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Abstract

The paper proposes a technique for inferring conditions on goals that, when satisfied, en-
surethat agoal is sufficiently coarse-grained to warrant parallel evaluation. The method is
powerful enough to reason about divide-and-conquer programs, andin the case of quicksort,
for instance, can infer that a quicksort goal has atime complexity that exceeds 64 resolution
steps (athreshold for spawning) if theinput list isof length 10 or more. Thisgivesasmple
run-time tactic for controlling spawning. The method has been proved correct, can be im-
plemented straightforwardly, has been demonstrated to be useful on aparall el machine, and,
in contrast with much of the previouswork on time-complexity analysis of logic programs,
does not require any complicated difference equation solving machinery.

1 Introduction

Automatic time-complexity analysisis useful to the programmer for algorithmic consider-
ations but has a special role in the development of efficient parallel programs[9, 6, 7, 12,
15]. The execution of aparallel program can break down into processes which are too fine-
grained for a multiprocessor. This can present a mismatch of granularity between the pro-
gram and the multi-processor which, in turn, can degrade performance. Time-complexity
analysis enables fine-grained processes to be identified and coalesced into more
coarse-grained units at run-time in a fully automatically way. This can unburden the pro-
grammer from awkward, machine-dependent and error-prone tactical programming deci-
sions like deciding which processes to spawn.

Automatic time-complexity analysis was first suggested as away of controlling granu-
larity for logic programsin[21] whereasimple, heuristic-based analy siswas proposed. The
analysis, however, was crude and did not satisfactorily model recursive predicates. Recur-
sive predicates present difficulties because the quantity of computation (and therefore the
granularity) is data-dependent and is therefore difficult to determine at compile-time. Use-
ful complexity information can still be derived, however, by automatically inferring com-
plexity expressions formulated as functions on the size of the data[7]. Once the size of the
dataisknown at run-time, thetime-complexity (and thereforethe granularity) can be smply
calculated. Specifically, the size of the data can be checked against athreshold to determine
whether or not the goal should be evaluated in parallel.

x(l s) < &L s []). Pe(lT., - [1., [1).

@([]’ l! l) Pt([CL’l CL’S], m, [l'l l]! g) <-
&([z | =zs], h, t) <- xz<m, Pt(zs, m, I, g).
Pt (zs, =, I, g), Pt([z | zs], m, I, [z ] g¢]) <-
&, hy, [z ] m]), m<xz, Pt(zs, m, I, g).

(g, m, 1).



To illustrate, consider the quicksort predicate implemented with difference-lists, and sup-
pose that the first argument of s/ 3 is known to beinput. This, for example, might have
been inferred through mode analysis. (Note that Godel notation is used throughout: vari-
ables are denoted by identifiers beginning with alower case letter whereas constants begin
with an upper case |etter.) The time-complexity of a @s/ 3 godl, ¢, depends on the length,
1, of itsfirst argument. To be more precise, if time is measured by counting the number of
resolution steps, then t,,in (1) < t < tmas (1) Where ty,in (1) and t,,4, (1) arethelower- and
upper-bounds on the time-complexity,

and | .| and [.] denotethefloor and ceiling integer rounding functions. Sincetheinputlistis
ground, we assume perfect indexing between the Pt / 4 clauses so that failing computation
paths do not need to be considered. Granularity can be controlled by clamping ¢, (1) and
tmaax (1) With closed-form expressions, I(|logy(4)] — 2) < tmin(l) ad tmaa(l) = 1+
15 (ejther derived by hand or derived automatically) and then only sequentialising goals
for which t,,,04 (1) < dimaz [7] Where d,, .. 1S granularity spawning threshold that depends
on the underlying machine architecture which, for example, relates to the cost of forking a
process. Another strategy for throttling the granularity isto only spawn goalswith d,, i, <
tmin (1) Where d,,,;,, is another machine dependent threshold.

The timaee () < dpma, method isthe dud of the din < tmin(l) Strategy [9]. Interest-
ingly, if ¢,,4. (1) isnot atight upper bound on d,,, .., then thefirst technique can till spawn
fine-grained tasks. Thus there is no guarantee that the first strategy will actually improve
the performance of aparallel system. In an extreme situation a parallel system might actu-
aly run dower than an equivalent sequential system. On the other hand, if ¢,,;, (1) isnot a
tight lower bound on d,,;,,, then there is no guarantee that any processes will be spawned
with the second method. Note, however, that the parallel systemisunlikely to lead to slow-
down. The practicality of either technique dependsontheinequalitiest . (1) < dma. and
dmin < tmin(l) being solved for useful, non-trivial values of [.

Our contribution is to show how the d,,;», < tm:n (1) inequality can be solved straight-
forwardly for useful, non-trivial values of I by bottom-up abstract interpretation. For exam-
ple, with d,,,;, = 64, our analysis can infer for Qs/ 2 that if ¢, (1) < dpin thenl < 9.
Interpreted negatively, this meansthat if 10 < I then 64 = d,in < tmin(l). Thisisnot an
exercisein aesthetics but has a number of important and practical implications:

precision — our analysis can straightforwardly solve d,,,in, < tmin(l) for useful values of
[ even for anumber of divide-and-conquer problems, including quicksort, which are
difficult to reason about requiring, for example, extra analysis machinery in the dif-
ference equation approach [9].

implementation—intermsof practicality, our analysisbuildsonthe argument-sizeanaysis
of [2] and, liketheanalysisdescribedin [2], the analysis can beimplemented strai ght-
forwardly in alanguage with constraint support. In fact theinitial prototype analyser
is less than 200 lines of code and took just two weeks to code and debug. Further-
more, the analysis does not require difference equation support to solve the equations
that normally ariseintime-complexity analysis[6, 7]. Theanalysisreducesto solving
and projecting systems of constraints and machinery for these operationsis provided
and already implemented in systems like CLP(R) and SICStus version 3.

correctness — time-complexity analysis is potentially very complicated and therefore the
correctness of an analysisis areal issue. For the analysis described in this paper,



safety has been formally proved through abstract interpretation. In more pragmatic
termsit meansthat the thresholding conditionsinferred by the analysi s guarantee that
fine-grained processes are never spawned.

