University of

"1l Kent Academic Repository

Steen, M\W.A., Bowman, H., Derrick, J. and Boiten, E.A. (1997) Disjunction
of LOTOS specifications. In: Mizuno, Tadanori and Shiratori, Norio and
Higashino, Teruo and Togashi, Atsushi, eds. Formal Description Techniques
and Protocol Specification, Testing and Verification. IFIP - The International
Federation for Information Processing . Springer, Boston, Massachusetts,
USA, pp. 177-192. ISBN 978-1-4757-5260-1.

Downloaded from
https://kar.kent.ac.uk/21439/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/978-0-387-35271-8 11

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21439/
https://doi.org/10.1007/978-0-387-35271-8_11
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Digunction of LOTOS specifications

M.W.A. Seen, H. Bowman, J. Derrick and E.A. Boiten

University of Kent at Canterbury

Computing Lab., The University, Canterbury, Kent CT2 7NF, UK.
Email: mwas@ukc.ac.uk

Abstract

LoTos is aformal specification language, designed for the precise description of
open distributed systems and protocols. The definition of, so called, implementation
relations has made it possible also to use LOTOS as a specification technique for the
design of such systems. These LOTOS based specification techniques usually (ab)use
non-determinism to achieve implementation freedom. Unfortunately, thisis unsatis-
factory when specifying non-deterministic processes. We, therefore, propose to ex-
tend LoTos with adisjunction operator in order to achievemoreimplementationfree-
domwhile maintai ning the possibility to describe non-deterministic processes. In con-
trast with similar proposals we maintain the operational semantics.

Keywords
LOTOS, process algebra, specification, digunction, operationa semantics

1 INTRODUCTION

In this paper we investigate the extension of the formal specification languageLOTOS
with adigjunction operator. Such a specification construct could play arolein achiev-
ing amore expressi ve specification technique. Asin logic, disunction can be used to
specify a choice between implementation options. If p; is an implementation of sy,
and p-, isanimplementation of s», then the specification s; \/ s» can beimplemented
by either p; or p». Thus, disunction in specificationsleadsto greater implementation
freedom. Thisis useful both in the specification of standards, which often describe
anumber of implementation classes, and in the development of distributed systems,
wherewe do not want to tie the hands of theimplementorsin theinitial specification.

1.1 Interpreting LOTOS specifications

LoTosisaprocessalgebraiclanguageinfluenced by theearlier processcalculi ccs[Mil89]
and csp [Hoa85]. For example, it has inherited the powerful idea of multi-way syn-
chronisation, enabling constrai nt-oriented specification, from csp. On the other hand,

the language has been given an operational semantics much in the style of ccs.

©IFIP 1996. Published by Chapman & Hall

2 Disjunction of LOTOS specifications

LSS

Figurel Design process

The operational semantics associates a labelled transition system (LTS) with each
process description. The usual interpretation of a LOTOS “ specification” is the set of
processes that are indistinguishable (w.r.t. some notion of equival ence) fromthe LTS
associated with it. However, this view requires that the observational behaviour of
implementationsis completely determined already by their initial specifications.

Analternative, morerelaxed, view is, that implementationsare related to specifica-
tions by a, so called, implementation relation™. Implementation relations are usually
not equivalences and, therefore, allow the behaviour of implementationsto be some-
how more determined than the behaviour described by their specifications. Moreover,
they induce a refinement ordering between specifications, which enables an incre-
mental design process as depicted in figure 1. An initial abstract specification, al-
lowing many possible implementations, goes through a series of consecutive refine-
ment steps, each restricting the implementation space, until afinal implementationis
reached.

1.2 Theproblem

Several researchers have investigated the use of implementation relations with Lo-
TOS to obtain aspecification techniquefor concurrent processes (see section 3). Most
of these approachesareinspired by cspP’sfailures/divergencessemantics, or have been
derived from testing theory. Non-determinismis usually (ab)used to achieve imple-
mentation freedom. We argue that this is not always satisfactory. In particular, we
show that it becomes impossible to specify inherently non-deterministic processes
adequately, and the wide-spread use of internal actions as an abstraction mechanism
can lead to counter-intuitive implementations.

*Implementation relations are sometimes also referred to as conformance relations or satisfaction
relations.

LOTOS syntax and semantics 3

2 LOTOS: SYNTAX AND SEMANTICS

In order not to clutter the presentation of our mainideas, wewill only consider asmall
subset of the operatorsthat LoTOS offersfor the structuring of process descriptions.
The subset we useisinductively defined by the following grammar:

P:=stop|a;P|i;P|P[|P|P|[G]|P|X

Here we assume that a set of action labels £ is given. Then, a € £; i isthe unob-
servable, or internal, action; G C £; and X isaprocess name. Wewill assume that a
definition existsfor each process name used. Process definitionsare written X := P,
where P is a behaviour expression that can again contain process names, including
possibly X itself, thus making the definition recursive. The set of all processesisde-
noted by P, elementsof £ by a,b,c..., and elementsof £ U {i} by u.

The operational semantics for LOTOS associates a labelled transition system with
each behaviour description through the axioms and inference rules given in table 1.

