
Steen, M.W.A., Bowman, H., Derrick, J. and Boiten, E.A. (1997) Disjunction
of LOTOS specifications. In: Mizuno, Tadanori and Shiratori, Norio and
Higashino, Teruo and Togashi, Atsushi, eds. Formal Description Techniques
and Protocol Specification, Testing and Verification. IFIP - The International
Federation for Information Processing . Springer, Boston, Massachusetts,
USA, pp. 177-192. ISBN 978-1-4757-5260-1.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21439/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/978-0-387-35271-8_11

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21439/
https://doi.org/10.1007/978-0-387-35271-8_11
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Disjunction of LOTOS specifications

M.W.A. Steen, H. Bowman, J. Derrick and E.A. Boiten
University of Kent at Canterbury
Computing Lab., The University, Canterbury, Kent CT2 7NF, UK.
Email: mwas@ukc.ac.uk

Abstract
LOTOS is a formal specification language, designed for the precise description of
open distributed systems and protocols. The definition of, so called, implementation
relations has made it possible also to use LOTOS as a specification technique for the
design of such systems. These LOTOS based specification techniques usually (ab)use
non-determinism to achieve implementation freedom. Unfortunately, this is unsatis-
factory when specifying non-deterministic processes. We, therefore, propose to ex-
tend LOTOS with a disjunction operator in order to achieve more implementation free-
dom while maintaining the possibility to describe non-deterministic processes. In con-
trast with similar proposals we maintain the operational semantics.

Keywords
LOTOS, process algebra, specification, disjunction, operational semantics

1 INTRODUCTION

In this paper we investigate the extension of the formal specification language LOTOS

with a disjunction operator. Such a specification construct could play a role in achiev-
ing a more expressive specification technique. As in logic, disjunction can be used to
specify a choice between implementation options. If p1 is an implementation of s1,
and p2 is an implementation of s2, then the specification s1W s2 can be implemented
by either p1 or p2. Thus, disjunction in specifications leads to greater implementation
freedom. This is useful both in the specification of standards, which often describe
a number of implementation classes, and in the development of distributed systems,
where we do not want to tie the hands of the implementors in the initial specification.

1.1 Interpreting LOTOS specifications

LOTOS is a process algebraic language influenced by the earlier process calculi CCS [Mil89]
and CSP [Hoa85]. For example, it has inherited the powerful idea of multi-way syn-
chronisation, enabling constraint-oriented specification, from CSP. On the other hand,
the language has been given an operational semantics much in the style of CCS.

c
IFIP 1996. Published by Chapman & Hall

2 Disjunction of LOTOS specifications

S

S

S

0

1

n

Figure 1 Design process

The operational semantics associates a labelled transition system (LTS) with each
process description. The usual interpretation of a LOTOS “specification” is the set of
processes that are indistinguishable (w.r.t. some notion of equivalence) from the LTS

associated with it. However, this view requires that the observational behaviour of
implementations is completely determined already by their initial specifications.

An alternative, more relaxed, view is, that implementations are related to specifica-
tions by a, so called, implementation relation�. Implementation relations are usually
not equivalences and, therefore, allow the behaviour of implementations to be some-
how more determined than the behaviour described by their specifications. Moreover,
they induce a refinement ordering between specifications, which enables an incre-
mental design process as depicted in figure 1. An initial abstract specification, al-
lowing many possible implementations, goes through a series of consecutive refine-
ment steps, each restricting the implementation space, until a final implementation is
reached.

1.2 The problem

Several researchers have investigated the use of implementation relations with LO-
TOS to obtain a specification technique for concurrent processes (see section 3). Most
of these approaches are inspired by CSP’s failures/divergencessemantics, or have been
derived from testing theory. Non-determinism is usually (ab)used to achieve imple-
mentation freedom. We argue that this is not always satisfactory. In particular, we
show that it becomes impossible to specify inherently non-deterministic processes
adequately, and the wide-spread use of internal actions as an abstraction mechanism
can lead to counter-intuitive implementations.�Implementation relations are sometimes also referred to as conformance relations or satisfaction
relations.

LOTOS: syntax and semantics 3

2 LOTOS: SYNTAX AND SEMANTICS

In order not to clutter the presentation of our main ideas, we will only consider a small
subset of the operators that LOTOS offers for the structuring of process descriptions.
The subset we use is inductively defined by the following grammar:P ::= stop j a;P j i ;P j P [] P j P j[G]j P j X
Here we assume that a set of action labels L is given. Then, a 2 L; i is the unob-
servable, or internal, action; G � L; and X is a process name. We will assume that a
definition exists for each process name used. Process definitions are written X := P ,
where P is a behaviour expression that can again contain process names, including
possibly X itself, thus making the definition recursive. The set of all processes is de-
noted by P , elements of L by a; b; c : : : , and elements of L [fig by �.

The operational semantics for LOTOS associates a labelled transition system with
each behaviour description through the axioms and inference rules given in table 1.

Table 1 Inference rules` a;P a�!P` i ;P i�!PP ��!P 0 ` P []Q ��!P 0Q ��!Q0 ` P []Q ��!Q0P ��!P 0; � 62 G ` P j[G]jQ ��!P 0 j[G]jQQ ��!Q0; � 62 G ` P j[G]jQ ��!P j[G]jQ0P a�!P 0; Q a�!Q0; a 2 G ` P j[G]jQ a�!P 0 j[G]jQ0P ��!P 0; X := P ` X ��!P 0
The LTS for a process p is hDp; Lp; Tp; pi. Here Tp is the smallest set of transitions

that can be inferred from p under the given inference rules; Dp is the set of processes
derivable from p under the transitions in Tp; Lp = fa j (s; a; s0) 2 Tpg, the set of
action labels.

