
Lecture Notes on
Formal Program Development

Stefan Kahrs

Abstract

This document was originally produced as lecture notes for the MSc
and PG course “Formal Program Development” early in 1997. After some
initial general considerations on this subject the paper focusses on the way
one can use Extended ML (EML) for formal program development, which
features EML contains and why, and which pitfalls one has to avoid when
formally developing ML programs. Usage, features, and pitfalls are all
presented through examples.

1 Introduction

As the name suggests, the course “formal program development” is about the
formal development of programs, here in the context of Standard ML (short:
SML) programs and the specification language Extended ML (short: EML). It
is assumed that the reader has a fair knowledge of the features of SML, for
instance as attainable by participation in the Applicative Programming course.

The word “formal” in Computer Science or Mathematics has been used in
various meanings. In order to avoid any prior misunderstandings I will briefly
discuss these:

• “Formal” sometimes refers to a particular approach to foundations of
mathematics, traditionally associated with David Hilbert. In certain re-
spects, formalism overlaps with intuitionism, but both schools oppose the
platonist idea of an ideal mathematical universe, in which men are still
real men, women real women, little furry creatures from Alpha Centauri
real little furry creatures from Alpha Centauri, and — most importantly
— propositions are either true or false.

• Another possible meaning of “formal” is “completely formalised”, that
is: ready to be swallowed by your computer (program). The computer
programs in question are typically proof checkers such as LEGO or PVS.
Proof checkers address the problem that sufficiently large proofs tend to
share one property with sufficiently large programs: they both almost
always contain errors. Unfortunately, there is a dilemma: proof checkers
are sufficiently large programs themselves.

1

• Finally, “formal” may just mean “not informal”, using a formal language
as opposed to English or Gaelic. This use of the word “formal” is com-
mon in the world of program specification, the catch-phrase one often
finds is “formal methods”. Thus the formalism applies to the language(s)
specifications are written in, it does not necessarily (though possibly and
recommendably) stretch to proofs (that a specification is satisfied) or the
semantics of the specification language itself.

As you might have guessed we are concerned here with the last of the
three possible meanings. EML is an extension of the SML programming lan-
guage with certain specification features. It actually has a formal semantics
[KST94, KST95, KST97] but we will stick to informal descriptions of its fea-
tures, largely because the formal semantics is rather complicated and very few
of these complications have genuine repercussions on EML’s ordinary use. We
will gloss over most of the difficult questions the formal semantics of EML has
to answer — this course is about how to use the language, not how to define a
specification language (semantics) of your own.

Regardless of how useful the EML language itself actually is, why is it that
one would want to use a formal language at all? The formality of the language
resolves ambiguities — it is easier to see what a specification actually specifies
and what not, it helps to avoid hidden assumptions and to structure large
specifications. Using a language as opposed to, say, a graphical notation (quite
common in Software Engineering) has the advantage that the sentences of a
formal language are more manœuvrable, and that specification manipulation
becomes an activity similar to ordinary program manipulation.

Considering these other two words in the title, EML is indeed a language
tailored for the task of program development. Other specification languages
try to capture the whole of mathematics or at least most of it1, EML — more
specifically, its semantics — is not well-suited for such a task. EML is no attempt
to set up an all-embracing mathematical formalism, its domain is the world of
programs only.

The development of SML programs is to some extent already supported
within SML, in particular through its module sublanguage. EML extends these
capabilities by supporting incomplete programs and especially by extending
the expressiveness of module interfaces. Syntactically, this is extremely simple,
though rather powerful when used in connection with the modularisation fea-
tures.

While this document is largely focussing on the features of EML and their re-
lationship to the ideas of formal program development, I should also recommend
[San89]. That report shows EML’s features at work, without singling them out.
Considering that it predates the formal definition of EML by several years, it
should not come as a big surprise that the syntax has changed since then and
that the formal semantics had to answer more questions than anticipated at the
time. Still, the fundamental ideas remain unchanged.

1Of course, Gödel’s incompleteness results and their construction mean that there is a limit
to what a specific formalism can achieve.

2

2 Specification

The purpose of a specification is to express certain properties the corresponding
program should have. There can be several reasons for writing a specification:

1. We may give a specification before a program is written, i.e. we set up the
task of obtaining a program that meets the specification. This could be
done by writing the program ourselves, by having somebody else to write
it, or even (if we are very lucky) by some automatic tool that transforms
our specification into a program.

2. We also may give it afterwards, as a guide to how to use and maintain the
program, i.e. as a piece of documentation. We hardly ever want to read
the source code (never mind the compiled machine code) of a program to
understand its meaning.

3. Finally, we can think of it as an interface of a program module: we can
replace the module by something else, provided it also satisfies the specific-
ation — the overall program should be unaffected by such a change. The
ability to perform such manipulations is not only useful from a program
maintenance point of view (plain speak: when we have to fix a bug), but it
is also vital when such a module is machine-dependent or OS-dependent,
as for example the code generator of a compiler.

What kind of specification language do we want, which properties of pro-
grams would we want to express? It is fair to say that there is no perfect answer
to that question.

However, we almost always want to be able to specify its input/output be-
haviour, i.e. to express which outputs it produces when given certain inputs,
or even that it produces any output at all. As we want to specify this in some
finite way, we typically end up writing universally quantified equations, not dis-
similar at all to writing a functional program in the first place. To allow greater
flexibility and brevity we can go a little further and support all the quantifiers
and connectives of first-order logic. This is indeed a (very crude) summary of
all the features of EML’s specification logic.

Are there other properties we might be interested in specifying? This is
quite possible: we might demand a certain efficiency in terms of time and space
consumption, we might ask (in a language with concurrency primitives) for fair-
ness, the absence of deadlocks, etc. SML does not have concurrency primitives,
and its language definition [MTH90, MTHM97] leaves the efficiency of SML
programs unspecified.