Table 1 Inferencerules

F aP-%P
PSP
PP F PIQSP
Q-+ FPlRE=Q
PP ugG - PGNQE PG Q
Q-5Q ngd - PG Q-+ PG @
P55 P.Q-%Q,acG + PlG)|Q-%P[G]Q
PP X =P X P

TheLTsforaprocesspis(D,, L,,T,, p). HereT, isthesmallest set of transitions
that can beinferred from p under the given inferencerules; D,, isthe set of processes
derivable from p under the transitionsin T,,; L, = {a | (s,a,s') € T,}, the set of
action labels.

2.1 Further notation

For the rest of the paper we need some more derived notation. Let £* denote strings
over L. The constant e € L£* denotes the empty string, and the variables o, o; are
used to range over £*. Elements of £* are also called traces. In table 2 the notion of
transition is generalised to traces. We further define Tr(p), the set of traces of p, and
Ref(p, o), the sets of actionsrefused by p after the trace o

Tr(p) ={o € L* [p=}

Ref(p,0) = {X C L|3p :p-= p'andVa € X : p/ = }.

4 Disjunction of LOTOS specifications

Table 2 Derived transition denotations
Notation Meaning

p Lt W' p Ly
p—rp B ipyp
= reflexive and transitive closure of —»
p==p Jg.q p=q-Sq =y
p= I :p=y
p= A ip=p

2.2 Equivalence

Often transition systems are considered to be too discriminating in the sense that pro-
cesses that are intuitively considered to be equivalent may have different represen-
tations. The processes a; b; stop and «a; (b; stop [] b; stop) [] a; b; stop, for exam-
ple, have different transition systems, but can both only perform the sequence of ac-
tionsab and then deadl ock. For thisreason several abstracting equivalenceshavebeen
defined over the LTS model. In this paper, we consider only the strongest of the be-
havioural equivalences: strong bisimulation equivalence. Processes are equival ent i ff
they can simulate each other. Thisisindeed the case for the two processes above.

Definition 1 (bisimulation equivalence)

Bisimulation equivalence, ~C P x P, isthelargest relation such that, p ~ ¢ implies
(i) Wnenever p £ p’ then, for someq’, ¢ £+ ¢’ and p’ ~ ¢'; and
(i) Whenever ¢ £+ ¢' then, for somep’, p £+ p’ andp’ ~ ¢'.

The choice of equivalence is fairly arbitrary. We could just as well have chosen
weak bisimulation equivalence or testing equivalence. We are, however, interested in
creating a specification techniquethat is as expressive as possible. Since bisimulation
equivalence is the strongest behavioural equivalence on processes, and by defining
satisfaction (see section 4) as an extension of it, we achieve precisely this.

3 LOTOSASA SPECIFICATION TECHNIQUE

The"meaning” of aspecification, i.e. the set of implementationsthat it describes, de-
pendson the chosen satisfaction relation. Following [Lar90a] and [Led92], we define
aspecification techniqueto beapair (X, sat), where X isthe set of all specifications,
and sat is some satisfaction relation. Using the notion of bisimulation from the pre-
vious section, we could instantiate sat with ~. However, as argued in the introduc-
tion, this would leave very little room for manoeuvring during the implementation
phase, because the behaviour of implementationswould have to be equivalent to the
behaviour of their specifications.

LOTOS as a specification technique 5

Several asymmetricinstantiationsfor sat havebeeninvestigated for LoTOS[BSS87,
Led91]. These, so called, implementation relations were either derived from cspP's
denotational semantics [Hoa35], or from testing theory [NH84].

Oneof the simplest implementation relations, isthetrace preorder. It only verifies
that the implementation cannot perform sequences of observable actions (traces) that
are not allowed by the specification.

Definition 2 (tracepreorder) Letp,s € P.p <4 siff Tr(p) C Tr(s).

Examplel Let s := a; b;stop[]a; ¢; stop, then p; := a; b; stop, p» := a; ¢; stop
and ps := a; (b; stop[|c; stop) are all implementations of s according to <,.. But,
also stop and a; stop are correct, since <, does not require any behaviour to be
implemented.

Thetrace preorder isavery weak implementation rel ation. We cannot useit to specify
that anything must happen. Another notion of validity is, that for each trace of the
specification, the implementation can only refuse whatever the specification refuses
after that trace. Thisis captured by the conf-relation, which was derived from testing
theory. Here we give an intensional definition in terms of traces and refusals.

Definition 3 (conf) Letp,s € P.pconf siff Vo € Tr(s) : Ref(p, o) C Ref(s, o).

Example 2 For the specifications and processes given in example 1, p1, p» and ps
are all correct implementations of s according to conf. However, stop and a; stop
are not, because s requires either b or ¢ to happen after a.

Therelationred (sometimesreferredto astesting preorder, or failurepreorder), which
istheintersection of <., and conf, givesrise to a specification technique with which
we can specify both that certain actions must happen and that certain tracesarenot al-
lowed. This seemsto give asuitabl e specification techniquefor concurrent processes.

Example 3 Suppose we want to specify a class of drinks machines. All machines
shouldinitially accept a coin. After that, the implementations should give the user ei-
ther coffee or tea, or a choice between both. With (P, red) we can capturethis class
of behaviourswith the following specification:

s:=coin; (i; coffee; stop [] i; tea; stop)

In the example above, note that s also alows the implementation that non-determi-
nistically offerseither coffee or tea, after accepting acoin. Sincethe non-determinism
issolely used for achieving implementation freedomin the specification, we could re-
quirethat implementationsarefully deterministic. In that case we have a specification
techniquethat is suitable for specifying deterministic processes.