2.1 Further notation

For the rest of the paper we need some more derived notation. Let L� denote strings
over L. The constant � 2 L� denotes the empty string, and the variables �, �i are
used to range over L�. Elements of L� are also called traces. In table 2 the notion of
transition is generalised to traces. We further define Tr(p), the set of traces of p, and
Ref(p; �), the sets of actions refused by p after the trace �:
Tr(p) = f� 2 L� j p �=)g
Ref(p; �) = fX � L j 9p0 : p �=) p0 and 8a 2 X : p0 a=6) g.

4 Disjunction of LOTOS specifications

Table 2 Derived transition denotations

Notation Meaningp ��! 9p0 : p ��! p0p ���!= 6 9p0 : p ��! p0�=) reflexive and transitive closure of i�!p a�==) p0 9q; q0 : p �=) q a�! q0 �=) p0p �=) 9p0 : p �=) p0p �=6) 6 9p0 : p �=) p0
2.2 Equivalence

Often transition systems are considered to be too discriminating in the sense that pro-
cesses that are intuitively considered to be equivalent may have different represen-
tations. The processes a; b; stop and a; (b; stop [] b; stop) [] a; b; stop, for exam-
ple, have different transition systems, but can both only perform the sequence of ac-
tionsab and then deadlock. For this reason several abstracting equivalences have been
defined over the LTS model. In this paper, we consider only the strongest of the be-
havioural equivalences: strong bisimulation equivalence. Processes are equivalent iff
they can simulate each other. This is indeed the case for the two processes above.

Definition 1 (bisimulation equivalence)
Bisimulation equivalence,�� P�P , is the largest relation such that, p � q implies

(i) Whenever p ��! p0 then, for some q0, q ��! q0 and p0 � q0; and
(ii) Whenever q ��! q0 then, for some p0, p ��! p0 and p0 � q0.
The choice of equivalence is fairly arbitrary. We could just as well have chosen

weak bisimulation equivalence or testing equivalence. We are, however, interested in
creating a specification technique that is as expressive as possible. Since bisimulation
equivalence is the strongest behavioural equivalence on processes, and by defining
satisfaction (see section 4) as an extension of it, we achieve precisely this.

3 LOTOS AS A SPECIFICATION TECHNIQUE

The “meaning” of a specification, i.e. the set of implementations that it describes, de-
pends on the chosen satisfaction relation. Following [Lar90a] and [Led92], we define
a specification technique to be a pair h�; sati, where � is the set of all specifications,
and sat is some satisfaction relation. Using the notion of bisimulation from the pre-
vious section, we could instantiate sat with �. However, as argued in the introduc-
tion, this would leave very little room for manoeuvring during the implementation
phase, because the behaviour of implementations would have to be equivalent to the
behaviour of their specifications.

LOTOS as a specification technique 5

Several asymmetric instantiations for sat have been investigated for LOTOS [BSS87,
Led91]. These, so called, implementation relations were either derived from CSP’s
denotational semantics [Hoa85], or from testing theory [NH84].

One of the simplest implementation relations, is the trace preorder. It only verifies
that the implementation cannot perform sequences of observable actions (traces) that
are not allowed by the specification.

Definition 2 (trace preorder) Let p; s 2 P . p �tr s iff Tr(p) � Tr(s).
Example 1 Let s := a; b; stop[]a; c; stop, then p1 := a; b; stop, p2 := a; c; stop
and p3 := a; (b; stop[]c; stop) are all implementations of s according to �tr . But,
also stop and a; stop are correct, since �tr does not require any behaviour to be
implemented.

The trace preorder is a very weak implementation relation. We cannot use it to specify
that anything must happen. Another notion of validity is, that for each trace of the
specification, the implementation can only refuse whatever the specification refuses
after that trace. This is captured by the conf-relation, which was derived from testing
theory. Here we give an intensional definition in terms of traces and refusals.

Definition 3 (conf) Let p; s 2 P . p conf s iff 8� 2 Tr(s) : Ref(p; �) � Ref(s; �).
Example 2 For the specifications and processes given in example 1, p1, p2 and p3
are all correct implementations of s according to conf. However, stop and a; stop
are not, because s requires either b or c to happen after a.

The relation red (sometimes referred to as testing preorder,or failure preorder), which
is the intersection of �tr and conf, gives rise to a specification technique with which
we can specify both that certain actions must happen and that certain traces are not al-
lowed. This seems to give a suitable specification technique for concurrent processes.

Example 3 Suppose we want to specify a class of drinks machines. All machines
should initially accept a coin. After that, the implementations should give the user ei-
ther coffee or tea, or a choice between both. With hP ; redi we can capture this class
of behaviours with the following specification:

s := coin; (i; coffee; stop [] i; tea; stop)

In the example above, note that s also allows the implementation that non-determi-
nistically offers either coffee or tea, after accepting a coin. Since the non-determinism
is solely used for achieving implementation freedom in the specification, we could re-
quire that implementations are fully deterministic. In that case we have a specification
technique that is suitable for specifying deterministic processes.