The last point is important. SML’s formal semantics tells us what the res-
ult of a computation will be, but it does not tell us anything about the time
and space complexity this computation requires, neither in absolute nor relative
terms. Although we may have a pretty good idea of how efficient a particular
SML program is and although we may also be able to confirm that idea experi-
mentally, we cannot really rely on the degree of efficiency of that program when

3

we move it between different compilers. An SML compiler has the liberty to
replace inefficient programs by efficient ones and vice versa2, as long as their
overall behaviour stays the same. This has a consequence for the design of a
suitable specification language. Only compiler-invariant properties should be
specifiable.

2.1 Incomplete Declarations

Traditionally, algebraic specification languages (see [EM85, Wir90]) have two
parts: a signature giving the types of operations and constants, and a collection
of axioms specifying their properties. The signature sets up the class of semantic
domains we might consider and the axioms narrow it down as far as we like3.
There are two major ways to interpret such algebraic specifications: either a
loose semantics, in which every model satisfying all axioms has to be considered,
or an initial semantics which favours the initial model. I shall not go into this in
any detail, but it should be said that for several reasons an initial semantics is
unsuitable for EML; this has something to do with its logic, its module system,
and the built-in computational features.

One can mimick the algebraic specification style in EML, although the lan-
guage is a bit more flexible and the distinction between axioms and signatures is
less clear-cut. There are several ways to describe a signature (in the sense of Al-
gebraic Specification) in EML, but all of them include one feature: unspecified
code. Strictly speaking, it is a collection of four features, but the central idea
is the same: we make a declaration but omit some part and write a ? instead.
For example:

val someint : int = ?

This is a declaration of an integer constant someint about which we do not
know anything at the moment. One can write declarations like this in EML
“programs” everywhere one can write ordinary declarations. Actually, this is
an ordinary declaration, it just happens that the expression on the right-hand
side of the declaration is extra-ordinary: the symbol ? is itself an expression.

What is the meaning of a declaration like this? It does not have a specific
operational meaning, for example if we try to evaluate someint+1 we will not
succeed. However, it has a collection of meanings, which in this case is the set of
all environments in which the identifier someint is bound to some integer value.
By writing further declarations (most notably axioms which we treat later) we
can restrict this set of environments. For example:

fun factorial n = if n=0 then 1 else n*factorial(n-1)
val somefact = factorial someint

2Sometimes, elaborate program “optimisations” backfire and have the opposite effect.
3Provided, of course, that what we like is expressible in the specification formalism. For

example, the Löwenheim-Skolem theorem limits what we can achieve with first-order logic.

4

These two declaration are complete, they do not leave us any space to be filled
in later. Surprisingly, they also amount to an implicit restriction on our earlier
value binding: someint cannot be negative. The reason is a bit subtle. Suppose
someint were bound to a negative number. In the next step we successfully
process the declaration of factorial and bind this identifier to a corresponding
closure. Finally, we try to process the declaration of somefact, but this fails
because the evaluation of its right-hand side fails to terminate for negative values
of someint. As a consequence, the declaration of somefact fails to terminate
and consequently the sequence of all three declarations. Therefore — and this is
the crucial point — there is no environment we obtain as the result of processing
this sequence of declarations in which someint is bound to a negative value.

The type of the expression ? in general is ∀α.α and for a particular occur-
rence it is the most general type we assume during type inference4. The general
idea of incomplete programs is to defer their completion to a later stage in which
the ? is replaced by concrete text. Of course, this text has to be syntactically
correct. Moreover we also require that it has the same type as the particular ?
occurrence — without that requirement we might make our program ill-typed.
Practically this requirement forces us most of the time to write a type assertion
restricting the type of ? to something more concrete; if we omitted the type
assertion from our example the only permitted replacements of ? have type
∀α.α and none of those terminates.

There is an alternative way of incompletely declaring values in EML — we
can use (EML/SML) signatures and declare an incomplete structure.

signature SOMEINT =
sig

val someint : int
end;

structure S:SOMEINT = ?

Here we have left the body of the structure S unspecified. The effect is essentially
the same as in our previous example, except that (i) we have now a couple of
additional identifiers in scope, (ii) we have to write S.someint instead, and (iii)
we can only write this declaration at places where we are allowed to write top
level declarations. The reason for the third restriction is that SML signatures
are only allowed at top level. The declaration of the structure S alone is a bit
more flexible, as it can be written anywhere structure declarations are possible.

This second use of ? is restricted to the right-hand side of structure declar-
ations; moreover, the signature constraint is then mandatory. This feature has
been designed to accompany SML’90. For SML’97 with its slightly enriched
syntax for structure expressions it would be more appropriate to allow an ad-
ditional form of structure expression: ? :>sigexp. This would already cover the

4This does not make sense in the type system for Damas’s toy language [DM82] which you
may recall from the Applicative Programming course. However, there is a technical difference
between EML/SML’s type system and Damas’s — roughly speaking, the SML type system
is closer to the inference algorithm W, it does not allow generalisation of type variables at
proper subexpressions and restricts instantiation to occurrences of identifiers.

5

third form of incomplete declarations in EML: ? which is an empty functor
body with mandatory output signature. We learn about functors a little later.
Henceforth I will stick to EML as defined w.r.t. SML’90, tacitly omitting in-
compatible features as much as possible, with the occasional remark pointing
at notable differences.

By permitting incomplete structures we implicitly also permit incomplete
types, for instance:

signature TYPE =
sig

type sometype
end;

structure S:TYPE = ?

In this example, S.sometype is some type we do not know yet. Because the
type-checking phase is separate in EML (and SML) incomplete types are some-
what less flexible than incomplete values. In particular, we cannot restrict the
concrete type of S.sometype by writing further declarations, we have to treat
S.sometype for type-checking purposes as an opaque type. This is similar to
the treatment of unspecified types in functor bodies, e.g. if TYPE were the input
signature of some functor.

For technical reasons, related to EML’s module semantics, the above way
of providing an unspecified type is effectively useless. EML’s module semantics
allows us to use structures only through their signatures; as a consequence, it is
impossible to have any values of type S.sometype. We shall come to that later.
There is a more concise way of declaring unspecified types in EML which avoids
this problem — we can use incomplete type declarations.

type sometype = ?

