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Abstract

By providing a means to ask questions anonymously, we provide a
non-threatening environment in which students are encouraged to fully
understand and criticise their assignments. As well as providing practical
assistance for those who are struggling with course work, it demonstrates
a practical reinforcement of ideas that are commonly taught in courses on
software engineering, but it does so in a context that they can directly
relate to  their desire to achieve good grades. The approach is based
around the use of an HTML form to enable the anonymous submission of
questions to staff and the dynamic refinement of assignment specifications.
Examples of its use in a course on object-oriented design and C++ are
given.

1 Motivation

How often do we look at a piece of course work and reflect that the student
submitting it clearly did not have the first idea how to start it, or had misun-
derstood an essential part of what they were being asked to do? ‘Why didn’t
they come and ask for help?’ is our frustrated cry! Poor work is often simply
the result of a failure to understand what is required. If we can find ways to
overcome that lack of understanding, we may be able to greatly increase the
chances that our students will gain the fullest benefit from the assignments we
set, as well as other course material. Experience shows that some students
are simply afraid to ask for help too worried about what we might think if
they ask ‘a stupid question’. Some, indeed, worry that they will lose marks
if they ask for help, and prefer to struggle on in ignorance rather than risk
that possibility. The setting of assignments is driven not just by the need to
produce assessment grades, but to enhance the learning process by providing
reinforcement of taught course material. This work was motivated by the desire
to enable students to ask more easily for help so that they might get the fullest
benefit out of the assignments being set for them.



2 Emphasising Understanding

A significant amount of the mainstream Computer Science teaching at the Uni-
versity of Kent involves relatively large software assignments, where the princi-
ples and practices of software engineering are taught and expected to be adhered
to. A fundamental part of the teaching of software engineering is to empha-
sise the need for critical evaluation of artifacts throughout the process.[7, 12]
Nothing should be taken as given, but should be critically analysed for in-
completeness, contradiction and unnecessary constraint. We teach that this
process must be applied to initial requirements, formal specifications, designs
and implementation. We do this because such an attitude of criticism promotes
understanding in the minds of those performing it and identifies weaknesses in
the work of others that benefit from early identification. We teach that it is
very difficult to specify systems completely and unambiguously.

Within the main programming components of the first year of our Computer
Science major programme, we have begun to emphasise the primary role of
understanding through the use of a problem solving technique called ‘How to
Program It’ [3], which is based upon Polya’s ‘How to Solve It’ [10]. The four
components are Understand, Design, Write and Review. This is described as
a cycle with the Review phase feeding back into the Understanding phase of
future problems. By placing Understanding as the starting point, we emphasise
its key role in dealing with all tasks that they are set, and that they should
never try to design a program until they are sure that they have understood
what the assignment is asking them to do. The software engineering experience
proves that the need for this stage is not always appreciated!

Our problem solving approach is really a lightweight version of the approach
that is common to most courses on software engineering — requirements elicita-
tion and analysis, specification, design, implementation, and legacy capture. It
is widely accepted that requirements analysis is an essential precursor to design,
in order to ensure that the requirements are complete, consistent, and not un-
necessarily constraining of implementation. To embark upon design before the
system has been fully understood and accurately specified is asking for trouble.
Yet, do we apply such a single-minded attitude to the assignments that we set
our students? Do we provide them with the means to critically evaluate and
refine the tasks we set them, or do we (unconsciously, perhaps) imply that such
theory has no real application to the tasks that need doing today?

3 An Anonymous Question Asking Form

The initial idea for this attempt to make it easier for students to ask questions
came from an alternative approach employed by one of my colleagues with her
non-specialist computing students. As I walked into the lecture theatre to take
my class, I noticed that her students were dropping pieces of paper into a box
as they left. Her key was the guarantee of anonymity, and this was her way of
enabling them to ask questions anonymously. I realised what a brilliant way
this could offer to reach my students, but pieces of paper are part of an alien



culture to CS majors, so I turned to the Web!

The anonymous question asking form makes use of a feature provided by
most Web browsers - anonymous browsing. In the main, when you visit a Web
page you do so unidentifiably. This is either extremely useful or extremely
frustrating, depending upon whether you are the visitor or the visited! My
approach was to create a simple HTML [4, 11] form in a Web page. The form
allowed a reader of the page to send me their question without revealing their
identity. This is possible because the form makes use of a CGI [6] script to
deliver the question as an electronic mail message as if it has come from the
Web server containing the page. Once the question has been received, and a
reply formulated, these are appended to the text of the page containing the
form. In this way, everyone on the course can see them including, of course,
the original enquirer. The page gradually takes on the character of a mini-
FAQ (Frequently Asked Questions) list, reflecting a dynamic dialogue between
students and staff. This approach has the added benefit, over the paper-based
one, of being available at all times and from anywhere on or off campus where
there is Web access.