Unfortunately, non-determinism is not only used to specify implementation free-

6 Disjunction of LOTOS specifications

dom. There are some inherently non-deterministic systems, such as gambling ma-
chines. Moreimportantly, non-determinismis needed to model non-deterministic as-
pects of the environment that we do not control. Examples are lossy, or erroneous
communication media. In addition, the LOTOS internal action is sometimes used to
model certain implementation details that cannot be modelled in LoTos. In the ex-
ample below, we show how reduction of non-determinism can lead to intuitively in-
correct implementationsin these cases.

Example 4 Inthefollowing specification of a transmission protocol, theinternal ac-
tion is used to abstract from the occurrence of a timeout, which is currently not ex-
plicitly expressiblein LoTOS.

TPspec = send; (receive_ack; stop [] i (x timeout); error; stop)

Thisprotocol sends a packet and then waits for an acknowledgement. If the acknowl-
edgement is not received within a certain time, the protocol gives an error signal.

According tored, this specification can beimplemented by a processthat givesan
error straight away, which is counter-intuitive.

TP,...or := send; error; stop

Many moreimplementation relations exist, but most of them are also based onthe as-
sumption that implementations may be more deterministic than specifications. Imple-
mentation relationsthat requireimplementati onsto be as deterministic astheir speci-
fications are usually equivalencerelations, which we have rejected for other reasons.

The solution we pursuein the next section separates the use of non-determinismto
achieve implementation freedom from its other uses. A new specification construct
isintroduced for the specification of implementation options. An implementation is
then a (possibly non-deterministic) specification in which all the implementation op-
tions have been resolved.

4 DISJUNCTION

In this section, we propose to extend LOTOS with a specification construct for ex-
plicitly specifying alternativeimplementation options. The construct we envisage has
similarities to csP's internal choice, but is closer to logical disunction. In csp the
specification P could beimplemented by P[], butinlogic, either P or) would
satisfy P Vv @ (the choiceis exclusive). The operator will be called digunction, and
denoted by \/, becauseits properties are very much like those of logical disunction.
Inthefollowing S denotesthe set of all specifications satisfying thisextended syntax.

Digjunction is an operation on specifications that can be used to compose require-
ments that do not have to be satisfied simultaneoudly. In order to satisfy the specifi-
cation s \/ t itisenough to implement either s or ¢. Digjunction is a specification con-
struct. Digunctions cannot occur in implementations. Therefore disunctions should

Disjunction 7

Table 3 Inferencerulesfor unlabelled transitions

s s F st — s'[]t

t— ¢ Foos[]t — st

s— s Foos|[Glt— s"|[G]] ¢
t—t Foos|[G]t— sG]t
s—s,xi=s F x5

gradually be eliminated from the specification during consecutive refinement steps.
Refinement should not reduce non-determinism though.

In order to define the semantics for disjunction operationally, we augment |abelled
transition systemswith anew, unlabelled, transition:; »—. These unlabelled transitions
can only be introduced by the disjunction operator through the following axioms:

s\VVt—s sVt—t

i.e.,, adigunction can be resolved through an unlabelled transition. The operational
semanticsof aspecification is now given by an augmented labelled transition system.

Definition 4 (Augmented Labelled Transition System)

Anaugmented labelledtransition system (ALTS) isastructure (S, L, — , —, sp), with
S a set of states, L a set of action labels, — C S x LU {i} x S aset of labelled
transitions, —C S x S a set of unlabelled transitions, and sq € S theinitial state.

TheALTs for aspecification is determined in the usual fashion by the axiomsfor dis-
junction given above, and a set of inferencerules. The inference rulesthat determine
thenormal transitionrelation, — , arethe same asthe normal transition rulesfor Lo-
Tos given in table 1. The rules for unlabelled transitions are given in table 3. Note
that unlabelled transitions are just passed through by all binary operators and recur-
sion. The reason for thisisthat we do not want a choice, for example, to be resolved
by the presence of adigunction in one of its arguments.

Example 5 Below we have depicted the transition systems for the specifications
Sy := a;stop \/ b;stop and S, := (a; stop[]b; stop) \/(a; stop[]¢; stop).

{1 AWK

In case of nested digunctions (see example 6) we will usually not be interested in
the digunctsthat are again digunctionsthemselves. Our interest will bein the “real”

8 Disjunction of LOTOS specifications

diguncts, i.e., those states that can be reached through asequence of unlabelled transi-
tions, but which have no outgoing unlabelled transitionsthemselves. In the remainder
of this paper, we therefore use a derived disunction relation, defined bel ow.

Example 6 Depicted belowisthetransition systemfor a; stop \/(b; stop V/ ¢;stop).

e

Definition 5 (derived digunction relations)

1. For a specification s, we define the following predicates:
s— iff 3s':s— " (sisadigunction)
sy iff As':s»— s (sisnotadigunction)
2. For specifications s and ¢, we define the following relations:
s—*t iff t=sv3Ids':s— s AN "t
(i.e., the reflexive and transitive closure of —)
s t iff s tAL S

Thefollowing lemma gives two useful propertiesfor the »~*-relation.