This is the fourth (and last) form of incomplete declarations. We can replace
the right-hand side of a type-declaration (not a datatype-declaration!) by ? and
thus specify a yet unknown type. If our type declaration has any parameters
then the eventual replacement of ? can make use of the corresponding type
variables, just as the eventual replacement of ? within an expression can use all
the declared/bound identifiers at that occurrence.

There is another form of incomplete type declarations which uses the keyword
eqtype instead of type — in this case we assume that the specified type is an
equality type, i.e. that we can compare values of this type with the predefined
equality operation =. When we later replace ? by a concrete type expression we
have to make sure that this results indeed in an equality type. This is completely
analogous to the S.sometype example if we replaced its type specification by
an eqtype specification.

2.2 Axiom Declarations

We have already seen that it is possible to restrict the meaning of incomplete
programs by adding declarations that may fail to terminate. This alone is a sur-

6

prisingly powerful feature. For example, if we wanted our previous declarations
to satisfy some property P we could just add the following declaration:

fun loop() = loop()
val test = if P then () else loop()

It is nice that we have this capability, but it is rather cryptic and I certainly
would not recommend using it for this purpose. EML has a primitive for im-
posing a property on a program. For example, if we wanted to specify that our
someint value is even we could write:

axiom someint mod 2 = 0

Technically, this is a declaration. Syntactically, it consists of the keyword axiom
followed by an expression5 of type bool. The semantics of an axiom declaration
is either the singleton set containing the empty environment (if the axiom holds)
or the empty set of environments (otherwise).

This gives us just what we want when we sequentially compose declarations.
What is the meaning of dec1 ; dec2 in an environment E? We simply take the
meaning of dec1 in E; for each environment E′ in the resulting set we take the
meaning of dec2 in E + E′ and for each E′′ in this set we take E′ + E′′; this
gives us a set of set of environments over which we then form the union.

Now suppose dec2 is an axiom declaration. If for a particular choice of E′

in the semantics of dec1 the axiom holds then there is exactly one E′′ in the
semantics of dec2 (the empty environment) and E′ + E′′ is equal to E′. Thus,
if the axiom holds for the choice E′ then E′ is part of the overall result. On the
other hand if it does not hold then the semantics of dec2 is the empty set, it does
not contain any E′′ and so noE′+E′′ can be formed, leavingE′ out of the overall
result. This is not quite the full story of the meaning of sequential composition
of declarations, but it is for the language features we have encountered so far.

Syntactically an axiom declaration is considered a structure declaration, so
we cannot use it within let-expressions and thus not within a function declara-
tion.

2.3 EML Logic

The axiom feature in itself will not get us very far, without any means of quan-
tification we can only make assertions but never state universal properties. For
example, we might want to state of our factorial example that all numbers
from 1 to n divide n!. This is possible in EML:

axiom forall n => forall m =>
(m<=n andalso 1<=m implies (factorial n mod m = 0))

We can use this feature to claim certain properties of our already defined
operations, or we can narrow down the possible choices for our yet-incomplete

5It’s actually a bit more complicated than that, but for our purposes it is good enough.

7

programs. Technically, there is not really a difference between the two uses —
in both cases it could happen that our axiom is inconsistent with what has been
written before.

We can observe quite a few of the features and peculiarities of the logic of
EML in this example already.

1. Logical expressions are just ordinary expressions of type bool.

2. The propositional connectives are the usual boolean connectives of SML,
with the addition of implies. Similarly to SML’s andalso and orelse the
semantics of implies is directed. The second part of the implication is only
evaluated once the first has been evaluated to true.

3. Universal quantification is expressed through a keyword forall. Syntactic-
ally, the text after forall is a so-called match which is the same thing that
comes after the fn symbol to express a functional abstraction.

4. Quantifiers bind tighter than propositional connectives, following the tra-
dition6 of logic textbooks. Moreover, andalso binds tighter than implies.
The parentheses around the equation are actually unnecessary and only
included for better readability.

5. The type of a universally quantified variable is inferred from the context.

Some of these decisions in the language design of EML have important con-
sequences. Using bool as the type for logical expressions means that we can
mix the logic with our own functions that operate on boolean values — this is
nice; we even can use logical connectives in ordinary expressions, e.g. to define
predicates. On the other hand, we lose the Curry-Howard isomorphism (propos-
itions as types, terms as proofs[Tho91]) — this is not nice; however, EML/SML
allow us to write non-terminating functions which means that we lose the cor-
respondence between proofs and terms anyway.

It was crucial in our example that implies is directed, i.e. that it evaluates
the second part only if the first part evaluates to true. Why? Type inference
tells us that the type of both m and n is int. So both variables range over all
integer values. These include 0 and all negative numbers.

Suppose implies were an ordinary function that evaluates first both of its
arguments. Consider the case that both m and n are 0. The premise of implies
evaluates to false but the evaluation of the conclusion raises an exception. This
packet is propagated and the result of the body for the forall. A similar though
slightly different situation appears when n is negative. Again the premise is
false but this time the evaluation of the conclusion does not terminate, because
our version of factorial does not terminate when applied to negative numbers.
This behaviour is again propagated, i.e. the evaluation of the strict implication
does not terminate.

6I think that was a bad move in terms of language design on part of the logicians. Anyway,
let’s be grateful that it’s not as bad as the language of mathematical analysis.

8

2.3.1 Quantifiers

So we suddenly face the problem of what a quantifier means if the evaluation of
the expression in its body does not terminate for certain values in the range of
the quantifier. A universal quantification in EML is true iff for all values over
which we quantify the body of the forall evaluates to true — and not false
and not a packet and it should terminate. Therefore in this particular case the
entire axiom would not evaluate to true, meaning that our specification is not
met by factorial and we end up with an empty set of environments.

One might now ask the question: what if m and n themselves are non-
terminating expressions? This is excluded, because quantification does not
range over expressions but over values of the corresponding type. So for int
we get exactly what we would expect. For other types this problem is a lot less
straightforward than we would hope and we come to that a little later.