Note, however, that not spawning fine-grained processes is not always enough to guarantee
a speedup (or even ano slowdown) since even the largest parallel machinewill eventually
saturate!

The exposition is structured as follows. Section 2 outlines the analysis with a worked
example. Section 3 presents some preliminary theory. Sections 4 and 5 describe the trans-
formation and the fixpoint cal culation that make up the body of the analysis. Section 6 de-
scribes how an implementation of the analysis has been used on aparallel machine and sec-
tions 7 and 8 present the related and future work. Finally section 9 summarises the work.
The paper assumes some familiarity with the s-semanticsfor CLP [3].

2 Worked example

Consider a time-complexity analysis for the predicate Qs/ 2 where d,,,;, = 16. Analysis
divides into two stages: a fixpoint calculation that characterises how the time complexity
relates to argument sizes; and a post-processing phase that infers conditions for the time
complexity of agoal to exceed d,,;,, resolution steps. By applying program transformation
(abstract compilation [13, 14]) time complexity analysis can be recast as the problem of in-
ferring invariants of a CLP(R) program. Analysis then, in effect, reduces to evaluating the
concrete (bottom-up) semantics of the CLP(R) program. The Qs/ 2 program listed below,
for example, isa CLP(R) program that is obtained from s/ 2 by a syntactic transforma-
tioninwhich each termin thefirst programisreplaced by its size with respect to list length.
Note, however, that the first argument of each predicatein the CLP(R) (abstract) program
correspondsto acounter, d, that records the time-complexity. d isthe sum of theresolution
steps required to solve the body goals with an increment for the single resolution step im-
plicit in goal-head unification. d isclamped by the constraint d < d,,,;,, to ensurethat goals
whose time-compl exity exceedsd,,,;,, are not considered in bottom-up evaluation.

All arguments but the first of an abstract predicate define an n-ary tuple of argument
sizes. The n-tuple represents the sizes of the n arguments of the corresponding (concrete)
predicate. Time-complexity analysis is performed by inferring relationships between the
time argument and the size arguments of the n-tuple. Other measures of term size, for in-
stance, term depth, can also be used [10, 19] to generate the abstract program.

&s(d, I, s) <- Pt(d, 0, ,, 0, 0) <-
d<16, d=1+d, d<16, d=1.
&(dy, I, s, 0). Pt(d, 1+xs, m, 1+1, g) <-
d<16, d=1+d;,
&s(d, 0, I, 1) <- d<16, d=1. Pt(dy, zs, m, I, g).
&s(d, 1+zs, h, t) <- Pt(d, 1+zs, m, I, 1+g) <-
d<16, d=14+d; +d> + ds, d<16, d=1+d;,
Pt (dy, =s, ., I, g), Pt(dy, zs, m, I, g).
&(dy, I, h, 1+m),
@(d?)v g, m, t)

Suppose that the abstract program is denoted P4. The fixpoint phase of the analysis
amountsto computing 7y, ;,, pa Tw =Ui—oT i, pa Ti WhereTy;, pa istheimmediate con-
sequence operator of the s-semanticsfor CLP instantiated for Herbrand equations and lin-
ear inequations [3] and T'z;,, pa 1T i+ 1=Tp;, pa(TLin pa T i). Eachiteration in the



fixpoint calculation takes an T',;,, pa 1 i, dubbed an interpretation, as input and gener-
atesan T'r;, p4 Ti+ 1, asoutput. Ty, pa 10 =0 isthe empty interpretation. To com-
pute I'r;, p4 14 + 1, the body atoms of each clause of the program are unified with the
atom abstractions in interpretation 7,;, pa 1 i. Since Tr;, pa 1 0 is empty, however,
T'rin,pa 11 will represent only those argument and time-complexity relationships embod-
ied in the clauses of P that do not have user-defined body atoms.

Trin,patl =Tp, pat0OU {Qs(l,O,mg,.rg) — x9g =x3. Pt(1,0,22,0,0) true.}

The relationships asserts that if a s/ 3 goal can be solved in one resolution step, then the
first argument must (ultimately) be boundto [ ] and the second and third arguments must
(ultimately) be of equal length. Similarly, for the Pt / 4 goal to solved in one step, thefirst,
third and fourth must beboundto[ ] . SincethePt / 4 and Qs/ 2 predicates each have only
one unit clause, only one abstract atom for Pt / 4 and Qs/ 2 isincluded in T,;, p411. In
calculating T;,, p4 12, however, two abstract atoms are generated from the two recursive
clauses of Pt /4.

Qs(2,0,0) < true. Pt(2,1,29,1,0) « true.
Qs(4,1, @0, 23) « o = 1+ x3. Pt(2,1,29,0,1) « true.

To keepthesize of each T';,, p4 1i small and manageable, the sets of inequalities for each
predicate are collected and approximated by an over-estimate, the convex hull. The convex
hull can itself be expressed as asingle set of inequalities so that T';,;,, pa 14 needsonly to
maintain one set of inequalities for each predicate at each depth. For example, to calculate
Tpin, pa 12 theconvex hull iscomputed for two equation sets that define the argument sizes
for Pt/4 at depth 2, that is,

hull I = 171'3 = 17 I = 171'3 :07 _ I = 1-, 0 S-’IJ3,
x4 =0 ’ T4 =1 Sl 23 <1, z4=1—x3

Thefirst equationset z; = 1, 23 = 1, 24 = 0 definesthe second, fourth and fifth arguments
in the first abstract Pt / 5 atom whereasz; = 1,23 = 0,24 = 1 definesthe argumentsin
the second atom. The two equation sets are over-approximated with a single equation set
thereby leading to

Qs(2,0,0) « true.
TLin,PATQZTLin,PATIU QS(4,1,1’2,Z‘3)FZ‘2 =14 x3.
Pt(2,1,20,23,24) ¢ 0 < 3,23 < 1,24 = 1 — 3.