We have been using Usenet style bulletin boards, in which identity is known,
to promote staff-student and student-student since the mid-1980s — Boyle [5]
describes a similar use at the University of Leeds. Other authors have used the
idea of encouraging questions from students and linking them with Web-based
material, but have tended to require students to use straightforward electronic
mail in their submission [9], although Arnow [1] stripped mail identification be-
fore automatically generating HT'ML from the text of the mail messages. Hagan
[8] does, in fact, use genuine anonymous submission via a similar mechanism to
the one described here, but the purpose is to obtain post-assignment feedback.
By using the technique within assignments, my approach is to actively encour-
age the students’ analysis and criticism of them, whilst removing any fear of the
consequences. Hence, they deepen the learning process associated with those
tasks, because their right to ask questions is acknowledged and they receive
answers that move them on in their understanding. In software engineering
terms, they see refinement of a specification in action, in a context that they
can easily relate to. In addition, as a teacher, I receive benefits in making my
assignments clearer for future use, and insights into which aspects of the course
need elucidating. Even the fact that some questions are asked whose answers
seem obvious from the material presented, provides a challenge to find better
ways of expressing it.

4 The Form in Action

I have used such forms on several courses in the 1996-97 academic year. The
most successful was a course teaching object-oriented design and C++ [13] as
a second language to second year Computer Science majors [2]. This involved a
two-stage assignment to design and then implement a program to play a simple
game of cards. Here is part of the final version of the requirement for the design
stage



Produce a high-level object-oriented design for a program to be
written in an object-oriented language to allow the following game
of cards to be played amongst 2 or more players.

A game consists of a number of rounds between P players. At the
start of each round, every player receives C (52 div P) cards. The
remaining (52 mod P) cards are turned face up so that everyone
can see them. A single game consists of C rounds in which each
player plays a single card in turn. The player of the first card in the
first round of a game is decided randomly. Thereafter, the winner
of each round plays the first card of the next round of that game,
if there is one. After the first card of a round has been played, the
remaining players play one card each in turn. These players must
follow the suit of the first player if possible. A round is won by the
player who plays the highest card of the lead suit. A game is won by
the player or players who have won the most rounds in that game.

The students were asked to submit an identification of the classes involved
and their interactions - not an implementation.

Here are some of the questions and answers that resulted, showing the ap-
proach in practice.

Q. How does the first player of the round decide what card they
should play? Is it the lowest of any suit?

A. This is up to you. Quality of play is not going to be assessed,
only adherence to the rules of the game.

I had failed to fully specify the assessment criteria. If more marks were
available for better-playing programs, this needed to be known at the design
stage.

Q. How can there be any remaining cards if the number of cards in
a pack i.e. 52, is divided by the number of players. Is this for when
the number of players doesn’t divide evenly into 527

A. If there are 4 players (P == 4), then each receives 13 cards (C
== 52 div 4) with none left over. If there are 5 players, then each
receives 10, with 2 (52 mod 5) left over.

A typical question with an ‘obvious’ answer, but a genuine lack of under-
standing, nonetheless, and so one that needed addressing.

Q. Would I be correct in assuming that this game is ‘Trumps’ with-
out a trump suit?

A. T am not actually sure what this is a version of! I suspect that
there are a lot of games with similar rules. It is safest to assume
that it is not the same as any game that you already know. In this
way you won’t be led into making assumptions over issues that have
not been properly specified.



An opportunity to make a software engineering point about being careful not
to read extra information into a requirement, but to ensure that it is complete
in itself.

Q. Do you use ‘Round’ to refer to both a ‘Trick’ (where every player
lays 1 card) and a set of ‘Tricks’ in which all players cards are laid?

A. T have tried to use ‘Round’ as the equivalent of ‘Trick’ only.
‘Game’ is the equivalent of a complete set of C Tricks.

The initial version of the requirement used the words ‘Trick’ and ‘Round’
synonymously. This question led me to remove the potential ambiguity and
use ‘Round’ exclusively. This refinement was particularly important because
students are often encouraged to identify nouns as potential sources of class
definitions.

For the second stage of the assignment, they were required to implement just
the ‘Player’ class, given its C++ interface definition. This resulted in several
pragmatic questions being asked

Q. How can I develop the program on my machine at home under
DOS during the vacation?

It also produced a number of questions that illustrate the power of this
approach

Q. Would Visual Basic be a good Platform for implementing the
design with a ‘Solitaire’ type interface in mind?

This allowed me to highlight the separation of responsibilities between classes,
and the opportunities for defining alternative derived classes from a simple
‘Card’ base class if different user interfaces were required.

I had supplied some supporting software with which they could develop
their implementations

Q. Isn’t the manager in main.cc unfair in the order it asks players
to play cards?

A. Yes. This was an error on my part and I have now changed
main.cc to a fairer version.

It is not always easy to question the correctness of the lecturer’s code. My
only regret is that I cannot identify the questioner in order to give them the
credit they deserve!

Finally, a genuine question that says a lot for the empowering of this ap-
proach

Q. What does one do if one does not understand any of the C++
you have been talking about in the lectures?



5 Summary

At the heart of our teaching is a desire that our students should understand
the material that we present to them. We wish to equip them with sufficient
understanding that they are then able to develop and apply that understanding
to the solutions of problems. In order to help them practise these skills, we
set them assignments that often mimic real-life problems they may well face
in the future. Understanding often requires a dialogue, where questions are
raised and answers found. Through the guarantee of anonymity, the method
described encourages a wider group of students to ask questions than might
otherwise do so. By increasing the approachability of staff to those who would
not normally feel able to ask questions directly, we gain valuable insights into
the way our students think, and we improve the quality of our course materials
and assessment practices.
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