It is very convenient that we can exploit type inference to find out the
type of our quantified variables. However, we may not want to do that and
explicitly specify the types of the quantified variables, just to make sure that the
quantification ranges over the right type, or just as a matter of documentation.
In other words, we may want to modify our example to:

axiom forall n:int => forall m:int =>
(m<=n andalso 1<=m implies (factorial n mod m = 0))

This is already possible. Recall that the text after the keyword forall is a match,
so in particular it can be of the form pat=>exp. A variable is a pattern, but so is
a pattern with a type assertion like n:int. We could even write horrible things
like forall 0=>true. The meaning of this is the same as the meaning of forall
x:int => x=0 orelse (raise Match), which in turn is undefined.

Why is that? So far, we have only learned the conditions that make a
universal quantification true. Naively, one might expect that the quantification
is false in all other cases. Consider the following example though.

axiom forall x:int => loop()
axiom forall x:int => not(loop())

Both loop() and not(loop()) exhibit the same behaviour — they fail to ter-
minate. So both axioms would necessarily have the same semantics. For EML
this was chosen to be “undefined”. Roughly speaking, the reason for giving7 it
this semantics is that “undefined” is a fixpoint of not, as are non-termination
and packets. The above axioms have the same effect as writing:

axiom loop():bool

This is an axiom that is never satisfied (as it does not evaluate to true) which
semantically is treated the same as

7To be precise: the formal semantics of EML does not give the “undefined” meaning expli-
citly, it is left implicit by simply not defining it at all. This is analogous to non-terminating
expressions in SML, which are exactly those for which the semantics fails to specify an eval-
uation result.

9

axiom false

which is never satisfied either.
We have not said anything yet about the situation in which the body of the

quantification is false for some values and (possibly) fails to terminate etc. for
others. If the body is false for at least one value over which the quantification
ranges then the universal quantification is false, regardless what the evaluation
of the body for other values would produce.

Existential quantification is defined dually to universal quantification in
EML. Syntactically, it consists of the keyword exists followed by a match. Se-
mantically, an existential quantification is true if it is true for some value in the
quantification range, and false if it is false for all values in the quantification
range.

I have been (deliberately) rather sloppy by using phrases like “evaluates to
true” or “is true” in connection with the processing of expressions to establish
their truth values. The EML semantics has coined a word to express that
activity: “verificate”. The reason for this assault on the English language was
that the activity in question combines and intertwines ordinary verification of
formulae as we know it from logic with ordinary evaluation8 as expressed in the
operational semantics.

2.3.2 Scoping and Type Abstraction

So far I have pretended that the question “what are the values of type τ” always
has an easy answer. This is not quite true. For the precise definition there are
several possible choices. We shall not go into too much detail, because some of
the problems of determining the exact meaning only arise when we delve into
the dark corners of the language.

First, the interpretation of polymorphic types and function types is not
straightforward, but we delay their consideration for the moment. There are a
couple of other problems. The following example has an obvious meaning.

datatype t = A | B
fun f (_ : t) = A
axiom exists y:t => f y <> y

Clearly, the axiom holds — under any reasonable semantics. But what happens
if we modify the example a little bit:

datatype t = A | B
exception B
fun f (_ : t) = A
axiom exists y:t => f y <> y

8EML also has a notion of evaluation which coincides with SML’s operational semantics
and for which specification constructs such as quantifiers have no meaning at all; the purpose
of having a separate notion of evaluation is to avoid impredicativity in the formal definition.

10

All we did was inserting a declaration and hiding the constructor B. Does the
axiom still hold? This is tantamount to the question: “what does y range over”?
If it only ranges over the “visible values” then the axiom is false, if it ranges
over all values introduced by the original type definition then it remains true.

EML makes the latter choice, it views quantification semantically and scop-
ing as an auxiliary syntactic construct. The rationale for this decision goes back
to the origins of EML which lie in algebraic specifications rather than type the-
ory. In any case, the example also indicates that it is not all that easy to make
values inaccessible in the first place; it is certainly not recommended specific-
ation style to write specifications that depend on this particular aspect of the
meaning of quantifiers.

Another problem arises when types are not defined directly but indirectly,
using some method of type abstraction. Here is an example showing the diffi-
culty.

signature S = sig eqtype u; val B:u end;
structure T:S = struct datatype u = B|C end;
axiom forall (x,y):T.u => x=y
structure T’:S = T

To check the axiom we have to settle the question: has the type T.u two values
or only one? The implementing type of T.u certainly has two values, but only
one of them is accessible. This is not a scoping problem, the implementing type
is internally regarded as incompatible with the implemented one, e.g. T.u and
T’.u are treated as incompatible types in EML. For EML we have considered
both choices of answering the question, they correspond to two different views
of what a structure declaration is doing semantically.

The official EML semantics takes the view that semantically the implement-
ing and implemented type are the same, and hence quantification can in a cer-
tain sense see through type abstraction barriers. In order to avoid this concept
violating the general abstraction principle — which we will discuss at greater
depth in the section on modularisation — EML employs a simple trick: at each
abstraction barrier the implementing type is implicitly replaced by another one
matching the same interface. This means that the axiom actually is satisfiable,
simply by picking an implementation in which T.u has only one value. The
effect of writing the axiom as an axiom declaration is to enforce this choice.

2.3.3 Polymorphism

Similar to its (and SML’s) type system, EML does not support explicit quanti-
fication over types — syntactic quantification is restricted to values. However,
the implicit quantification in its type system can also be used to express quan-
tification over types in specifications.

We have already mentioned that the type of quantified variables is inferred,
it does not have to be given explicitly. Type inference does not always find a
unique type, it may be left with a choice at the end:

11

fun length [] = 0
| length (x::xs) = 1+length xs

fun perms [] = [[]]
| perms (xs:’a list) = ? : ’a list list

axiom forall xs => length (perms xs) = factorial (length xs)
axiom forall ys =>

map length (perms ys) = map (fn _ => length ys)(perm ys)

Here we have an example of a partially defined polymorphic function perms.
There are two axioms restricting the possible choices for ?, but they do not fully
determine the behaviour of perms. When we specify a universal property of a
polymorphic function we would (almost always) like to formulate this property
in a polymorphic manner, we do not want to be forced to provide a type instance
to state the property.