Although the convex hull operation computes an approximation, useful argument size
relationships are still preserved since the convex hull correspondsto the smallest convex
space enclosing the spaces defined by the sets of inequalities. In the case of Pt / 4, for ex-
ample, T'r,;,, pa 12 assertsthat if aPt / 4 goal can be solved in exactly two resolution steps
then the first argument is alist of length one, and the third and fourth arguments are lists
of length either zero or one. (Interestingly, the convex hull operation often produces deep
and unexpected argument size relationships[2].) The convex hull calculation isused in the
ensuing iterates.

Qs(5,1,1) « true.
TLin7PAT3 = TLz'n,PATQ U QS(8, 2, .772,."[)3) — Iy = 2+ 3.
Pt(3,2,ﬂ72,f[)3,])4) —0<xy,04 <2,23 =2 — 4.

Trin, patl6= T, pat15U {Pt(16,15, 20,23, 24) ¢ 0 < 24,24 < 15,23 = 15 — 24}
TLin,PAT17: TLm,_]pATlG



The iteration sequence will always convergewithin d,,;, + 1 iterations because of the
d < dn:, congtraints and since there are a finite number of clausesin the abstract program.
Thusfixpoint termination techniqueslikewidening arenot required[4]. Touse T, p4 T w
to control spawning, however, we want to deduce conditions that guarantee that the time
complexity of a goa exceeds d,,;,, resolution steps. A bounding box approximation of
T'rin,pa T w makesthese conditions explicit.

Qs(d,l‘],l‘g) —

0§d dS14 OSJI], Z‘]S?), OSZ'Q, m2§3

Qs(d, x1,x9,x3)

OSdI dSIB, Ogml, ."IJ1S3, OS.TQ, T2S3

Pt(d,$1,l‘2,f[)3,l‘4) —

0<d, d<16, 0<xz, =z <15, 0<x3, x23<15, 0<mx4, x4 <15.

Note how each argument, including d, is approximated as an interval so that the argument
sizes are represented as abox in the space IR™. The abstraction asserts (among other things)
that if the time-complexity of aQs/ 2 goal isless or equal to d,,,;, steps, then the first and
second arguments must ultimately be bound to lists with alength of less than four. Put an-
other way, if the length of argument is known to be greater or equal to four, then the com-
putation must either exceed d,,;,, resolution steps or fail. Possible failure (or equivalently
definite non-failure) can be detected with a query-dependent non-failure analysis[8]. Thus
if the programis queried with a Qs/ 2 goal wherethefirst argument is known to be alist of
integers, say, then non-failure can be deduced [8]. Hence, if the argument is also known to
have alength of greater or equal to four, then the goal is guaranteed to lead to a computation
that exceeds d,,;,, resolution steps.

3 Prdiminaries

Syntax of logic programs Let Func, Pred and V ar respectively denote the set of func-
tion symbols, predicate symbols and a denumerable set of variables. The non-ground term
algebra over Funct and Var is denoted T'erm, where the set of atoms constructed from
the predicate symbols Pred is denoted Atom. A goal isaseguence of atoms. A logic pro-
gram is afinite set of clauses. A clause hastheform h « b where h, the head, is a atom
and b, the body, is a finite sequence of atoms. Also var(o) denotes the set of variablesin
asyntactic object o, :: denotes concatenation, whereas ; (.) denotes vector projection, that
is, mi({(z1,..., ) = ;.

The set of idempotent substitutionsfrom V ar to T'erm is denoted Sub and the set of re-
namings (which arebijective substitutions) isdenoted Ren. A substitution ¢ will sometimes
be represented as afinite set of pairs ¢ = {u; — #1,...,un — t,}. Suband Ren extend
in the usual way from functions from variables to terms, to functions from terms to terms,
to functions from atoms to atoms, and to functions from clauses to clauses. Syntactic ob-
jects, o and o', are variants of one another, denoted o ~ o', if thereexistsp € Ren such that
p(0) = o'. Theequivalenceclassof o under ~ isdenoted [0]~. Therestriction of asubstitu-
tion ¢ to aset of variables U and the composition of two substitutions ¢ and ¢, are denoted
by ¢ [ U and ¢ o ¢ respectively, and defined such that: ¢ [ U ={u+—t € ¢|u € U} and
(¢ 0 p)(u) = d(p(u)).

An equationisan equality constraint of theform a = b where a and b areterms or atoms.
Let Egn denote the set of finite sets of equations. Thereis a natural mapping from substi-
tutionsto equations, that is, eqn(¢) = {u = t|u — t € ¢}, and mgu(E) denotesthe set of
most general unifiersfor an equation set F.



Operational semanticsof logic programs An operational semanticsisintroduced to ar-
gue correctness. The semanticsis described in terms of atransition system that defines re-
ductions between states. The set of statesis defined by State = Atom™ x Sub.