Lemmal

1 s < sr*s;
2. s\t ="z <= sFax Vit

Proof.

1. 5% s
< { definition of =* }
s —* s Ns
< { definition of —* }
(s=sV3s':s—s'"ANs'"—*s)As
o {srh)
S=8NAs
< { reflexivity of = }
57/

Disjunction 9

2. sVitr*z

& { déefinition of ~~* }
sVt—=*z Az f

< { definition of —* }
(z=s\VtvIz':s\Vt— ' AN —*z) Nz fs

< {s\Vt—sads\t—t}
(s —=*axVi—"z) ANz

< { distribution of V over A and definition of —~* }
s o Vit*a

So far, thereisnothing much new. Theunlabelled transitions could just aswell have
been internal actions. The relation -~* would then correspond to the relation given
by {(s,t) | s==t At —/> }. However, by introducing a different transition, we sep-
arate the specification of alternative implementation options from the use of internal
actions and non-determinism. Note that rather than introducing an extratransition re-
lation, we could have introduced another special action label like the 7 for interna
actions.

In the following two sections, we define satisfaction and refinement as extensions
of bisimulation equivalence. Thisiswherewe deviatefrom the usual approachesbased
on refusals.

4.1 Satisfaction

From here on we distinguish between processes, or implementations, which have no
disunctions, and specifications, which may have disunctions. Processes are in the
set P, and specifications are drawn from the set S.

A processintuitively satisfiesaspecificationin caseitisequivalentto oneof itsdis-
juncts. Thisintuition is reflected by the formal definition of satisfaction below. Since
each digunct can again havefurther diguncts, the definitionisinductive. Observethat
we haveused a“ strong” interpretation. Thereis, however, no reason why this schema
could not be applied to weaker interpretations of equivalence, provided they can be
characterised inductively.

Definition 6 (Satisfaction)

Satisfaction, =C P x S, isthelargest relation such that, p |= s implies

3s' : s =™ s’ and, for each u € L U {i} thefollowing two conditions hold:
(E1) Whenever p 5 p', then s’ £ " for some s” with p’ |= s; and
(E2) Whenever s' £ 5", then p -+ p' for somep’ withp' = 5.

Now, we can instantiate sat with = to obtain a powerful specification technique
for both deterministic and non-deterministic processes.

10 Disjunction of LOTOS specifications

Example 7 Going back to the drinks machine specification of example 3, we can now
specify the class of drinks machines that serve either coffee or tea asfollows:

S1 := coin; (coffee; stop \/ tea; stop)

Possibleimplementations, accordingto |=, are: coin; coffee; stop and coin; tea; stop.
If we also want to allow the implementation that offers a choice between coffee and
tea, after a coin has been accepted, then we should add this as a disjunct to the spec-
ification:

S2 := coin; (coffee; stop \/ tea; stop \/ (coffee; stop [] tea; stop))

Specification S2 in the example above shows that we had to trade-in some con-
ciseness of specifications for clarity of the semantics. We believe that the semantics
of logical disunctionwill be better understood by most specifiers than the semantics
of non-determinism.

Example 8 In example 4 of the transmission protocol, there was no intended imple-
mentation freedom. Sincethe specification TP,,.. does not contain disjuncts, theonly
possi bleimplementation (modul o bisimul ation equivalence) is the specificationitself.

Thefollowing proposition confirmsthat the \/-operator behaves|like logical disunc-
tion.

Proposition 7 Let s,t € S be specifications, and p € P be a process. Then
pEGVH e @Es)VEED.

Proof. plE(sVt)
< { definition of = }
Jz: (s t) =* z A (conditions =, and = hold for(p, z))
& {lemmal2}
Jz (s xVi*z)A(.)
& {distr. of A over v and distr. of 3 }
Bz:s=*zA())V(Ez:t =" A ()
< { definition of = }
pPEsVpEL

Because of thisconnectionwithlogical disunction, \/ a so enjoysthefollowing prop-
erties.

Corollary 8 Letr,s,t € S be specifications, and let p € P be a process. Then:

1L pEsepl(s\s) (idempotency);
2.pl(sVit) & p=(tVs) (symmetry);

Disjunction 11

3 pErV(iV) epkE((rVs) /) (associativity).

Itisnot hard to see, that the equivalence over processes induced by the specification
technique (S, =) is precisely strong bisimulation equivalence.

Proposition 9 (process equivalence)
Letp,q € P beprocesses, thenp ~ g <= Vs e S: (plE=s & q | s).

Proof. (sketch) The proof for this proposition is similar to the proof that bismula-
tion equivalence is characterised by Hennessy-Milner logic in [Mil89, p.229]. It in-
volves giving alternative characterisations of bisimulation and satisfaction as limits
of descending chains of approximating relations. These are then used to prove the
proposition by induction. O

We can also show that all other operators of the specification language distribute
over disunction. Thiswill be a useful property when we want to establish a normal
form for specifications.

Proposition 10 Letr, s, € S be specifications, and let p € P be a process. Then
the following distributivity properties hold:

1. From left-to-right: Assume p |= ((s\/ t) [] r). Then, by definition 6, there exists
anz suchthat ((s \/¢) [|r) =~* 2 and conditions(j=1) and (=2) hold for p and «.
Inspection of theinferencerulesfor \/ and [] resultsin the following cases:

x=s"[]r',wheres * s"and r =* r': Since((s[]r) V(¢[]r)) — (s[]r) and
thefact that — o =*=»-* wedsohave((s[]r) \/(t[]r)) =* =, and we are
done.

x=1t"[r',wheret -»* ¢t and r »* r': Similarly.