The context of the first axiom restricts the range of the quantified variable
xs to ’a list (similarly for the second axiom and ys), but not any more than
that. To determine the meaning of the axiom we have to settle the following
question: What are the values of the quantification range?

If we consider the type ’a list on its own, it has only one value — the
empty list. We do not have values of type ’a so we cannot form any non-empty
lists over them. If that were the meaning of the above quantification then the
axiom would not have restricted the ? any further — simply because 0! = 1 and
1 is the length of [[]]. This is not what we would intuitively expect to happen.
Rather we would think that the axiom should hold for all instances of type
’a list. This is indeed the meaning of this axiom in EML — unresolved type
variables become universally quantified. Another way of looking at it is that the
type of xs is actually ∀′a.′a list and not just ’a list. Properly polymorphic
values are not first-class citizens in SML, because they cannot be passed around
as function parameters9, therefore it would not be wise to quantify over them.
Instead we should think of having separate quantifications for values and types,
where the latter is notationally suppressed.

What about existential quantification? Consider the following example:

axiom exists x => forall y => perms [x,y] = perms [y,x]

This is not a property we would expect to hold for a permutation function on
lists. But if we instantiate the variable x with () then the following situation
arises: (i) the type of x is unit, (ii) so is the type of y, (iii) if our earlier
axioms for perm are satisfied then both perms [x,y] and perms [y,x] are lists
of length 2 (since 2! = 2) containing only lists of length 2 of unit type. But
that means that they must be equal! So, in a certain sense there is indeed an x
that makes this axiom true.

On the other hand, if we choose the type instance int then it is impossible10

9If we pass them around as function parameters they lose their polymorphic status; this is
different for functor parameters though.

10In order to prove this claim one can use general properties of polymorphic functions, see
[Wad89].

12

to find such an x. Considering that the type quantification and instantiation is
suppressed syntactically this may leave us with a rather uncomfortable feeling.

EML choses the following solution. Regardless of whether a variable is uni-
versally or existentially quantified, its free type variables are always implicitly
universally quantified. Thus we have to think of the existential quantifier of the
last example as being preceded by an invisible ∀′a : TYPE where we understand
TYPE to be the “type” of all types. To satisfy a polymorphic existential quan-
tifier we have to find witnesses for all its type instances. On the other hand, if
the truth value of a quantification depends on the chosen type instances then it
is left undefined in EML.

The example shows a couple of other peculiarities. First, I lied in the last
paragraph. The type of x is not ’a, it is ’’a — this is simply a consequence
of using the good old equality operation within the axiom: the result type of
perm is τ list list for some type τ which is the type of x as well. We used
equality on the type τ list list and the type inference algorithm figures out
that this is only possible if τ admits equality as well. Typically, one would like
to avoid the restriction to equality types in such situations — after all we want
to make a claim for all type instances. EML has a primitive concept for this
purpose which we ignore for the moment. From a technical point of view, it
is quite often sufficient to state a property of a generally polymorphic function
for its equality type instances only [or even for a particular type only]; this is
again a consequence of general properties of polymorphism [Wad89], but it is
not considered good specification style to rely on these principles too heavily.

What is the type of the universally quantified variable y? Apparently, it
is also ’’a. However, it must be the same ’’a as x has as its type, which
means that ’’a is not a free type variable at the inner quantifier and thus is not
implicitly quantified there. We cannot quantify over ’’a at this point because
it is free in the context — this is completely analogous to type abstraction.

As explained, implicit quantification over types is always universal and there
is no syntactically explicit quantification for types. So we cannot express ex-
istential quantification over types at all, can we? Somewhat surprisingly, we
can.

axiom let eqtype t = ?
in exists x:t => forall y => perms [x,y] = perms [y,x]
end

The ? by its very nature acts like an existentially quantified variable. For
types we can only use it in the context of a type declaration, but type declar-
ations can be made local to expressions. Consequently, we are indeed able to
express existential quantification of types.

At this point I should perhaps admit my lack of imagination — I find it
hard to contemplate any non-pathological use of this feature. What the heck,
pathological examples are fun!

13

2.3.4 Equality

Suppose we wanted to specify that the first permutation in the list of permuta-
tions produced by perms is always the original list. So we may want to write
something like this:

axiom forall xs => hd (perms xs) = xs

As we have already seen, this implicitly imposes the equality-type constraint
on xs. We cannot directly deduce from it the corresponding behaviour on non-
equality types, although we can induce it by appealing to the polymorphism of
perms. Induction is a rather heavy proof tool and whenever we can we would
like to use the more operational deduction instead.

EML has a primitive for specificational equality, written ==.

axiom forall xs => hd (perms xs) == xs

The meaning of == is more or less the same as =, but there are some differences:

• The computational equality = demands equality types for its arguments,
the specificational equality == makes no such requirements, except that
the types have to be the same.

• Since t=u is just a function call, it is strict in both arguments; actually
there is only one argument which is a pair. One the other hand, spe-
cificational equality is non-strict and mirrors definitional equality in the
following sense: t==u not only holds if the evaluation of t and u produces
the same values, but also if they raise the same exceptions or if both fail
to terminate.

• On the other hand, t==u demands that neither t nor u make any use
of “specification constructs” such as quantifiers; they have to be SML-
evaluatable, otherwise a special exception is raised. This does not concern
t=u.

The first point raises the question what == “does” when confronted with
a non-equality type. Specificational equality is a specification construct, i.e.
ordinary evaluation of t==u is undefined regardless of the type involved. The
verification of t==u requires that both expressions are indistinguishable by pro-
gram contexts. For functions, this normally means that they are pointwise equal
— the proviso “normally” has to be there because of the presence of SML-style
exceptions. To be precise, the mentioned program contexts that can be used
for distinguishing expressions can refer to hidden constructors and breach type-
abstraction barriers — this is completely analogous to the way quantification
range is defined.

