| > 50%. With the
exception of average degree in the star subgraph, the evidence on the direction and magnitude of biases comes from
simulation studies with specific designs, which need not hold for all types of network structure.
Source: aChandrasekhar and Lewis (2016); bLee et al. (2006). cCostenbader and Valente (2003); dLee et al. (2006);
eKim and Jeong (2007).

Table A2. Findings from Literature on Sampling-Induced Bias in Parameter Estimates

Statistic Bias in parameter estimates

Star subgraph Induced subgraph

Network level statistics
Average degree Scaling (+) and attenuation (–), both of

which fall with sampling rate when
all nodes in sample included in
calculation; |scaling|> |attenuation|.
No bias if only sampled nodes
included.

Scaling (+) and attenuation (–), both of
which fall with sampling rate;
|scaling| > |attenuation|. Magnitude
of bias higher than for star subgraphs.

Average path length Attenuated (–). Magnitude of bias large
and falls with sampling rate.

Attenuated (–) more than star
subgraphs. Magnitude of bias is very
large at low sampling rates, and falls
with sampling rate.

(Continued)
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Table A2. Continued

Statistic Bias in parameter estimates

Star subgraph Induced subgraph

Clustering
coefficient

Scaling (+) and attenuation (–);
|scaling| > |attenuation|. Very large
biases, which fall with sampling rate.

Attenuation (–), falls with sampling
rate. Little bias even at node
sampling rates of <40%.

Average graph span Estimates have same sign as true
parameter if node sampling rate is
sufficiently large. Can have wrong
sign if sampling rate is too low,
depending on how nodes not
connected to the giant component are
treated in the calculation.

Estimates have same sign as true
parameter if node sampling rate is
sufficiently large. Can have wrong
sign if sampling rate is too low,
depending on how nodes not
connected to the giant component are
treated in the calculation.

Node-level statistics
Degree (in- and

out- in directed
graphs)

Attenuation (–), with the magnitude of
bias falling with the sampling rate.
The magnitude of bias is large even
when 50% of nodes are sampled.

Scaling (+), with the bias falling with
the node sampling rate. Bias is very
large in magnitude.

Degree centrality
(degree
distribution)

Not known. Not known.

Betweenness
centrality

Not known. Not known.

Eigenvector
centrality

Attenuation (–), with magnitude of bias
falling with the sampling rate.
Magnitude of bias large even when
50% of nodes are sampled.

Attenuation (–), with magnitude of bias
falling with the sampling rate.
Magnitude of bias very large.

Notes: Little bias refers to |bias| of <20%; large bias to |bias| of 20%; and very large bias to |bias| > 50%. The
evidence on the direction and magnitude of biases comes mostly from simulation studies with specific (univariate)
designs, which need not hold for all types of network structure.
Source: Chandrasekhar and Lewis (2016).

Appendix B: Definitions

� Adjacency Matrix, G: An N × N matrix, G, whose i j th element, Gij, represents the relationship
between i and j . In a binary network, Gij = 1 if i and j are linked, and 0 otherwise.

� Influence Matrix, G̃: A row-stochastic adjacency matrix, G̃ with G̃ij = Gij/∑
j Gij if two agents are

linked and 0 otherwise.
� Degree, di : Number of edges of a node in an undirected graph, di = ∑

j Gij in a binary graph (more
generally, di = ∑

j 1(Gij > 0)). In a directed graph, a node’s in-degree is the number of edges from
other nodes to that node, and its out-degree is the number of edges from that node to other nodes.

� Average degree, d̄: Average number of links per node in the network, d̄ = N−1 ∑
i di .

� Density: Fraction of possible edges that are present in a network, d̄
N−1 .

� Path: A path in a network g between nodes i and j is a sequence of edges, i1i2, i2i3, . . . , iR−1iR ,
such that ir ir+1 ∈ g, for each r ∈ {1, . . . , R} with i1 = i and iR = j and such that each node in the
sequence i1, . . . , iR is distinct.
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� Shortest path length (geodesic): The shortest path length between i and j is minimum number of
edges that must be traversed on a path from i and j .

� Average path length: The average geodesic for every pair of nodes in the network. For pairs of
nodes for which no path exists, it is common to either exclude them from the calculation or to define
the geodesic for these nodes to be some large number (≥largest observed geodesic).

� Induced subgraph: A subset of nodes from the network, and all the edges in the network for which
both nodes involved in that edge are in the subset. See the right panel of Figure A1 for an example.

� Star subgraph: A subset of nodes from the network, and all the edges in the network for which at
least one of the nodes involved in that edge is in the subset. The middle panel of Figure A1 illustrates
an example of a star subgraph.

� Component: In an undirected network, this is a subgraph of a network such that every pair of nodes
in the subgraph is connected via some path, and there exists no edge from the subgraph to the rest
of the network.

� Bridge: The edge i j is a bridge in network g if removing it results in an increase in the number of
components in g.