From right-to-left: similar.

2. ((s\Vt)|[G]|r)and ((s |[G]|) V(¢ ||G]] r)) haveisomorphic transition systems.
Both specificationshavethefollowing —-derivatives: s|[G]|r and ¢|[G]|r. Neither
specification has any other derivatives.

3. Followsfrom the idempotency, symmetry and associativity of \/. |

12 Disjunction of LOTOS specifications

4.2 Refinement

Thedefinition of satisfaction above, naturally inducesarefinement ordering over spec-
ifications. A specification s refines a specification ¢ in case the set of processes sat-
isfying s is a subset of the set of processes satisfying ¢,i.e. {p € P |p | s} C
{p € P | p = t}. However, generalising definition 6, we can also give an inductive
characterisation of refinement:

Definition 11 (Refinement)
Refinement isthe largest relation C C S x S suchthat, s C ¢ impliesthat
for each s’ such that s ~»* ', there exists a ¢’ such that ¢ ~~* ¢’ and, for each
u € LU {i} thefollowing holds:
(i) Wnenever s’ £ 5" then, for somet”, t' 4= ¢ and s” C ¢"; and
(i) Whenever t' 5 t" then, for some s”, s’ = s" and s" T t"".

This definition simply states that s isarefinement of ¢ if thereisadigunct ¢’ in¢ for
eachdiguncts’ins,suchthat s’ is“bismilar” tot'. Thefollowingtheorem showsthat
L isindeed acharacterisation of refinement for the specification technique (S, |=).

Theorem 12 Let s,t € S be specifications. Then
sCt={peP|pksiC{pePlpki}

Proof. (sketch) Theproof for thistheorem goesvery much a ongthelinesof the proof
in [Mil89, p.229] that bisimulation is characterised by Hennessy-Milner logic. Itin-
volves giving alternative definitionsfor T and |= as decreasing w-sequences of ap-
proximating relations. We then use these to prove the given theorem by induction.
|

Proposition 13 Let s,t, 7 € S be specifications, and let p € P be a process. Then
the following laws for disunction will hold:

1 sCs\Vt,
2. tCs\H
3. IfsCrandtCr thens\/tC .

Inother words, s \/ t istheleast upper bound of s and ¢ with respect to the refinement
ordering.

Proof. 1. and 2. follow immediately from definition 11, because s ~* s’ implies
(s t) =* s' (using lemmal), and similarly for ¢.

3. We prove that the assumption that there is a specification r, such that s C r and
tCr, buts\/t Z r leadsto acontradiction.

According to definition 11, s \/ ¢ Z r can only hold, if there exists an z, such that
(s\Vt) »»* z,and for all ' suchthat » »* ' either of the two conditions of defini-

Applications 13

tion 11 does not hold. However, if (s \/ t) »~* z, then (by lemma 1) either s »* z
ort -~* x. Since we assumed that s C ~ and ¢ T r, there must exist an ' such that
r-~* r' and z and r' satisfy the two conditions, which gives us the contradiction.O

Next, we show that refinement, C , isa (pre-)congruence. That is, refinement is
preserved by all specification operators.

Proposition 14 Let s;, 52, € S be specifications, such that s; T s», then

a;s1 L a;sa

S1 []1’!5 S9 []f

s [GITtC 2 1@ ¢
S1 vtE ngt

AwWDdDE

Proof. Thefirst caseistrivial. The other cases can easily be proved by constructing a
relation that contains the pair (LHS,RHS) and then showing that thisrelation is con-
tainedin C . Here, we provejust the last case.

Consider therelation {(s1 \/ t,s2 \/ 1) | 51 C s2} U C . Whenever s; \/t =" z
then either of the following two cases holds:

s1 =" 2 Sinces; L s, thereexistsay such that s, ~* y and x and y satisfy the
two conditions of definition 11. Since (sa \/ t) = s2, a0 (s2 \/) ==* v.
t*x: Since(sz \/t) — t,aso0 (s2 V1) =* z, and we are done. O

5 APPLICATIONS

In[Hoa85], Hoare gives some examplesin which the non-deterministic or, 1, isused
for loosely specifying change-giving machines in csp. These specifications can be
expressed equally well in our notation, although their interpretation is dightly differ-
ent.

Example 9 Consider the following specification of a change-giving machine, which
always gives the right change in one of two combinations:

CH1 :=inbp;
(‘outlp; outlp; outlp; out2p; CH1

out2p; outlp; out2p; CH1)

This specification leaves open how the change should be given. Valid implementa-
tions are those which always return one of two possible combinations of change, but
also those which return different combinations on each invocation. For example, the
implementation given by CH_ 11, which alternates between the two possible combi-
nations, satisfies CH1.

14 Disjunction of LOTOS specifications

CH_I1:=inbp;
outlp; outlp; outlp; out2p;
in5p;
out2p; outlp; out2p; CH_I1

Example 10 We saw that CH1 allows implementations that give different combina-
tions of change on each invocation. The following specification allows only imple-
mentations that always give the same combination, but it leaves open which combi-
nation it will be.