Definition3.1 Let P be a logic program. The transition system
(State, —) where — C State x State isthe least relation such that

s=(@,¢) A h<beP AN hebah <l A
s =58 & var(h < b)Noar(s) =0 A ¢ =mgu({d(a;) =h1}) A
s'={ay,...,;ai—1) b n{aiv1, . an), 00 @)

The notion of answer for agoal g are defined in terms of a transition system. Depth corre-
sponds to the number of resolution steps and is used as a measure of computational com-
plexity, that is, if (@1, 1) = (@, ¢2) — (T3, d3) ... then (@1, ¢1) =7 (@144, P144)-

Definition 3.2 (answersand partial answersat a depth)
e A goa g hasapartial answer g’ at depth d iff (g, e)—=%(g', ) and ¢’ =~ ¢(g);
e A godl g hasan answer ¢’ at depth d iff (g, €)—%(true, ¢) and g’ = ¢(g).

Fixpoint s-semantics of constraint logic programs The semantics of the abstract pro-
gramisformalised in terms of the concrete s-style semantics for constraint logic programs
[3] and therefore, to make the paper reasonably self-contained, the semanticsis summarised
below. The semantics is parameterised over a computational domain, C, of constraints.
Wewritec = ¢ iff centails¢’ andasoc = ¢ iff ¢ |E ¢ and ¢’ = ¢. Theinterpre-
tation base B for the language defined by a program P is the set of unit clauses of the
form p(#) « ¢ quotiented by equivalence. Equivaence, again denoted =, is defined by:
p(#) ¢ ~ pla') « iff ¢ | var(@) = (¢ A (F = 2')) | var(#) where | denotes
projection. If C' isthe domain of equations over Herbrand terms, Herb say, then = isvari-
ance and | isrestriction. The fixpoint semantics of a program P is defined in terms of an
immediate consequence operator likeso: Fo[P] =1fp(Tc,p).

Definition 3.3 (fixpoint s-semanticsfor CLP [3]) The immediate consequence operator
Te,p : Be — Bc isdefined by:

Tep(I) = R R
weP A w=p{) < ce,p(tr), .., n(tn) A
i , [’LUZ]z el N w; = pz(i’z) — ¢ A
[p(#) el Viwar(w) Nvar(w;) =0 A Vi # joar(w;) Nvar(w;) =0 A

=N (Fi=tinc)AN(@=1)Ac A  issolvable

For the abstract programs of the analysisthe domain C' is Lin, that is, sets of (non-strict)
inequalities between linear expressions and equations between Herbrand terms. Thus, for
example, {f(a) = f(b),z <y + 2} € Lin.

Fixpoint depth semanticsfor logic programs Correctness of the analysisis argued in
terms of the depth semantics of [1] since, although it was originally devised to reason about
termination, the semantics al so expresses anatural notion of complexity. Again, to keep the
paper self-contained, we briefly summarise the rel evant aspects of the depth semantics[1].
Theinterpretation base, denoted Br ;... for clarity, isthe set of depth and clause pairswhere

-, -

clausesare quotiented by variance, that is, (d, [h < b]~). Informally, thepair (d, [h <+ b]~)



representsapartial (incomplete) computation from the atomic goal /4 to the goal bind steps.
Empty partial computationscorrespondtotheset @ p = {(0, [p(Z) « p(¥)]x) |p € Pred}
[1]. The set of partial answers for a depth d can be characterised with another immediate
consequence operator T'rime, p.

Definition 3.4 (fixpoint clausal semanticswith depth [1]) Theimmediateconsequenceop-
erator TTime,P : Brime = Brime is defined by

TTime,P(I) = }
w e P Aw=h<b A
<di7[wi]z>€IU¢p/\wi:hi<_b_;/\

- o Vi.var(w) Nwvar(w;) = A
(d,[o(h <= b1 ... 0 b)) Vi # jwar(w;) Nvar(w;) =0 A
d=1+3",d; A

¢ =mgu({b=(h1,....h,)})

Trime, p 1S continuousand defines the fixpoint semantics of aprogram P like so Frim. [ P]
= lfp(TTime,P)- sz’melIP]] is consistent with -7:Herb|[P]] in that fHerblIP]] =
{[h]~ | (d,[h + truelx) € Frime[P]} [1]. The following theorem, adapted from [1],
formally asserts the relationship between partial answers and the fixpoint semantics.

Theorem 3.1 Let P bealogic program. A goal g isapartial answer at depth d for ¢’ iff
there exists (d;, [h; < truelx) € Frime[P] suchthat Vi.var(h;) N var(g’) = § and

Vi # jwar(h;) Nwvar(h;) =0, o = mgu({g' = h}), g~ ¢(g')andd = i i

4  Abstract compilation

By applying program transformation (abstract compilation [13, 14]) the problem of infer-
ring how time complexity dependson argument sizeisrecast asthe problem of inferring the
invariants of a CLP(R) program. Our transformation is dubbed a. Size, asusual [10, 19],
is expressed in terms of norms that map terms to (possibly non-ground) constraint in Lin.
In the case of the list length norm [22, 19], for example, | H”Ieng =0, |[=] Hleng =1and
| [z|y]|\|eng =1+ y. Inaddition, to ensure that the norm is always defined, if ¢ cannot be
instantiated to alist we define ”t”Ieng = z where z isafree (fresh) variable.

Definition 4.1 (program abstraction «)

ofwi, ..., wn] =
aglayselw1]s - - - agauselwm]
aclause'[p(fj Al 4 (El) cee :pm(Em)]] =
p(d ) «

d < dmin,d =1+ 31", di,
aegnslegn(mgu (s = tANEy =t A ANx =t)],
pi(dy = Z1), .o, pm(dm 2 )

aeqnsl[elv T em]] =
aggnllel], .. ., aegnlen]

Ozeqn|[.?7 =t] =

-
z =7,

o o

T =Yty Tm = Ym,

[61@)y = (o1 @]y [6n ()], = 1a ()]

n



where w; and e; respectively denote a clause and an equation, var(t) = {z1,...,2m},
¢ = {z v 1), v1 = (Y1), ..., xm — mi(ym)} andthevariablesd, d; and vectors of
variables 7, #;, i and ¢/; are fresh and distinct. The arities of i and #; are both n.