Unfortunately, non-determinism is not only used to specify implementation free-

6 Disjunction of LOTOS specifications

dom. There are some inherently non-deterministic systems, such as gambling ma-
chines. More importantly, non-determinism is needed to model non-deterministic as-
pects of the environment that we do not control. Examples are lossy, or erroneous
communication media. In addition, the LOTOS internal action is sometimes used to
model certain implementation details that cannot be modelled in LOTOS. In the ex-
ample below, we show how reduction of non-determinism can lead to intuitively in-
correct implementations in these cases.

Example 4 In the following specification of a transmission protocol, the internal ac-
tion is used to abstract from the occurrence of a timeout, which is currently not ex-
plicitly expressible in LOTOS.

TPspec := send; (receive ack; stop [] i (� timeout �); error; stop)

This protocol sends a packet and then waits for an acknowledgement. If the acknowl-
edgement is not received within a certain time, the protocol gives an error signal.

According to red, this specification can be implemented by a process that gives an
error straight away, which is counter-intuitive.

TPerror := send; error; stop

Many more implementation relations exist, but most of them are also based on the as-
sumption that implementations may be more deterministic than specifications. Imple-
mentation relations that require implementations to be as deterministic as their speci-
fications are usually equivalence relations, which we have rejected for other reasons.

The solution we pursue in the next section separates the use of non-determinism to
achieve implementation freedom from its other uses. A new specification construct
is introduced for the specification of implementation options. An implementation is
then a (possibly non-deterministic) specification in which all the implementation op-
tions have been resolved.

4 DISJUNCTION

In this section, we propose to extend LOTOS with a specification construct for ex-
plicitly specifying alternative implementation options. The construct we envisage has
similarities to CSP’s internal choice, but is closer to logical disjunction. In CSP the
specificationP uQ could be implemented by P []Q, but in logic, either P orQwould
satisfy P _ Q (the choice is exclusive). The operator will be called disjunction, and
denoted by

W
, because its properties are very much like those of logical disjunction.

In the followingS denotes the set of all specifications satisfying this extended syntax.
Disjunction is an operation on specifications that can be used to compose require-

ments that do not have to be satisfied simultaneously. In order to satisfy the specifi-
cation sW t it is enough to implement either s or t. Disjunction is a specification con-
struct. Disjunctions cannot occur in implementations. Therefore disjunctions should

Disjunction 7

Table 3 Inference rules for unlabelled transitionss� s0 ` s[]t� s0[]tt� t0 ` s[]t� s[]t0s� s0 ` s j[G]j t� s0 j[G]j tt� t0 ` s j[G]j t� s j[G]j t0s� s0; x := s ` x� s0
gradually be eliminated from the specification during consecutive refinement steps.
Refinement should not reduce non-determinism though.

In order to define the semantics for disjunction operationally, we augment labelled
transition systems with a new, unlabelled, transition:�. These unlabelled transitions
can only be introduced by the disjunction operator through the following axioms:�sW t� s �sW t� t
i.e., a disjunction can be resolved through an unlabelled transition. The operational
semantics of a specification is now given by an augmented labelled transition system.

Definition 4 (Augmented Labelled Transition System)
An augmented labelled transition system (ALTS) is a structure hS;L; �! ;�; s0i, withS a set of states, L a set of action labels, �! � S � L [fig � S a set of labelled
transitions,�� S � S a set of unlabelled transitions, and s0 2 S the initial state.

The ALTS for a specification is determined in the usual fashion by the axioms for dis-
junction given above, and a set of inference rules. The inference rules that determine
the normal transition relation, �! , are the same as the normal transition rules for LO-
TOS given in table 1. The rules for unlabelled transitions are given in table 3. Note
that unlabelled transitions are just passed through by all binary operators and recur-
sion. The reason for this is that we do not want a choice, for example, to be resolved
by the presence of a disjunction in one of its arguments.

Example 5 Below we have depicted the transition systems for the specificationsS1 := a; stopW b; stop and S2 := (a; stop[]b; stop)W(a; stop[]c; stop).
bba a a

S1 2
S

c

In case of nested disjunctions (see example 6) we will usually not be interested in
the disjuncts that are again disjunctions themselves. Our interest will be in the “real”

8 Disjunction of LOTOS specifications

disjuncts, i.e., those states that can be reached through a sequence of unlabelled transi-
tions, but which have no outgoing unlabelled transitions themselves. In the remainder
of this paper, we therefore use a derived disjunction relation, defined below.

Example 6 Depicted below is the transition system for a; stopW(b; stopW c; stop).
b

a

c

Definition 5 (derived disjunction relations)

1. For a specification s, we define the following predicates:s� iff 9s0 : s� s0 (s is a disjunction)s 6� iff 6 9s0 : s� s0 (s is not a disjunction)
2. For specifications s and t, we define the following relations:s�� t iff t = s _ 9s0 : s� s0 ^ s0 �� t

(i.e., the reflexive and transitive closure of�)s 7�� t iff s�� t ^ t 6�
The following lemma gives two useful properties for the 7��-relation.

Lemma 1

1. s 6�() s 7�� s;
2. sW t 7�� x () s 7�� x _ t 7�� x.

Proof.