� Degree centrality: A measure of centrality based on the number of direct neighbours a node has.
For node i this is given by di

N−1 .
� Betweenness centrality: A measure of centrality based on how well situated a node is in terms of

the paths it lies on. The importance of node i in connecting nodes j and k is the ratio of the no. of
geodesics between j and k that i lies on to the total no. of geodesics between j and k. Averaging
this ratio across all pairs of nodes (excluding i) yields the betweenness centrality of node i .

� Eigenvector centrality: A relative measure of centrality, the centrality of node i is proportional
to the sum of the centrality of its neighbours. It is given by [Ce(G)]i , the i th element of vector
Ce(G), where Ce(G) is the eigenvector associated with the largest eigenvalue of G, λmax (G). This
is calculated as a solution to λmax (G)Ce(G) = GCe(G).

� Clustering coefficient: For an undirected network, this is the proportion of fully connected triples
of nodes out of all potential triples for which at least two edges are present.

� Graph span: A measure that is closely related to the average path length. It is defined as span =
log(N )−log(d̄)
log(d̃)−log(d̄)

+ 1 where N is the size (number of nodes) in the network, d̄ is the average degree, and

d̃ is the average number of second-degree neighbours.
� Cliques: Subgraph of a network where every node is directly connected to every other node in the

subgraph.
� Uniform random network: Network where the ex ante probability of an edge between any pair of

nodes is constant across all edges in the network.
� Bipartite network: A network whose set of nodes can be divided into two sets, U and V , such that

every edge connects a node in U to one in V .
� Scale-free network: Network whose degree distribution follows a power law, i.e. where the fraction

of nodes having k edges, P(k), is asymptotically proportional to k−γ. Such a distribution allows for
fat tails.

� Core-periphery network: Network that can be partitioned into a set of nodes that is completely
connected (‘core’), and another set (‘periphery’) who are linked only with nodes in the ‘core’.

� Cellular network: Networks containing many cliques, with few edges connecting the different
cliques.

� Small world network: Network where most nodes are not directly linked to one another, but where
geodesics between nodes are small.

� k-star: Component with k nodes and k − 1 links such that there is one ‘hub’ node who has a direct
link to each of the (k − 1) other (‘periphery’) nodes.
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Appendix C: Collecting Network Data: Sampling Methods

In order to construct the full network, researchers would need to collect data on all nodes and edges,
that is, collect a census. This is typically very expensive, as well as logistically challenging. Instead
researchers usually collect data on a sample of the network. A number of sampling methods have been
used to do this, of which the most common are as follows:

Random Sampling

Random samples can be drawn for either nodes or edges. Data collected from a random sample of
nodes typically contain information on socio-economic variables of interest and some (or all) edges of
the sampled nodes, although data on edges are usually censored. The network graph constructed from
data where nodes are randomly sampled and where edges are included only if both nodes are randomly
sampled is known as an induced subgraph.

Information may also be available on some socio-economic variables of all nodes in the network.
Recent analyses with network data in the economics literature have featured datasets with edges collected
from random samples of nodes, where covariate information was available for all nodes. Examples include
data on social networks and the diffusion of microfinance used by both Banerjee et al. (2013) and Jackson
et al. (2012).

Datasets constructed through the random sampling of edges include a node only if any one of its edges
is randomly selected. Examples of such datasets include those constructed from random samples of email
communications, telephone calls or messages. In these cases researchers often have access to the full
universe of all e-mail communication, but are obliged to work with a random sample due to computational
constraints.

Snowball Sampling and Link Tracing

Snowball sampling is popularly used in collecting data on ‘hard to reach’ populations, that is, those for
whom there is a relatively small proportion in the population. For these groups one would get a very
small sample through random sampling from the whole population. Link tracing is a related method that
is usually used to collect data from vast online social networks, where the average degree is relatively
large.

Under both these methods, a dataset is constructed through the following process. Starting with an
initial, possibly non-random, sample of nodes from the population of interest, information is obtained on
either all, or a random sample of their edges. Snowball sampling collects information on all edges of the
initially sampled nodes, while link tracing collects information on only a random sample of these edges.
In the subsequent step, data on edges and outcomes are collected from any node that is reported to be
linked to the initial sample of nodes. This process is then repeated for the new nodes, and in turn for nodes
linked to these nodes (i.e. second-degree neighbours of the initially drawn nodes) and so on, until some
specified node sample size is reached or up to a certain social distance from the initial ‘source’ nodes.

It is hoped that, after k steps of this process, the generated dataset is representative of the population, that
is, the distribution of sampled nodes no longer depends on the initial ‘convenience’ sample. However, this
typically happens only when k is large. Moreover, the rate at which the dependence on the original sample
declines is closely related to the extent of homophily, both on observed and unobserved characteristics, in
the network. In particular, stronger homophily is associated with lower rates of decline of this dependence.
Nonetheless, this method can collect, at reasonable costs, complete information on local neighbourhoods.
Examples in economics of datasets collected by snowball sampling include that of student migrants used
in Méango (2014).
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