Note that the transform is parameterised by the machine dependent granularity constant
dymin andthen norms |.|,,...,|.[,,. Multiple norms are useful when a unique norm can-
not be matched to an argument position, for example, because of alack of type declarations
or because atype analysisisimprecise. The worked example correspondsto a (simplified)
special caseforwhenn = 1and |.|, = H-”Ieng- Abstracting equations, aegn, is the most
subtle part of the program abstraction  and so example4.1illustrates how aeqgn isapplied.

Example 4.1 Consider aegnlz = [z1|z2]] whenn = 2 andin particular ||.|, = H'”Ieng-
and |.[l, = |.|gze Where | .||gze counts the number of function symbolsin aterm. If i =
(y1,92), 91 = (y1.1,91.2) adyz = (y2.1,y2.2) then ey ={z = y1, 21 = Y11, T2 = Y21}
and similarly ¢, ={z = g2, 21 = Y12, 22 = Y22} SOthat (|1 (z)]; = |1 ([z1]22])],)
=(lyilieng = lly11ly2allleng) = W1 = 1+ y20) and (g2 (z)], = |2 ([z1]a2])],) =
(y2llgze = w1 .21y2.2]lgze) = (W2 = 1+ 41,2 + y2,2). Hence

T = (y1,Y2), T1 = <y171-,y1,2>7 T2 = (y2,1-,y2,2)-, }

aeqnl[m = [z1|2=]] = { y1 =14ys1, Yo=1+Y12+ys

In practise, the abstract programsgenerated by « tend to include equationsthat can be elim-
inated, combined or simplified. Since the clauses of o P] are used repeatedly to compute
afixpoint, we have found it beneficial to smplify o P] in apartial evaluation (local sim-
plification) phase that precedes the fixpoint calculation.

Example 4.2 Consider the Leng/ 2 predicate, listed in the left-hand column, which com-
putesthelength of alist. Its(partially evaluated) abstract programislisted in theright-hand
column. Thetwo normsare ||.|,,,,,, ad |.|,,,,,,, wherethe latter gives the numeric value of
an integer. By using both normstogether useful time complexity can often beinferred even
in an absence of type information [10, 19]. Our prototype analyser, for example, does not
perform type analysis and simply measures size with a set of pre-defined norms.

Leng([], 0). Leng(1, (0,-), (.0)).

Leng( [ - | yS] ) l) <- Leng( dr <Z17—>! (—7 ZZ)) <-
Leng(ys, ls), d<dmin, d=2+di, z1 =14 23, 20 =1+ 24,
I =1s + 1. Leng(dl, <23,_>, <_,Z4>).

Notethat thedepth equation d = 2+ d, reflectsthe presenceof thebuiltin=/ 2 inthe clause.
Each builtin requires one addition resolution step. The partial evaluati on phase has applied
the equations to the head and body of the clause to reduce the numbers of equations that
have to be solved at analysistime. This explains, for example, why the arguments of the
heads are not variables.

To formalisethe relationship between a concrete program and its abstract program, the con-
cretisation mapping is introduced.

Definition 4.2 (v) Concretisation v : p(Brin) — ©(Brime) 1S defined by:

A1) = {<d, p(E]=)

p(z' = &) & cA (Nmmi(Z) =03)] €T A }
' =d A (Ni=1 Ny T (97) = Itill;) Ec



Example4.3 Supposen = 2 where|.|, = ”-Hleng- and |[.|, = |-lnum- fe=(2" =
Y11+ DA (21 = @0, y1,20)A (2,2 = y1,0)A (22 = (Y21, Y2,2)) then

Y({[Leng(e', 21, 25) = c|x}) =
{<d [Leng(tth)]z) | d= ‘t] ‘len_q +1A |t2|num = ‘t] |leng}

The concretisation mapping is used to link Frjp, [ P] with Fr;, [a[ P]] in thefollow-
ing saf ety theorem. The theorem explains how the abstract program can be used to charac-
terise the time behaviour of the concrete program.

Theorem 4.1 (safety I)
{{d, [h < truelx) € Frime[Pl]d < dpin} € v(FrinlalPI1)

Because each clausein the abstract programincludestheconstraint d < din, Frin[o[P]]
can be finitely computed within d,,;, + 1 iterations. Thus termination techniques, like
widening [4], are not requiredto induceiteration. Finally, thecorollary relates Fp.;,,[a[ P]]
to the operational semantics.

Corollary 4.1 (safety 1) Let P bealogic program. If an atomic goa g had an answer ¢’ at
depth d thenthereexists (d, [h < true]~) € Y(FrLinlalPI]) suchthat var(h) Nvar(g) =

0, o = mgu({g = h}) and g’ = ¢(g).

5 Fixpoint computation

Although Fr;n[«[ P]] can always be computed within d,,;, + 1 iterations, the number of
atomsin an interpretation (iterate) can becomelarge. Thus, to constrain the growth of inter-
pretations, the setsof inequalitiesfor each predicate are coll ected together and approximated
by their convex hull. To be more precise, the convex hull is used to over-approximate the
argument sizes for atoms at the same depth.

Example 5.1 Returning to the worked example, recall that the convex hull operation col-
lapses together the constraints for the two argument relationships for depth 2

)

Pt(z' = &) <2’ =1,21 = 0,23 = 0,24 = 0]
Pt(z' = @) 2 =2,21 =1,0<w3,23 < 1,24 =1— 3]

8

[Pt(z' :: &) <2’ =1,21 = 0,23 = 0,24 = 0]
hull [Pt(z' : &) < 2' =2,21 = 1,23 = 1,24 = 0]
(I

2 n ) a =22 =1,23 =0,24 = 1]

RN

The hull operator is defined in terms of convex hull operation on sets of constraint sets.