2.3.5 Abnormal behaviour

The evaluation of an SML/EML expression does not always return a value,
it may fail to terminate, it may produce an exception. Bearing in mind the

14

semantics of specificational equality, we are already able to express the absence
of such abnormal behaviour:

axiom forall x=> exists y=> perms x == y

This axiom is claiming that perms is a total function, simply because y only
ranges over values. Fortunately, we do not have to write such axioms very often,
because the totality requirement is typically implicit in ordinary axioms. For
example, our first axiom for perms which stated that the length of the result of
a perms call is the factorial of the length of the argument is of exactly that
nature.

EML provides a shorthand to express the absence of abnormal behaviour:
exp proper is an expression which is true iff the evaluation of exp results in a
value.

axiom forall x => perms x proper

means exactly the same as the previous axiom. EML also has primitives to
specify termination and exception-raising behaviour:

axiom forall n => (n>=0 implies factorial n terminates)
axiom forall (m,n) => ((m mod n raises Div) implies n=0)

The EML syntax makes the above expressions embarrassingly11 close to their
meaning in the English language.

Similarly to ==, both proper and terminates specify behaviour of evaluation,
not of verification. They are themselves specification constructs and thus cannot
be used within ordinary evaluations. This has the usual fundamental reason of
preventing the diagonalisation of a halting-problem-decider.

2.3.6 Higher types

EML has function types. But what is a function? What are quantifiers over
function types exactly ranging over? Given two functions f and g, under what
circumstances are f and g equal? These questions are addressed (indirectly) in
the EML semantics [KST94] and (directly) in its gentle introduction [KST95,
KST97].

However, in a certain sense the proper answer to these questions is “Mu!”,
i.e. you should not ask these questions in the first place. In other words, you
should avoid writing specifications that rely too heavily on the particular way
these questions are answered by the EML semantics.

When we validate a universally quantified formula we do this w.r.t. a par-
ticular model. More specifically, our model has to provide an interpretation for
function spaces. For interpreting A->B there are various choices: we could take
all functions from A to B, all continuous functions, all computable functions, or
all ML definable functions. One of the problems is that there is no fully de-
veloped recursion theory on higher types; for first-order functions we know that

11Embarassingly, because we are following the tradition of COBOL here.

15

the ML-definable functions are exactly the partial recursive ones, but for higher
types we do not have any evidence to support a generalised Church-Turing
thesis.

SML defines in its formal semantics what the values of the operational se-
mantics are, there is no direct association between values and types. Values
can be described as free terms over some first-order signature. This includes
the function values most of which are given as so-called “closures”. A closure
is essentially a pair consisting of the syntax of the function and an environment
determining the meaning of the free variables.

EML is very similar in its value domain (for verification), and we shall not
discuss the subtle differences here. Since we have (and need) a typed quantifica-
tion, we have to somehow split the domain of values into subdomains associated
with each type. The idea is simple: a value of type τ is a value that arises from
the successful evaluation of an expression of type τ ; and an expression of type
τ is an expression that passed the SML type-check with type τ in a particular
environment. The environment in question gives access to all constructors and
the implementation of types.

Thus the domain of function types is given by a more general principle that
applies to all types. It is similar with specificational equality: two expressions
are considered equal (of type τ) if they are indistinguishable by any program
context. The program contexts in question have to be well-typed and have
a hole of type τ — they are formed in the same environment we use for the
evaluation of expressions that determine the set of values.

While I am generally trying to avoid going into the subtleties of questions
such as “what are the values of a function type?”, one subtlety is worth mention-
ing. The quantification ranges over “SML values”, not EML ones. This means
that (i) we indeed require that an evaluation of the representing expression suc-
ceeds, not just a verification and (ii) that the resulting value has no references
to any specification constructs, such as universal quantifiers hidden in a clos-
ure. In particular, when we quantify over the type int->bool we quantify over
ordinary SML functions of that type, not over EML predicates.

I could give examples the successful verification of which depends on these
choices, but I am not going to — I do not want to tempt you into following this
road.

16

3 Modularisation

One of the most fundamental ideas underlining EML is to incorporate specifica-
tions in the module system. This means (i) to localise specifications to modules
and (ii) to restrict the use of a module to the features and properties guaranteed
by its specification.

Traditionally we use modules for programming-in-the-large. Often when a
program has grown too large to be thought of as a unit we split it into more
or less coherent pieces. Ideally, the programming language should support this
in some way, i.e. we would like to use the various pieces without being forced
to merge the source code. Even better would be some way of compiling these
pieces separately, as this speeds up program maintenance, installation etc., not
to mention that the capability of separate compilation is evidence that our
splitting-up was not arbitrary, but along certain logical lines.

We may do this for our own peace of mind, but it is even more significant
within a team working on a common project. There are typical pitfalls that
frequently occur in such a setting which — if possible — our module system
should address. A typical problem in many programming languages is the com-
plete lack of scoping: a variable is visible anywhere. Especially if you work in
a team this leaves you with the problem of which variable names to use and
which to avoid. The project manager may end up dividing the name space of
variables forcing each member of his team only to use variable names starting
with a specific sequence of characters12.

In other words, we would like a discipline in the language that restricts
the class of globally accessible identifiers to some fixed (for each project) well-
defined set, and at the same time supports the use of local names in the various
modules. Whether two names in different scopes are equal or not should have
no significance.

Concerning EML/SML, this specific problem is taken care of by various
means, for instance local declarations, but also imposing a signature on a struc-
ture has such an effect. Some readers may be offended by this claim, but I
maintain that any decent programming language provides at least some sup-
port in that direction.

Of course, this is not enough. Scoping only helps us to keep out of each oth-
er’s way, it does not help us to interact. At some point, the various pieces we
have split our program into have to communicate and use each other. Especially
in the presence of separate compilation, such interactions between different pro-
gram units are a potential source of errors. We need a discipline to guide the
communication between structures, a notion of secure interface. In SML/EML
interfaces are called signatures.