CH2:=CH2A \/ CH2B

where
CH2A ;= inbp; outlp; outlp; outlp; out2p; CH2A
CH2B :=in5p; out2p; outlp; out2p; CH2B

Although csP's M isintended to play asimilar role to logical disunction, cspP'sfail-
ures preorder allows also implementations that replace the non-deterministic choice
by adeterministic one. Thiswill then givethe user achoice, at “run-time”, whichim-
plementation s/he wants. For example, if the specifications CH1 and CH2 had been
written with a non-deterministic choice between the alternatives, then both would
have allowed the following implementation:

CH_12 :=in5p;
(‘outlp; outlp; outlp; out2p; CH_12

(]
out2p; outlp; out2p; CH_12)

which givesthe user achanceto influence which combination of change ghewill get.
However, the semantics of \/ does not allow CH_12 as an implementation of either
CH1or CH2,i.e. CH_I2 i~ CH1, CH2.

5.1 Themos undefined specification

The digunction operator can easily be generalised to work over a set of arguments.
For S aset of specifications, \/ S denotes the digunction of all the specifications
s € S. The semanticsis defined by the following family of axioms:

s €S)

\/S>—>s(

In the same fashion, choice, [], can be generalised to 5, with £{} = stop.

Using these generalised operators, we can define the most undefined specification,
i.e. the specification that allows all processes asimplementations, provided the alpha-
bet of labelsisfinite.

Conclusion 15

U=\/{S{aUlacA}|ACL}

Example11 Let £ = {a,b} be the alphabet. Then the most undefined specification
U isgiven by:

U:=stop\VaU\VbUV@&UI[Db U)

This most undefined specification is very useful for partial specification. Whenever
we want to leave open the behaviour at a certain point, we can just plug-in U. Later
on, this can be refined to anything, thus achieving compl eteimplementation freedom.

6 CONCLUSION

Many othersbefore us have recogni sed thelimited expressiveness of process algebras
for the specifi cation of non-deterministic, concurrent processes. A common approach
has been to define a logic, separate from the process description language, for the
specification of properties of processes (e.g. Hennessy-Milner Logic (HML) [HM85]
and modal p-calculus [Koz83]). A clear drawback is that specifications and imple-
mentations are in different notations. Step-wise refinement is not possible, and veri-
fication can only be done a posteriori. In order to alleviate this problem, there have
been some attempts to introduce the process structuring operators into these logics.
In [Hol89], HML is extended with the ccs operators, and in [BGS89], the same is
donefor afragment of the p-calculus. Unfortunately, these languages have a denota-
tional semantics: each specification is associated with the set of processesthat satisfy
it. Verifying whether a process satisfies a specification amountsto checking whether
itisin that set. Alternatively, the correctness of an implementation can be verified
through (in-)equational reasoning.

Another way to increase the expressive power of process algebraic specifications
isintroduced in[Lar90b], where transitions are decorated with modalities. A distinc-
tion is made between required and allowed transitions. Bisimulation equivalenceis
then generalised to a refinement relation that ensures that the more concrete speci -
fication requires more and allows less. It is also possible to define the equivalent of
logical conjunction operationally in this model [LSW95]. In fact, it has been shown
that the specification technique thus obtained is as expressive as a restricted version
of HML [BL92]. The restriction is caused by the inability to adequately express dis-
junction. However, modal transition systems can be extended with disjunction in the
sameway we have extended |abelled transition systemswith disjunctionin this paper.
Would this then create a specification technique with the full power of HML?

ACKNOWLEDGEMENTS

We would like to thank Rom Langerak for discussing ideasthat led to this paper, and
the anonymousreferees for their useful comments.

16 Disjunction of LOTOS specifications

REFERENCES

[BGS89] A. Bousjjani, S. Graf, and J. Sifakis. A logic for the description of be-
havioursand properties of concurrent systems. LNCS 354, pages 398—
410, 1989.

[BL92] G.Boudol andK.G. Larsen. Graphical versuslogical specifications. The-
oretical Computer Science, 106:3-20, 1992.

[BSS87] E. Brinksma, G. Scollo, and C. Steenbergen. LOTOS specifications, their
implementations and their tests. In PSTV VI, pages 349-360, 1987.

[HM85] M. Hennessy and R. Milner. Algebraiclawsfor nondeterminism and con-
currency. Journal of the ACM, 32(1):137-161, January 1985.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall,
1985.

[Hol89] S. Holmstrom. A refinement calculus for specifications in Hennessy-
Milner logic with recursion. Formal Aspects of Computing, 1(3):242—
272, 1989.

[Koz83] D.Kozen. Resultson the propositional p-calculus. Theoretical Computer
Science, 27(3):333-354, December 1983.

[Lar90a] K.G.Larsen. ldeal specification formalism = expressivity + composition-
ality + decidability + testability + ---. In CONCUR 90, LNCS 458,
pages 33-56, 1990.

[Lar90b] K.G.Larsen. Modal specifications. InJ. Sifakis, editor, Automatic Verifi-
cation Methodsfor Finite Sate Systems: Proceedings, LNCS407, pages
232-246. Springer-Verlag, 1990.

[Led91] G.Leduc. Onthe Role of Implementation Relationsin the Design of Dis-
tributed Systems using LOTOS. PhD thesis, University of Liege, Bel-
gium, June 1991.