Definition 5.1 (hull) The approximation operator hull : By ;,, — By, isdefined by:
hull(I) = {[p(z' :: &) + cp.n]~|p € Pred An € N}

wherec, . = hullyop(pr.5) ({c [ var(z’ = 2) [ [p(z’ :: &) - c|]x € I Ac = (2’ =n)}),

The binary hull x can be computed straightforwardly with a relaxation adapted from dis-
junctive constraint logic programming [5]. For simplicity, consider calculating



hull,q,.(7)(c1, c2) where i is an n-ary vector and the constraints ¢; are represented in stan-

dard form A4;Z < b;, where A; isanm x n matrix and b; in an m-ary vector. The convex
hull of the spaces defined by ¢; and ¢, can be computed by:

J_I':CL'_;-FJIB/\U]-FUQ:l/\
All‘_i < Ulbl AN AQ.T/_é < (Tgbg N [var(a?)
—01 S 0 N —09 S 0

Since the system of inequationsis linear, the convex hull can be calculated by simply im-
posing the equations on the store of a constraint language and then applying projection [2].

Example 5.2 Continuing with example 5.1, combiningthe z; = 1,23 = 1,24 = 0 and
x1 = 1,23 = 0,24 = 1 equationsfor the Pt / 5 atoms amountsto solving:

( :i":Z‘_i—l—:L‘_; A o14+09 =1 /\W
1,0, 0, O 1 1,0, 0, O 1
—-1,0, 0, O -1 -1,0, 0, 0 -1
8 g: _1 8 1 <o _1 A g: 8 _i: g 5 < 03 g A ¢ | var(F)
0,0, 0, 1 0 0,0, 0, 1 1
0,0, 0,-1 0 0,0, 0,-1 -1
—01 <0 AN —09 <0 )

Q{ z1=10<zg23<lag=1-u3 }

The post-processing phase of the analysis boils down to computing a bounding box ab-
straction for thefixpoint that defines the maximum and minimum sizes of the argumentsthat
can occur for goalswith a complexity between 1 and d,,,;,, resolution steps. The bounding
box approximation is the obvious lifting of a bounding box operator on sets of constraint
setsto interpretations.

Definition 5.2 (box) The approximation operator box : Byr,;, — Brin isdefined by:

box(I) = {[p(Z) < cp]~|p € Pred}
where ¢, = boXyq,(z) ({c [ var(7) | [p(¥) « ]~ € I})

As with the convex hull, boxx () = false. There are several ways of calculating box x .
One tactic that can be coded very simply in a constraint language offering projection and
an entailment check isto use boX,q,(z) (¢, ¢') = Ai=1({e|e € ¢ [ var(mi(¥)) A" E e} U
{e'|e' € ¢ [war(m; (%)) A e = e'}). Notethat ¢ and ¢’ are themselves regarded as sets of
inequationse and e’. Thefinal safety theorem states that the convex hull and bounding box
approximations do not compromise safety. When combined with the earlier safety resullts,
the theorem gives an efficient way of characterising fine-grained goals.

Theorem 5.1 (safety I11)
Y(FrinlPA1) € y(box(hull(Tp;, pa) T w))

Thresholding tests can then be inferred to test whether the input arguments of a goal
permit the goal to be a member of ~(box(hull(T,;,, pa) T w)) and therefore possibly a
member of {(d, [h + truelx) € Frime[P]]d < dmin}. If not, then the goal must either
lead to a computation that exceeds d,,,;,, steps or the goal must eventually fail. Input argu-
ments can be deduced with mode analysis whereas the non-failing goal's can be detected by
non-failure analysis [8]. Thus the program can be annotated with granul arity thresholding

tests that ensure that goals are only spawned when their granularity is guaranteed to exceed

dmin-



6 Experimental results

The purpose of the experiment presented here is to study the effect of different granular-
ity sizes has on many programs, under different configurations of queries, and number of
processors used to run the program. The analysis was implemented in SICStus Prolog, and
used to infer thresholding tests for grains sizes of 16, 64, 256 and 1024 resolution steps for
the Fibonacci, Hanoi and quicksort programs. Fi b(n, f) calculates the n'th Fibonacci
number f; Hanoi (n, 1) computesalist of moves, [, for n disksin the towers of Hanoi
problem; and Qsort (I, s) quicksortsarandom list [ of length n to give s. Hanoi and
Fibonacci are good candidates for granularity control since the parallelism is fine-grained
whereas quicksort is less predictable generating both fine-grained and course-grained pro-
cesses. The programs were hand annotated with the thresholding tests, and then timings
where taken on a Sequent Symmetry for 1, 2, 4 and 9 processors. We have used similar
benchmark programsto [12], and the same 20MHz 80386 processor Sequent. The and-
parallel Prolog system DASWAM [20] was used. The programs used were limited to inde-
pendent and-parallelism, because suspension complicates the granularity question for gen-
eral dependent and-parallelism. The programswere executed with different queries, which
affected the execution times of the program, but not the relationship between threshold and
grain-sizes.