1. s 7�� s, f definition of 7�� gs�� s ^ s 6�, f definition of�� g(s = s _ 9s0 : s� s0 ^ s0 �� s) ^ s 6�, f s 6� gs = s ^ s 6�, f reflexivity of = gs 6�

Disjunction 9

2. sW t 7�� x, f definition of 7�� gsW t�� x ^ x 6�, f definition of�� g(x = sW t _ 9x0 : sW t� x0 ^ x0 �� x) ^ x 6�, f sW t� s and sW t� t g(s�� x _ t�� x) ^ x 6�, f distribution of _ over ^ and definition of 7�� gs 7�� x _ t 7�� x
So far, there is nothing much new. The unlabelled transitions could just as well have

been internal actions. The relation 7�� would then correspond to the relation given

by f(s; t) j s �=) t^ t i��!= g. However, by introducing a different transition, we sep-
arate the specification of alternative implementation options from the use of internal
actions and non-determinism. Note that rather than introducing an extra transition re-
lation, we could have introduced another special action label like the i for internal
actions.

In the following two sections, we define satisfaction and refinement as extensions
of bisimulation equivalence. This is where we deviate from the usual approaches based
on refusals.

4.1 Satisfaction

From here on we distinguish between processes, or implementations, which have no
disjunctions, and specifications, which may have disjunctions. Processes are in the
set P , and specifications are drawn from the set S.

A process intuitively satisfies a specification in case it is equivalent to one of its dis-
juncts. This intuition is reflected by the formal definition of satisfaction below. Since
each disjunct can again have further disjuncts, the definition is inductive. Observe that
we have used a “strong” interpretation. There is, however, no reason why this schema
could not be applied to weaker interpretations of equivalence, provided they can be
characterised inductively.

Definition 6 (Satisfaction)
Satisfaction, j=� P � S, is the largest relation such that, p j= s implies9s0 : s 7�� s0 and, for each � 2 L [fig the following two conditions hold:(j=1) Whenever p ��! p0, then s0 ��! s00 for some s00 with p0 j= s00; and(j=2) Whenever s0 ��! s00, then p ��! p0 for some p0 with p0 j= s00.

Now, we can instantiate sat with j= to obtain a powerful specification technique
for both deterministic and non-deterministic processes.

10 Disjunction of LOTOS specifications

Example 7 Going back to the drinks machine specification of example 3, we can now
specify the class of drinks machines that serve either coffee or tea as follows:

S1 := coin; (coffee; stop
W

tea; stop)

Possible implementations, according to j=, are: coin; coffee; stop and coin; tea; stop.
If we also want to allow the implementation that offers a choice between coffee and
tea, after a coin has been accepted, then we should add this as a disjunct to the spec-
ification:

S2 := coin; (coffee; stop
W

tea; stop
W

(coffee; stop [] tea; stop))

Specification S2 in the example above shows that we had to trade-in some con-
ciseness of specifications for clarity of the semantics. We believe that the semantics
of logical disjunction will be better understood by most specifiers than the semantics
of non-determinism.

Example 8 In example 4 of the transmission protocol, there was no intended imple-
mentation freedom. Since the specification TPspec does not contain disjuncts, the only
possible implementation (modulo bisimulation equivalence) is the specification itself.

The following proposition confirms that the
W

-operator behaves like logical disjunc-
tion.

Proposition 7 Let s; t 2 S be specifications, and p 2 P be a process. Thenp j= (sW t) , (p j= s) _ (p j= t).
Proof. p j= (sW t), f definition of j= g9x : (sW t) 7�� x ^ (conditions j=1 and j=2 hold for(p; x)), f lemma 1.2 g9x : (s 7�� x _ t 7�� x) ^ (:::), f distr. of ^ over _ and distr. of 9 g(9x : s 7�� x ^ (:::)) _ (9x : t 7�� x ^ (:::)), f definition of j= gp j= s _ p j= t
Because of this connection with logical disjunction,

W
also enjoys the following prop-

erties.

Corollary 8 Let r; s; t 2 S be specifications, and let p 2 P be a process. Then:

1. p j= s, p j= (sW s) (idempotency);
2. p j= (sW t) , p j= (tW s) (symmetry);

Disjunction 11

3. p j= (rW(sW t)) , p j= ((rW s)W t) (associativity).

It is not hard to see, that the equivalence over processes induced by the specification
technique hS; j=i is precisely strong bisimulation equivalence.

Proposition 9 (process equivalence)
Let p; q 2 P be processes, then p � q () 8s 2 S : (p j= s, q j= s).
Proof. (sketch) The proof for this proposition is similar to the proof that bisimula-
tion equivalence is characterised by Hennessy-Milner logic in [Mil89, p.229]. It in-
volves giving alternative characterisations of bisimulation and satisfaction as limits
of descending chains of approximating relations. These are then used to prove the
proposition by induction. 2

We can also show that all other operators of the specification language distribute
over disjunction. This will be a useful property when we want to establish a normal
form for specifications.

Proposition 10 Let r; s; t 2 S be specifications, and let p 2 P be a process. Then
the following distributivity properties hold:

1. p j= ((sW t) [] r) , p j= ((s [] r)W(t [] r));
2. p j= ((sW t) j[G]j r) , p j= ((s j[G]j r)W(t j[G]j r));
3. p j= ((sW t)W r) , p j= ((sW r)W(tW r)).
Proof.

1. From left-to-right: Assume p j= ((sW t) [] r). Then, by definition 6, there exists
an x such that ((sW t) [] r) 7�� x and conditions (j=1) and (j=2) hold for p and x.
Inspection of the inference rules for

W
and [] results in the following cases:x = s0 [] r0, where s 7�� s0 and r 7�� r0: Since ((s []r)W(t []r))� (s []r) and

the fact that� � 7��= 7��, we also have ((s [] r)W(t [] r)) 7�� x, and we are
done.x = t0 [] r0, where t 7�� t0 and r 7�� r0: Similarly.