[Led92] G. Leduc. A framework based on implementation relations for imple-
menting LOTOS specifications. Computer Networks and ISDN Sys-
tems, 25:23-41, 1992.

[LSW95] K.G. Larsen, B. Steffen, and C. Weise. A constraint oriented proof
methodology based on modal transition systems. In E. Brinksma, ed-
itor, TACAS 95, LNCS 1019, pages 17-40, 1995.

[Mil89] R. Milner. Communicationand Concurrency. Prentice-Hall, 1989.

[NH84] R.deNicolaand M.C.B. Hennessy. Testing equivalences for processes.
Theoretical Computer Science, 34:83-133, 1984.

Ir M.W.A. Steen obtained an M Sc(Eng) in Computer Science from the University of
Twente, The Netherlands, in 1993. Heis currently completing a PhD degreein Com-
puter Science at the University of Kent at Canterbury. His current research focuses
on partial specification in processalgebra, in particular on techniquesfor consistency
checking and composition. Furthermore he has worked on application of these, and
other, formal techniquesin the area of Open Distributed Processing.

Dr. H. Bowman, Dr. J. Derrick and Dr.Ir. E.A. Boiten are lecturersin the Com-
puting Laboratory at the University of Kent.

Conclusion 17

APPENDIX

This appendix contains a complete proof for theorem 12. Our strategy is similar to the proof
that bisimulation is characterised by Hennessy-Milner logic in [Mil89, chap. 10]. It involves
aternative characterisations for satisfaction, |=, and refinement, — limits of descending
chains of approximating relations.

Firstly, we define functions 7= : p(P x §) = p(P x §), and FC o p(S x8) =
p(S x 8), asfollows:

Definition 15 If R C P x S, then (p, s) € F(R) iff there existsan s’ such that s =" s’
and, for eacha € L U {i}:

(E1) Whenever p %5 p', then s’ -4 5" for some s” withp’ R s”'; and

(F2) Whenever s’ %5 5", then p -2 p' for somep’ withp’ R s"'.

Definition 16 If R C S x S, then (s,t) € FC (R) iff for each s" such that s ~~* s', there
existsa ' such that ¢ »~* ¢’ and, for eacha € T U {i}:

(C1) Whenever s’ % s, thent’ - t" for somet” with s” R ¢"; and

(C2) Whenever t' —=+t",then s’ % 5" for some s” with s” R ¢".

Observe that the conditions in these definitions are the same as in definitions 6 and 11 of
satisfaction and refinement. In fact, it can be shown that = is the greatest fixed-point of 7,
andthat T isthe greatest fixed-point of 7 .

Proposition 17

1. |= isthe greatest fixed-point of F—; and
2. C isthegreatest fixed-point of L .

Proof. We outline the proof for 1. The other proof is similar.
First, observethat thefunction F— ismonotonic, i.e. it preservesthe standard subset-ordering
onrelations. Then, by theK naster-Tarksi fixed-point theorem, it hasagreatest fixed-point given

by
ofp(Fo) = [JIR I R C F(R)}

Finaly, if we change the word ‘implies’ in definition 6 to ‘' C’, then we obtain that |= is the
largest refation such that =C F—(|=). Hence, = = gfp(F-).

Now, we are ready to give aternative characterisations for = and C as the limits of de-
scending chains of approximating relations. Definitions 18 and 19 define sequences of relations
Fo, 1, ,Fa; - ad Co, C1, -, Ca,- - foreachordina number o € O, starting
with the universal relation.

Definition 18 (satisfaction)

=, =P xS, =541 = Fi=(Fs); and E, = ﬂ = for each limit ordinal c.
B<a

Definition 19 (refinement)

Co=8xS§; Cs+1=FC (Cp)and Ea:ﬂ L g for each limit ordinal a.

~

B<a

18 Disjunction of LOTOS specifications

Another way of looking at these definitions s, that |=., isequal to the a-fold application of
FotoP x S,ie =, =FL(P xS).

The following proposition shows that the sequences of relations thus defined, form non-
strictly decreasing chains.

Proposition 20 If a > S then

T

L E,C \:B;
2. CaC Lo
Proof. 1. By trangfinite induction and the monotonicity of 7.

Certainly, =1= F=(}=0) Cl=0. For all successor ordinals, 3 + 1, we havef"i“(\:o) C
7:\6:(\:0% because of the monotonicity of . For each limit ordinal o, we have 2 (}=0) =
[#L£(=0).- Since(p(P x), C) isacompletelattice, the glb {F7 (o) | 8 < o} exists
B<a
and is below each]—'"i(\:o), i.e.V3 < a :lFaCl=p. Hence, we have a descending chain

- ChaC s CRsnChaC - ChiCho

foral a € O.
The other proof is similar.

With resultsfrom fixed-point theory, it can be shown that the limit of these decreasing chains
areindeed therelations |= and C . For completeness sake we provide the proof here though.

Proposition 21

LE=()Es

a€cO

2 =[] E~

ac0

Proof. We show that ﬂ =, the limit of the chain of relations =, is afixed-point of 7,

and equal to the greategt fixed-point of F—, |=.
Let’'sassume that thereisno o for which =, isafixed-point of F_,i.e. Va € O : FZ (o
) # FE(FE(Fo)). Then

C‘:ac C':5+1C':5C C':1C':O

isastrictly-descending chain. Eventually this chain must reach the bottom element of thelattice
of relationson P x S, theempty relation §. In other words, there must be an o such that 72 (=0
) = 0. But, thisis afixed-point of F—. Contradiction! Hence we can conclude that for some
a, F([=o) isafixed-point of .