#]] none| 16] 64] 256] 1024
fib(17), 1108.10.3

1 1702.9+1.4 1688.2+4.4 1338.0+£4.5 1177.1+14 1139.3+0.9

2 862.445.6(197x)| 848.844.0(1.99x)| 670.1£1.8(2.00x)| 589.9+1.4(2.00x)| 583.84+12.3(195x)

4 4402416 (3.87x)| 4296+11(392x)| 341.1+1.1(3.92x)| 3005+2.1(3.92x)| 331.140.2(3.44x)

9 203.44+12(8.37x)| 201.0+34(840x)| 156.9+0.2(8.53x)| 1405+0.2(8.38x)| 167.941.0(6.79x)

Tb(19), 2898.5L04

1 4470.8+1.9 5048.4+0.2 3476.1+3.3 3040.4+3.0 2949.2+1.1

2||  2257547.1(1.98x)| 2544.4+4.3(1.98x)| 1761.1£1.9 (1.97x)| 1536.9+1.3(1.98x)| 1483.240.2(1.99x)

4|| 11400446 (3.92x)| 1277.9418(395x)| 8821+17(394x)| 7759+20(3.92x)| 766.2+6.5(3.85%)

9 516.54+1.0(8.66x)| 577.842.0(8.74x)| 398.8+£17.0(8.72x)| 351.4+25(8.65x)| 365.446.2(8.07x)
hanoi(10), 441.7+0.3

1 727.0+£4.0 522.0+2.6 466.3+1.4 454.5+0.4 453.1+0.1

2 363.142.0 (2.00x)| 260.240.1(201x)| 230.9+0.2(2.02x)| 2244+06(2.02x)| 223.140.1(2.03x)

4 185.742.3(392x)| 1321+0.2(3.95x)| 117.4+0.3(3.97x)| 1145+0.4(3.97x)| 223.440.8(2.03x)

9 87.8411(8.28x)| 63.9+04(817x)| 606+0.3(7.69x)| 595+0.1(7.63x)| 224.2419(2.02x)
hanoi(16), 280616116

1 46509.54-60.8 33054.6+11.5 29391.0+12.8 28656.41+-14.8 28323.3+4.8

2||23210.64+138.1 (2.00x) | 16522.3-2.7 (2.00x ) | 14730.9£4.2 (2.00x ) | 14273.74+3.4 (2.01x ) | 14322.94+16.5 (1L.98x)

4|| 11594.84+15.3 (4.01x)| 8265.54+9.8(4.00x)| 7376.24.5(3.98x)| 7147.942.7 (4.01x)| 7092.9+4.3(3.99%)

9|| 5200.6+145(8.93x)| 3694.6:--34(8.95x)| 3287.6:42.1(8.94x)| 3191.9+2.4(8.98x)| 3298.3+2.8(8.59x)
QSOr(300), 816.8+15

1 909.5+0.1 912.6+2.9 888.9+2.3

2 500.740.6 (L.78x)| 512.7432(1.78x)| 4985+0.7 (1.78x)

4| 3306+11.8(2.75x)| 334.24+9.0(2.73x)| 332.3+£17.8(2.68x)

9 2721406 (3.34x)| 274.84+09(3.32x)| 278.0+0.8(3.20%)
0SOr(3200), 122391531

1 13474.8+29.9 14083.9+3.2 13197.2+2.4

2|| 7452.14+35(181x)| 7701432 (1.83x)| 7337.8+1.4 (1.80%)

4| 48226498 (2.79x)|4925.5426.5 (2.86 ) | 4771.9419.9 (2.77%)

9|| 3724.0410.1(3.62x)|3766.6:-29.8 (3.74x)| 3741.6:+4.7 (353%)

The table summarises our results. Timings, in milliseconds, were averaged over five
runs and are given with the standard deviation. Entries are not given for quicksort for grain
sizes of 256 and 1024 because the prototype analyser cannot infer the thresholds within a
minute and, we believe that for an optimisation to be practical, it should be reasonably fast.
The problem stems from the repeated computationsin the fixpoint cal culation. We believe
that this overhead can be removed by considering the strongly connected componentsof the
call graph of the program. More usually, thresholds can beinferred within aminuteevenfor
thelarger grainsizesforthebenchmar k3. t ar . Z programsobtained from UPM Madrid.

The execution timefor DASWAM running in sequential modeis given in the headings.
The results confirm those of [12], showing that granularity control is useful even for a Se-



quent Symmetry which has relatively low task creation overheads. The results show, as
expected, that controlling the granularity has two main effects:

o |t reducesthetotal execution time for the program by reducing the frequency of par-
allel execution and thus parallel overheads. The larger the granularity threshold, the
smaller the parallel overhead. The limit is the sequentia case, with no parall el over-
head at all.

e |t reduces the amount of available parallelism. The larger the granularity threshold,
the lesser the available parallelism.

Reducing the parallel overhead tendsto improvethetotal amount of computation (work and
overhead), but at the same time, it reduces parallelism. These two factors need to be bal-
anced to give the best results. For any program, the best granularity size can be affected by
the particular query being solved and the number of workers the system is using. In addi-
tion, the best size changes from program to program, and we also expect it to change from
system to system. For some programs, such as quicksort, the overhead of testing for the
threshold can be sufficiently expensive so that it actually degrades performance instead of
improving it. Thuswhat is best for one configuration is not necessarily best for another.

It may be possibleto take some of these factorsinto account (such asthetype of thresh-
old test being performed), but some factors cannot be controlled, such as what query the
user want to solve, and to alesser extent, how many workersthe user chooseto use. Thus,
a compromise threshold has to be chosen that works well (but not best) for arange of con-
figurations. Looking at theresultsin general, if the grain sizeis set too high, say 1024 reso-
lution steps, then the granularity control mechanism limits the parall elism to the extent that
the processors are not properly utilised. hanoi(10) on 9 processors i s one extreme exam-
ple. Conversely, if the grain sizeis set too low, say 16 resolution steps, then the cost of the
threshold check is not repaid by reduced task creation, so the overall performanceisworse
with granularity control than without. The grain size should thus balance machine utilisa-
tion against reduced task creation overheads. For the Sequent and the programs that we have
analysed and tested, grain sizes of around 64 resol ution steps seem to give consistently good
results for our granularity control scheme. Moreover, since the Sequent has low task cre-
ation overheads, a granularity control schemeis also likely to be useful (and perhaps even
more useful) on a more coarse-grained multiprocessor such as aloosely-coupled system.