From right-to-left: similar.
2. ((sW t) j[G]j r) and ((s j[G]j r)W(t j[G]j r)) have isomorphic transition systems.

Both specifications have the following�-derivatives: sj[G]jr and tj[G]jr. Neither
specification has any other derivatives.

3. Follows from the idempotency, symmetry and associativity of
W

. 2

12 Disjunction of LOTOS specifications

4.2 Refinement

The definition of satisfaction above, naturally induces a refinement ordering over spec-
ifications. A specification s refines a specification t in case the set of processes sat-
isfying s is a subset of the set of processes satisfying t, i.e. fp 2 P j p j= sg �fp 2 P j p j= tg. However, generalising definition 6, we can also give an inductive
characterisation of refinement:

Definition 11 (Refinement)
Refinement is the largest relation @� � S � S such that, s@� t implies that
for each s0 such that s 7�� s0, there exists a t0 such that t 7�� t0 and, for each� 2 L [fig the following holds:

(i) Whenever s0 ��! s00 then, for some t00, t0 ��! t00 and s00 @� t00; and
(ii) Whenever t0 ��! t00 then, for some s00, s0 ��! s00 and s00 @� t00.

This definition simply states that s is a refinement of t if there is a disjunct t0 in t for
each disjunct s0 in s, such that s0 is “bisimilar” to t0. The following theorem shows that@� is indeed a characterisation of refinement for the specification technique hS; j=i.
Theorem 12 Let s; t 2 S be specifications. Thens@� t() fp 2 P j p j= sg � fp 2 P j p j= tg
Proof. (sketch) The proof for this theorem goes very much along the lines of the proof
in [Mil89, p.229] that bisimulation is characterised by Hennessy-Milner logic. It in-
volves giving alternative definitions for @� and j= as decreasing !-sequences of ap-
proximating relations. We then use these to prove the given theorem by induction.2
Proposition 13 Let s; t; r 2 S be specifications, and let p 2 P be a process. Then
the following laws for disjunction will hold:

1. s@� sW t;
2. t@� sW t;
3. If s@� r and t@� r, then sW t@� r.

In other words, sW t is the least upper bound of s and t with respect to the refinement
ordering.

Proof. 1. and 2. follow immediately from definition 11, because s 7�� s0 implies(sW t) 7�� s0 (using lemma 1), and similarly for t.
3. We prove that the assumption that there is a specification r, such that s@� r andt@� r, but sW t 6@� r leads to a contradiction.
According to definition 11, sW t 6@� r can only hold, if there exists an x, such that(sW t) 7�� x, and for all r0 such that r 7�� r0 either of the two conditions of defini-

Applications 13

tion 11 does not hold. However, if (sW t) 7�� x, then (by lemma 1) either s 7�� x
or t 7�� x. Since we assumed that s @� r and t @� r, there must exist an r0 such thatr 7�� r0 and x and r0 satisfy the two conditions, which gives us the contradiction.2

Next, we show that refinement, @� , is a (pre-)congruence. That is, refinement is
preserved by all specification operators.

Proposition 14 Let s1; s2; t 2 S be specifications, such that s1 @� s2, then

1. a; s1 @� a; s2
2. s1 [] t@� s2 [] t
3. s1 j[G]j t@� s2 j[G]j t
4. s1W t@� s2W t
Proof. The first case is trivial. The other cases can easily be proved by constructing a
relation that contains the pair (LHS,RHS) and then showing that this relation is con-
tained in @� . Here, we prove just the last case.

Consider the relation f(s1W t; s2W t) j s1 @� s2g [@� . Whenever s1W t 7�� x
then either of the following two cases holds:s1 7�� x: Since s1 @� s2 there exists a y such that s2 7�� y and x and y satisfy the

two conditions of definition 11. Since (s2W t)� s2, also (s2W t) 7�� y.t 7�� x: Since (s2W t)� t, also (s2W t) 7�� x, and we are done. 2
5 APPLICATIONS

In [Hoa85], Hoare gives some examples in which the non-deterministic or, u, is used
for loosely specifying change-giving machines in CSP. These specifications can be
expressed equally well in our notation, although their interpretation is slightly differ-
ent.

Example 9 Consider the following specification of a change-giving machine, which
always gives the right change in one of two combinations:

CH1 := in5p;
(out1p; out1p; out1p; out2p; CH1W

out2p; out1p; out2p; CH1)

This specification leaves open how the change should be given. Valid implementa-
tions are those which always return one of two possible combinations of change, but
also those which return different combinations on each invocation. For example, the
implementation given by CH I1, which alternates between the two possible combi-
nations, satisfies CH1.

14 Disjunction of LOTOS specifications

CH I1 := in5p;
out1p; out1p; out1p; out2p;
in5p;
out2p; out1p; out2p; CH I1

Example 10 We saw that CH1 allows implementations that give different combina-
tions of change on each invocation. The following specification allows only imple-
mentations that always give the same combination, but it leaves open which combi-
nation it will be.