If 72 (o) isafixed-point of 7, thenfor al 8 > a,]—"iﬂ:n) = FZ (o). So, the limit
of the descending chain (1), f=n=F=a, and is therefore a fixed-point of F_. Since |= isthe
greatest fixed-point of F_, wehave), = Cl=.

Itremainsto be proved that 72 (=) isthe greatest fixed-point =. Thiscan be proved using
transfinite induction.

Conclusion 19

Clearly, =Ck=o. Assume that =Cl=g, then F_(}=) C Jf‘i“(lzo), by the monotonicity
of F—, which implies that =C]—'"i“ (o), since = isafixed-point of 7. Finaly, assume
that |=Cl=5 for al 8 < a, where o isalimit ordinal. Then 7 (|=0) = ﬂ{ﬁi(lzn) | B <
a} O F(=) =|=, by themonotonicity of F—. Knowing that =C =, foral a € O, wecan
concludethat =C), Fa-

The other proof is similar.

After the ground work above, we now come to the proof of theorem 12. We actually prove
adlightly stronger proposition, of which theorem 12 isacorollary.

Proposition 22 For each a € O, and specifications s, ¢:
.9Eat<:>Vp:p\:a.‘;:>p':(,t @

Proof. By transfinite induction over a.. Assumethat (1) holdsfor dl 8 < «a.

Basecase (a = 0): s ot < Vp : p=ys = pF,t, which holds trivialy, since s C ot =
PEoS = plEgt = true.

Inductionstep (a = B+ 1): sC gyit < Vp: p\zBHs = p\zBHt.
We do a ping-pong proof:

“=" Assumingthat s C 41t and p|:5+1 s hold for an arbitrary process p, we prove that

p‘:ﬁ+1t. That is, we need to prove that 3t' : t =* ¢’ such that, for all a € A:

1L Vp :p—5p =3t St Ap'Egt" and
2.9ttt = T p-p AP gt

Using p=4, , s, wederivethat 3s' : s -~ s" suchthat, for dl a € A:

Vplip-Sp' =3 s s /\p":ﬁs” 2
Vs s 25" = 3p :pi>p'/\p'|zﬁs” 3

Using s C 441t, we next derive that 3t' .t ==* t suchthat, foral a € A:

Vs' s s = Tt -t A" pt” @)
V"ot st = 35" s ATt (5)

Next, we distinguish two cases:

Casep %3 p':
From (2) we derivethat 35" : s' %> 5" A p'[=45". And, by (4), we derive next that
3"t 51" As" C pt". And, findlly, the induction hypothesis gives us p' =5t
Caset' 2> t":
From (5) we derivethat 3s” : s" % 5" As" C st"". And, by (3), we derive next that
3" :p—p' Ap'=4s". And, findly, the induction hypothesis gives us p' =5t

20 Disjunction of LOTOS specifications

“<" Weturn the proposition around and assume that s % s+1t. Next, welook for apro-
cess p such tha[p':ﬁ+1 s and pbéBJr]t.
Sincetherealwaysisat’ suchthat ¢ =" ¢' (remember that ¢’ could bet itself), s Z 511t
can only hold if there exists an s’ such that s =~* s’ and for each ¢’ such that ¢ ~* ¢’
either of the following two predicates holds:

135" 8" S s" AVt St = 5" L ")
2. 3"t Bt AV s s = " L pt")

We consider both casesin turn:

Case 1l: For smplicity, we assume that s’/b—> foranyb € A. Let{t; : i € I} be
the set of all —%» -derivatives of ¢'. Then for each i € I, since s’ g sti, thereis
by induction a process p; such that p;f=;s" and pii~, t:. Now define p to be the

process Siera; p;. Then, whenever p —* p;, we have p;|=4s", and since s’/b—>, we
have pi= , , s. On the other hand, no — -derivative of any t', such that ¢ -~ ¢/,
is satisfied by pi, 0 g\t

Case 2. Again for reasons of simplicity, we assume that s’/”—> forany b # a, and that
s 28" = ¢ 25" Let{s; : i € I} betheset of all —%» -derivatives of s'.
Then for each i € I, since s; g st there is by induction a process p; such that
piFzs: and pif~, t". Now define p to be the process Sicra; p;. Then, whenever
p -2 p;, thereisan s; such tha[piizﬁsi, and whenever s’ -2+ s; thereisap; such
that p,;':Bs,;. Hence, we havep|:5+1 s. Onthe other hand, no a-derivative of p will
satisfy ", so;ob&ﬁ“t.

Induction step (o isalimit ordinal): sCat
< { definition 19 }
VB <a:sCgt
< {induction hypothesis }
VB<a:Vp:pEgs=>pk=st
< { predicatelogic }
Vp: (VB<a:pEsgs)= (VW8<a:p=st)
< { definition 18 }
Vp:pEas=>pEat

Theorem 12 now follows directly from the proposition above and the fact that == ﬂ Ea

o

adC =()Ca
[e]