7 Reated work

Imperative programming Cousot and Halbwachs [4] mention how extra counters can
be added to loops and how polyhedral abstractions might be used to infer bounds for the
number of iterations of aloop. Thelink with time-complexity analysisis not reported.

Functional programming Most similar to our work is that of Huelsbergen, Larus and
Aiken[15] inthe context of parallel functional programming. Theanalysisreportedin[15],
like ours, is based on an abstract semantics that calculates lower bounds on the time com-
plexity by instrumenting the semantics with counters. Termination, again, is not an issue
since the depth of computationsis bounded. Coincidently, agranularity control experiment
isreported for quicksort, codedin SML, on an eight processor Sequent Symmetry. Our work
adds weight to theirs since Huelsbergen et al. conclude that with lower bound time com-
plexity analysis“largereductions(> 20%) in executiontime” arepossible. Interestingly, the
thresholds used in the experiment do not seem to be derived automatically [15]. Our exper-
iments suggest that this is because non-trivial thresholds cannot be derived without convex



hull approximations. Convex hull approximations are, in fact, essential if the analysisis
to be collapsed into something manageable. Furthermore, we have shown how an analysis
for logic programs can be formulated el egantly as abstract compilation, established correct-
ness, and shown how it can be implemented straightforwardly in alanguage with constraint
support.

Logic programming Time-complexity analyses|[6, 7] for logic programs have tended to
cast the problem of inferring argument relationships in terms of solving difference equa-
tions. The analyses focus on deriving upper bound time complexity expressions like, for
example1 + I(’;LS) , for quicksort. Mode analysisisfirst applied to trace the input and out-
put arguments of a clause and derive a data dependency graph for the clause literals. Pro-
totype difference equations are then extracted from the recursive clauses, boundary condi-
tions derived from the non-recursive clauses, and finally a difference equation is solved to
yield aclosed-form time-complexity expression. Although, the diff erence equation method
is potentially useful, it requires sophisticated machinery just to manipulate and solve the
equations. By way of contrast, our approach is formulated in terms of linear constraints.
Also, divide and conquer algorithms can be particularly difficult to reason about with dif-
ference equations requiring special techniques [9, 18]. Moreover, additive argument size
relationships, like 1 = x3 + x4 for Pt / 4, cannot be expressed [18]. On the other hand,
the efficiency of the differenceequation approach does not depend on the grain size whereas
our approach may well becomeinefficient for coarse-grained systems, like multi-processor
farms, that may require a very high granularity threshold.

A lower-bound time-complexity calculation for Fi b/ 2 is sketched in [12]. Difference
equationsare used to derive anon-trivial time complexity expression but what isnot clear is
the extent to which the method can be automated. The paper aso discusses the cost analy-
sisfor or-parallelism, and reports some granul arity control experiments. The authorsjustify
granularity analysisby demonstrating that it is possible to obtain improved performance on
afixed configuration of four processorsfor different grain sizes[16]. T he question of vari-
ations with different program sizes and range of number of processors and programs, does
not seem to have been considered. For a configuration of four processors Sequent, athresh-
oldtestof n > 15 (which correspondsto > 4096 resolution stepsif builtins are assumed
to have a non-zero cost) was found to be useful for solving the query Fi b(19, f). Our
experiments have found that although the threshold is closeto ideal for Fi b( 19, f) on
four processors, it gives practically no parallelism for Fi b(17, f) and severely limits
paralelism for Fi b(19, f) on more than four processors. Our work suggests that (for
DASWAM at least) amuch lower threshold is necessary if granularity control isto be use-
ful acrossarange of processors numbersand goal sizes, and that these thresholds can bein-
ferred automatically. The lower-bound time-complexity work of [12] is further developed
in [9] which develops some special tactics for reasoning about divide-and-conguer algo-
rithms. The methodology can infer auseful lower bound of 4n + 1 for quicksort (where n
isthelength of thefirst argument). Itisnot yet clear whether or not our method canimprove
on this degree of precision.

A techniquefor reducing the cost of calculating term sizeisproposedin[17]. Thetech-
niqueis based on finding predicates which are called before aterm size test and which tra-
versesthetermswhose size need to be determined. Aswe basically use the same annotation
methods as [12], we expect this technique to be applicable to our work.

Very recently, Gallagher and L afave[11] have shown abstract programscan instrumented
with trace terms that abstract the shape of the computation to derive control flow informa-
tion for program specialisation. The depth counter, d, is another way to abstract the shape
of the compuitation.




8 Futurework

The prototype analyser cannot (yet) infer thresholdsfor coarse grained | oosely coupled sys-
tems very quickly and future work is required on the implementation to make the approach
fast and efficient. Furthermore, integration with anorm derivation analysis[10] and anon-
failureanalysisisrequired[8]. Ordersof magnitude speedup are possi ble, however, by care-
fully limiting the size of the interpretation. The tradeoff is between speed and safety. This
unusual tradeoff is possible since, when used for granularity control, the analysis does not
affect program correctness only program efficiency. All that mattersis that the threshold is
reasonably precise. Future work will examine how limitating the enumeration impacts on
precision and analysistime. Thisislikely to be a study within itself. We also suspect that
computation size alone may not be the best metric to use for controlling granularity, and we
intend to research into other metrics. Finally, we shall also investigate how the method can
be adapted to infer closed-form time-complexity expressions.

9 Summary

An analysis has been presented for inferring size conditions on goals that, when satisfied,
ensure that a goal is sufficiently coarse-grained to warrant parallel evaluation. The anal-
ysis is precise enough to infer useful thresholding conditions even for a number of prob-
|lematic divide-and-conguer programs, can be implemented straightforwardly in alanguage
with constraint support, and, finally, has been proved correct.
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