CH2 := CH2A
W

CH2B
where

CH2A := in5p; out1p; out1p; out1p; out2p; CH2A
CH2B := in5p; out2p; out1p; out2p; CH2B

Although CSP’s u is intended to play a similar role to logical disjunction, CSP’s fail-
ures preorder allows also implementations that replace the non-deterministic choice
by a deterministic one. This will then give the user a choice, at “run-time”, which im-
plementation s/he wants. For example, if the specifications CH1 and CH2 had been
written with a non-deterministic choice between the alternatives, then both would
have allowed the following implementation:

CH I2 := in5p;
(out1p; out1p; out1p; out2p; CH I2

[]
out2p; out1p; out2p; CH I2)

which gives the user a chance to influence which combination of change s/he will get.
However, the semantics of

W
does not allow CH I2 as an implementation of either

CH1 or CH2, i.e. CH I2 6j= CH1, CH2.

5.1 The most undefined specification

The disjunction operator can easily be generalised to work over a set of arguments.
For S a set of specifications,

_S denotes the disjunction of all the specificationss 2 S. The semantics is defined by the following family of axioms:�_S� s (s 2 S)
In the same fashion, choice, [], can be generalised to �S, with �fg = stop.

Using these generalised operators, we can define the most undefined specification,
i.e. the specification that allows all processes as implementations, provided the alpha-
bet of labels is finite.

Conclusion 15U :=
_ f � f a; U j a2A g j A� L g

Example 11 Let L = fa; bg be the alphabet. Then the most undefined specificationU is given by:U := stop
W

a; U W b; U W (a; U [] b; U)

This most undefined specification is very useful for partial specification. Whenever
we want to leave open the behaviour at a certain point, we can just plug-in U . Later
on, this can be refined to anything, thus achieving complete implementation freedom.

6 CONCLUSION

Many others before us have recognised the limited expressiveness of process algebras
for the specification of non-deterministic, concurrent processes. A common approach
has been to define a logic, separate from the process description language, for the
specification of properties of processes (e.g. Hennessy-Milner Logic (HML) [HM85]
and modal �-calculus [Koz83]). A clear drawback is that specifications and imple-
mentations are in different notations. Step-wise refinement is not possible, and veri-
fication can only be done a posteriori. In order to alleviate this problem, there have
been some attempts to introduce the process structuring operators into these logics.
In [Hol89], HML is extended with the CCS operators, and in [BGS89], the same is
done for a fragment of the �-calculus. Unfortunately, these languages have a denota-
tional semantics: each specification is associated with the set of processes that satisfy
it. Verifying whether a process satisfies a specification amounts to checking whether
it is in that set. Alternatively, the correctness of an implementation can be verified
through (in-)equational reasoning.

Another way to increase the expressive power of process algebraic specifications
is introduced in [Lar90b], where transitions are decorated with modalities. A distinc-
tion is made between required and allowed transitions. Bisimulation equivalence is
then generalised to a refinement relation that ensures that the more concrete speci-
fication requires more and allows less. It is also possible to define the equivalent of
logical conjunction operationally in this model [LSW95]. In fact, it has been shown
that the specification technique thus obtained is as expressive as a restricted version
of HML [BL92]. The restriction is caused by the inability to adequately express dis-
junction. However, modal transition systems can be extended with disjunction in the
same way we have extended labelled transition systems with disjunction in this paper.
Would this then create a specification technique with the full power of HML?

ACKNOWLEDGEMENTS

We would like to thank Rom Langerak for discussing ideas that led to this paper, and
the anonymous referees for their useful comments.

16 Disjunction of LOTOS specifications

REFERENCES

[BGS89] A. Bouajjani, S. Graf, and J. Sifakis. A logic for the description of be-
haviours and properties of concurrent systems. LNCS 354, pages 398–
410, 1989.

[BL92] G. Boudol and K.G. Larsen. Graphical versus logical specifications. The-
oretical Computer Science, 106:3–20, 1992.

[BSS87] E. Brinksma, G. Scollo, and C. Steenbergen. LOTOS specifications, their
implementations and their tests. In PSTV VI, pages 349–360, 1987.

[HM85] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and con-
currency. Journal of the ACM, 32(1):137–161, January 1985.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall,
1985.

[Hol89] S. Holmström. A refinement calculus for specifications in Hennessy-
Milner logic with recursion. Formal Aspects of Computing, 1(3):242–
272, 1989.

[Koz83] D. Kozen. Results on the propositional�-calculus. Theoretical Computer
Science, 27(3):333–354, December 1983.

[Lar90a] K.G. Larsen. Ideal specification formalism = expressivity + composition-
ality + decidability + testability + � � � . In CONCUR’90, LNCS 458,
pages 33–56, 1990.

[Lar90b] K.G. Larsen. Modal specifications. In J. Sifakis, editor, Automatic Verifi-
cation Methods for Finite State Systems: Proceedings, LNCS 407, pages
232–246. Springer-Verlag, 1990.

[Led91] G. Leduc. On the Role of Implementation Relations in the Design of Dis-
tributed Systems using LOTOS. PhD thesis, University of Liège, Bel-
gium, June 1991.

[Led92] G. Leduc. A framework based on implementation relations for imple-
menting LOTOS specifications. Computer Networks and ISDN Sys-
tems, 25:23–41, 1992.

[LSW95] K.G. Larsen, B. Steffen, and C. Weise. A constraint oriented proof
methodology based on modal transition systems. In E. Brinksma, ed-
itor, TACAS’95, LNCS 1019, pages 17–40, 1995.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
[NH84] R. de Nicola and M.C.B. Hennessy. Testing equivalences for processes.