So far we have only used signatures to curtail structures. They have another
use in SML, as the interface of a parameterised module, a so-called functor.

12This is not a joke, this happens in real life.

17

3.1 Structures with Interface

Before we come to functors, we have a more thorough look at what SML/EML
signatures offer w.r.t. structures. A structure declaration has usually the fol-
lowing form:

structure A:S = struct end

where A is the structure identifier we introduce, S is a signature expression (most
often a signature identifier) and the four dots are the implementing structure.

The signature expression S specifies the contents of A. The most important
elementary specifications possible in a signature are various forms of value and
type specifications. We specify a value always together with its type, or rather:
its type scheme, because structure components can be polymorphic. However,
the type of a specified value may itself be (partially) specified rather than con-
crete. When we specify types, we actually specify type functions, i.e. n-ary
functions from types to types.

There are various forms of such specifications, giving away various chunks
of information about the concrete objects associated with the specifications.
The reason to provide such a variety is two-fold: (i) if the signature is the
interface of a single structure then — as a matter of good software design —
we give away as little information as possible, allowing us more freedom in the
actual implementation; (ii) if the signature is the interface of a functor (we
come to that later) then restricting the interface as much as possible increases
the applicability and thus re-usability of the functor.

For example, here are several possibilities for specifying types:

type t1
eqtype t2
datatype t3 = C1 of t2 | C2 of int
datatype t4 = E of t3 | F of t1

If we find these specifications in a signature then we know hardly anything
about t1 — its just a type constructor of arity 0, i.e. any type. We know a little
bit more about t2: it must be an equality type. This has two consequences:
the (any) concrete type associated with t2 must admit equality, and we can
exploit this fact, i.e. the predefined functions = and <> are available of type
t2*t2->bool.

We know a lot about t3: it must be a datatype with these two constructors
of the given types; moreover, these are the only constructors of type t3; finally,
the constructors themselves are also specified by this declaration and they are
specified as constructors which means that consequently we can use them for
pattern matching. Of course, t3 ultimately depends on t2, similarly as t4
depends on both t1 and t2. The difference between these two specifications is
that t3 is inferred13 to be an equality type, while t4 is not. In the concrete

13Inferring the equality attribute is a surprisingly delicate issue which has changed in the
SML’97 revision [MTHM97]. See also [GGM93] for a more thorough look at this problem.

18

structure we associate with this specification we may have an equality type
realising t1 — and thus making t4 an equality type as well, but the signature
does not give access to that information.

The extra information one could possibly reveal for a value is its constructor
status. For constructors of datatypes, giving away their status is only possible
in the already mentioned form, we cannot reveal a constructor without reveal-
ing the others. One pragmatic reason behind this restriction is to enable the
compiler to warn the user that a particular match does not cover all the val-
ues of its type. The same restriction does not apply to exception constructors,
there are specifications of (single) exception constructors. The consequences of
providing that extra bit of information are completely analogous to the eqtype
specification: customers of the signature can exploit the information, suppliers
have to provide a concrete structure meeting all these criteria.

Going back to the structure declaration structure A:S = ..., the com-
ponents of the structure A are determined by its signature S. In particular, we
have only access to those identifiers specified in S. Other identifiers declared in
the implementing structure remain hidden. In fact, the curtailment of structures
goes a bit further than that:

signature IL = sig val il:int list end;
structure A:IL = struct val il = [] end

In the example, we have implemented a specified int list by a polymorphic
’a list. This is fine, we can specialise a polymorphic value to the required
type; but whenever we do so we forget its polymorphic origin. This means that
A.il can only be used as an integer list, not as a list of any other type.

We can slightly modify the example, abstracting away the component type.

signature IL’ =
sig type a;

val il: a list
end;

structure A’:IL’ =
struct type a=int;

val il=[]
end

Again, if we use A’.il we cannot exploit its polymorphic origin. But do we
know that it is an int list? We should not, it is not information available in
the interface of A’. Indeed, we do not have access to this information in EML,
EML’s structure-signature matching is opaque. In SML though, this property
shines through (all together: boo! hiss!), its matching is transparent. SML’97
provides both forms of matching, where opaque matching is expressed using :>
instead of :. The reasons for the somewhat counter-intuitive meaning of struc-
ture/signature matching in SML’90 are largely pragmatic; in connection with
functors, opaque matching easily leads to the need for sharing constraints (we
learn about them later), a rather unpopular feature amongst ML programmers.

19

Transparent matching is unsuitable for separate compilation, almost by
definition. Moscow ML only supports a small sublanguage of SML’s module
system, and it does indeed use the module system for separate compilation —
it should come as no surprise that it only has opaque matching. The idea of
opaque matching and its use for separate compilation goes at least back 20 years
to the imperative language Modula-2.

Considering that we can only access structure components that are specified
in the corresponding signature it makes perfect sense to allow incomplete struc-
ture declarations. An incomplete structure declaration provides the signature of
a structure without giving an implementation. It should be possible to compile
an incomplete structure and other structures depending on it — only the linker
should require a completion.

structure B:IL = ?

By the opaqueness principle all we can see of a structure is what the interface
gives us access to. Thus we can see exactly the same thing of A and B. Whenever
we can use A we could use B instead and vice versa.

In a certain sense this is unsatisfactory. Surely, there are different integer
lists, and this difference should not be messed up just by packaging them up as
structures?

The problem we face is that the type of a value is a helpful but generally
insufficient piece of information when we use a module. We may need to know
further properties of a value. Suppose we wanted to implement integer sets
by sorted integer lists without repetitions, based on some given partial order.
Concerning the types, a partial order on integers is just a function of type
int*int->bool. So we might write something like this:

signature POint = sig val le : int*int->bool end;
structure A:POint = ?
abstype intset = Emb of int list
with

val empty = Emb []
local

fun adds(x,[]) = [x]
| adds(x,s as y::z) =

if A.le(x,y) then
if A.le(y,x) then s
else x::s

else y::adds(x,z)
in fun addset (x,Emb xs) = Emb(adds(x,xs))
end
fun memberset(x,Emb []) = false
| memberset(x,Emb(y::z)) =

if A.le(x,y) then A.le(y,x)
else memberset(x,Emb z)

end

20

This is perhaps not the most elegant way to attack the problem (some of its other
deficiencies we shall discuss later), but it looks perfectly reasonable. However,
it only works properly if the function A.le has certain properties. For example,
if A.le is given by the constant false function then adds adds elements at the
end of the list and memberset always returns false.