Theoretical Computer Science, 34:83–133, 1984.

Ir M.W.A. Steen obtained an MSc(Eng) in Computer Science from the University of
Twente, The Netherlands, in 1993. He is currently completing a PhD degree in Com-
puter Science at the University of Kent at Canterbury. His current research focuses
on partial specification in process algebra, in particular on techniques for consistency
checking and composition. Furthermore he has worked on application of these, and
other, formal techniques in the area of Open Distributed Processing.

Dr. H. Bowman, Dr. J. Derrick and Dr.Ir. E.A. Boiten are lecturers in the Com-
puting Laboratory at the University of Kent.

Conclusion 17

APPENDIX

This appendix contains a complete proof for theorem 12. Our strategy is similar to the proof
that bisimulation is characterised by Hennessy-Milner logic in [Mil89, chap. 10]. It involves
alternative characterisations for satisfaction, j=, and refinement, @� , as limits of descending
chains of approximating relations.

Firstly, we define functions Fj= : }(P � S) ! }(P � S), and F@� : }(S � S) !}(S � S), as follows:

Definition 15 If R � P � S , then (p; s) 2 Fj=(R) iff there exists an s0 such that s 7�� s0
and, for each a 2 L [fig:(j=1) Whenever p a�! p0, then s0 a�! s00 for some s00 with p0 R s00; and(j=2) Whenever s0 a�! s00, then p a�! p0 for some p0 with p0 R s00.
Definition 16 If R � S � S , then (s; t) 2 F@� (R) iff for each s0 such that s 7�� s0, there
exists a t0 such that t 7�� t0 and, for each a 2 L [fig:(@� 1) Whenever s0 a�! s00, then t0 a�! t00 for some t00 with s00 R t00; and(@� 2) Whenever t0 a�! t00, then s0 a�! s00 for some s00 with s00 R t00.

Observe that the conditions in these definitions are the same as in definitions 6 and 11 of
satisfaction and refinement. In fact, it can be shown that j= is the greatest fixed-point of Fj=,
and that @� is the greatest fixed-point of F@� .

Proposition 17

1. j= is the greatest fixed-point of Fj=; and
2. @� is the greatest fixed-point of F@� .

Proof. We outline the proof for 1. The other proof is similar.
First, observe that the functionFj= is monotonic, i.e. it preserves the standard subset-ordering

on relations. Then, by the Knaster-Tarksi fixed-point theorem, it has a greatest fixed-point given
by

gfp(Fj=) =[fR j R � Fj=(R)g
Finally, if we change the word ‘implies’ in definition 6 to ‘�’, then we obtain that j= is the
largest relation such that j=� Fj=(j=). Hence, j== gfp(Fj=).

Now, we are ready to give alternative characterisations for j= and @� as the limits of de-
scending chains of approximating relations. Definitions 18 and 19 define sequences of relationsj=0; j=1; � � � ; j=�; � � � and @� 0; @� 1; � � � ; @� �; � � � for each ordinal number � 2 O, starting
with the universal relation.

Definition 18 (satisfaction)j=0 = P � S; j=�+1 = Fj=(j=�); and j=� = \�<� j=� for each limit ordinal �.

Definition 19 (refinement)@� 0 = S � S; @� �+1 = F@� (@� �); and @� � = \�<� @� � for each limit ordinal �.

18 Disjunction of LOTOS specifications

Another way of looking at these definitions is, that j=� is equal to the �-fold application ofFj= to P � S , i.e. j=� = F�j=(P � S).
The following proposition shows that the sequences of relations thus defined, form non-

strictly decreasing chains.

Proposition 20 If � > � then

1. j=� � j=�;
2. @� � � @� � .

Proof. 1. By transfinite induction and the monotonicity of Fj=.
Certainly, j=1= Fj=(j=0) �j=0. For all successor ordinals, � + 1, we have F�+1j= (j=0) �F�j=(j=0), because of the monotonicity of Fj=. For each limit ordinal �, we have F�j=(j=0) =\�<�F�j=(j=0). Since h}(P�S);�i is a complete lattice, the glb

TfF�j=(j=0) j � < �g exists

and is below each F�j=(j=0), i.e. 8� < � :j=��j=� . Hence, we have a descending chain� � � �j=�� � � � �j=�+1�j=�� � � � �j=1�j=0
for all � 2 O.

The other proof is similar.

With results from fixed-point theory, it can be shown that the limit of these decreasing chains
are indeed the relations j= and @� . For completeness sake we provide the proof here though.

Proposition 21

1. j= = \�2O j=�;

2. @� = \�2O @� �.

Proof. We show that
\� j=�, the limit of the chain of relations j=�, is a fixed-point of Fj=,

and equal to the greatest fixed-point of Fj=, j=.
Let’s assume that there is no � for which j=� is a fixed-point of Fj=, i.e. 8� 2 O : F�j=(j=0) 6= F�j=(F�j=(j=0)). Then� � � �j=�� � � � �j=�+1�j=�� � � � �j=1�j=0

is a strictly-descending chain. Eventually this chain must reach the bottom element of the lattice
of relations onP�S , the empty relation ;. In other words, there must be an� such thatF�j=(j=0) = ;. But, this is a fixed-point of Fj=. Contradiction! Hence we can conclude that for some�, F�j=(j=0) is a fixed-point of Fj=.

If F�j=(j=0) is a fixed-point of Fj=, then for all � > �, F�j=(j=0) = F�j=(j=0). So, the limit

of the descending chain
T� j=�=j=�, and is therefore a fixed-point of Fj=. Since j= is the

greatest fixed-point of Fj=, we have
T� j=��j=.

It remains to be proved thatF�j=(j=0) is the greatest fixed-point j=. This can be proved using
transfinite induction.

Conclusion 19

Clearly, j=�j=0. Assume that j=�j=� , then Fj=(j=) � F�+1j= (j=0), by the monotonicity

of Fj=, which implies that j=� F�+1j= (j=0), since j= is a fixed-point of Fj=. Finally, assume

that j=�j=� for all � < �, where � is a limit ordinal. Then F�j=(j=0) = TfF�j=(j=0) j � <�g � Fj=(j=) =j=, by the monotonicity of Fj=. Knowing that j=�j=� for all � 2 O, we can
conclude that j=� T� j=�.

The other proof is similar.

After the ground work above, we now come to the proof of theorem 12. We actually prove
a slightly stronger proposition, of which theorem 12 is a corollary.

Proposition 22 For each � 2 O, and specifications s; t:s@� �t, 8p : p j=� s) p j=� t (1)

Proof. By transfinite induction over �. Assume that (1) holds for all � < �.

Base case (� = 0): s@� 0t , 8p : pj=0s) pj=0t, which holds trivially, since s@� 0t �pj=0s � pj=0t � true .
Induction step (� = � + 1): s@� �+1t, 8p : pj=�+1s) pj=�+1t.

We do a ping-pong proof:

“)” Assuming that s@� �+1t and pj=�+1s hold for an arbitrary process p, we prove thatpj=�+1t. That is, we need to prove that 9t0 : t 7�� t0 such that, for all a 2 A:

1. 8p0 : p a�! p0) 9t00 : t0 a�! t00 ^ p0j=�t00; and
2. 8t00 : t0 a�! t00) 9p0 : p a�! p0 ^ p0j=�t00.
Using pj=�+1s, we derive that 9s0 : s 7�� s0 such that, for all a 2 A:8p0 : p a�! p0) 9s00 : s0 a�! s00 ^ p0j=�s00 (2)8s00 : s0 a�! s00) 9p0 : p a�! p0 ^ p0j=�s00 (3)

Using s@� �+1t, we next derive that 9t0 : t 7�� t0 such that, for all a 2 A:8s00 : s0 a�! s00) 9t00 : t0 a�! t00 ^ s00 @� �t00 (4)8t00 : t0 a�! t00) 9s00 : s0 a�! s00 ^ s00 @� �t00 (5)

Next, we distinguish two cases:

Case p a�! p0:
From (2) we derive that 9s00 : s0 a�! s00 ^ p0j=�s00. And, by (4), we derive next that9t00 : t0 a�! t00 ^ s00 @� �t00. And, finally, the induction hypothesis gives us p0j=�t00.

Case t0 a�! t00:
From (5) we derive that 9s00 : s0 a�! s00^s00 @� �t00. And, by (3), we derive next that9p0 : p a�! p0 ^ p0j=�s00. And, finally, the induction hypothesis gives us p0j=�t00.

20 Disjunction of LOTOS specifications

“(” We turn the proposition around and assume that s 6@� �+1t. Next, we look for a pro-
cess p such that pj=�+1s and p6j=�+1t.
Since there always is a t0 such that t 7�� t0 (remember that t0 could be t itself), s 6@� �+1t
can only hold if there exists an s0 such that s 7�� s0 and for each t0 such that t 7�� t0
either of the following two predicates holds:

1. 9s00 : s0 a�! s00 ^ (8t00 : t0 a�! t00) s00 6@� �t00)
2. 9t00 : t0 a�! t00 ^ (8s00 : s0 a�! s00) s00 6@� �t00)
We consider both cases in turn:

Case 1: For simplicity, we assume that s0 6 b�! for any b 2 A. Let fti : i 2 Ig be
the set of all a�! -derivatives of t0. Then for each i 2 I , since s00 6@� �ti, there is
by induction a process pi such that pij=�s00 and pi 6j=nti. Now define p to be the

process Si2Ia; pi. Then, whenever p a�! pi, we have pij=�s00, and since s0 6 b�!, we
have pj=�+1s. On the other hand, no a�! -derivative of any t0, such that t 7�� t0,
is satisfied by pi, so p6j=�+1t.

Case 2: Again for reasons of simplicity, we assume that s0 6 b�! for any b 6= a, and thats0 a�! s00) s0 a�! s00. Let fsi : i 2 Ig be the set of all a�! -derivatives of s0.
Then for each i 2 I , since si 6@� �t00, there is by induction a process pi such thatpij=�si and pi 6j=nt00. Now define p to be the process Si2Ia; pi. Then, wheneverp a�! pi, there is an si such that pij=�si, and whenever s0 a�! si there is a pi such
that pij=�si. Hence, we have pj=�+1s. On the other hand, no a-derivative of p will
satisfy t00, so p6j=�+1t.

Induction step (� is a limit ordinal): s@� �t, f definition 19 g8� < � : s@� �t, f induction hypothesis g8� < � : 8p : p j=� s) p j=� t, f predicate logic g8p : (8� < � : p j=� s)) (8� < � : p j=� t), f definition 18 g8p : p j=� s) p j=� t
Theorem 12 now follows directly from the proposition above and the fact that j==\� j=�

and @� =\� @� �.