Still, we do not have to know what A.le is exactly in order to guarantee the
correctness14 of the integer set implementation. Any partial order15 would do
nicely.

What we need is a specification device for “exporting” those properties of a
structure that are required further on; we have to make these properties known
just as we make (some of) the types of structure components known. Such a
device should maintain the general opaqueness principle. The general principle
behind this feature is analogous to the way we treated the eqtype information:
it provides information to the customer and demands it from the supplier.

EML provides such a feature: axioms in signatures. Additional to the ex-
ported values and types we export some of their properties. For our example of
partial orders it could look like this:

signature POint =
sig

val le: int*int -> bool
axiom forall x => le(x,x)
axiom forall (x,y,z) =>

(le(x,y) andalso le(y,z) implies le(x,z))
axiom forall (x,y) =>

(le(x,y) andalso le(y,x) implies x=y)
end

If we use this version of POint instead of the previous one then our implement-
ation of integer sets behaves in the desired fashion: the only replacements we
allow for ? have to satisfy the three axioms.

We may not only use signatures with axioms to specify incomplete structures,
we can also use them as proof obligations for structures where some (or all) of
its components are fully specified. For instance, we could write:

structure Divides:POint =
struct

fun le(x,y) = exists z:int=>x*z=y
end

...with the idea to use divisibility as the partial order. Of course, we have to
ensure that our implementation indeed satisfies the specification, in this case:

14This is an informal notion of correctness as we had no formal requirement that our abstract
type really did implement finite sets. As a friend once told me: “I never write incorrect
programs. When they display ‘segmentation fault’ on the screen then they are clearly supposed
to do so.”

15If A.le were just a preorder we also get sets, but we could not in general represent all
finite integer sets.

21

that it provides a partial order. By using a quantifier in the body of a function
we were pushing our luck a little bit.

There is nothing wrong with the idea, but the devil is in the detail. Unfortu-
nately and rather surprisingly, the example does not quite work, because SML’s
integers have limited precision. In particular, for numbers x close to the max-
imum value the evaluation of x*z gives an overflow exception for any z different
from 0, 1 or −1. Recalling the semantics of exists this means that le(m-1,m)
is undefined for sufficiently large m. As a consequence, the antisymmetry ax-
iom of our new POint signature is not satisfied: we choose x=m-1 and y=m and
observe that the body of the universal quantifier (of the antisymmetry law) is
undefined for that choice, leaving the universal quantifier as a whole undefined,
which in turn is not good enough to establish satisfaction of the axiom.

The purpose of this erroneous example is to highlight a general problem we
have here: what is the meaning of a structure declaration in which the signature
check goes wrong? The problem is in fact more general than that, because the
implementing structure might not be uniquely determined:

structure Somepo:POint =
struct

fun le(x:int,y:int) = ?:bool
end

Here there are many ways to complete the structure Somepo, but most will not
satisfy the axioms of POint.

EML structure/signature matching makes the following demand: any struc-
ture in the semantics of the structure expression in question must satisfy the
axioms of the signature! If that is the case then the meaning of the match-
ing is the set of all structures matching the signature (and not just the ones
arising from the verification of the structure expression itself). Otherwise, the
structure/signature matching has no meaning, making it behave like a non-
terminating expression.

Notice that the last principle differs crucially from giving it the empty set
of structures as its meaning. As a consequence, structure/signature matching is
the place in EML where actual verification (in the ordinary sense) is required.

In other words, neither of our two POint examples goes through, they are
both judged to be meaningless, or rather: both fail to be judged to have a
meaning. We can easily repair our divisibility example though:

structure Divides:POint =
struct

fun le(x,y) = exists z:int=>(x*z=y handle _ => false)
end

The motivation for this modification is simple: if the evaluation of x*z overflows
then the absolute value of this expression (on unbounded integers) is larger than
any representable one and hence larger than y. This time le is a total function
and it is easy to implement.

22

As mentioned earlier, the meaning of this structure declaration in the EML
verification semantics is to bind the structure identifier Divides to an arbitrary
structure satisfying the axioms of POint. The reason for this superficially weird
choice is the opaqueness principle: you get what you specify and nothing more.

Another remark on the failed examples: the very existence of structure de-
clarations without a meaning has an impact on the meaning of sequential com-
position of declarations. We have not only to cope with sets of environments, but
also have to incorporate the possibility that we sometimes encounter a meaning-
less structure declaration. What makes things worse is that the failure to have a
meaning in general depends on the choice we have for earlier declarations. Here
is an example:

val some’le: int*int->bool = ?
structure Dep:POint = struct val le=some’le end

The question whether the second declaration successfully verificates solely de-
pends on whether we choose in the first declaration a partial order. EML’s
verification semantics propagates verification failure: a composition of two de-
clarations verificates if all the choices we can make for the first declaration lead
to a successful verification of the second. “Successful” here just means: has any
meaning, including the empty set of structures. Therefore, the example fails,
because for some choices we have for some’le the following structure declaration
fails to verificate.

While EML provides axiom specifications as an additional feature to export
information about values, it does not provide any specific features (that is:
additional to SML) to export information about types and structures. SML
already provides rather powerful features in this respect. A very important one
is the notion of sharing. A sharing constraint is a particular kind of specification
whose only purpose is to specify certain types or structures as being equal. We
shall see the importance of this feature (which has undergone major surgery in
the SML’97 revision) in connection with functors in the next section.

One can explain the need for such a feature with an analogy concerning
first-order terms. A signature is like an open term, the unspecified entities are
its variables. A structure (without incomplete declarations) is like a ground
term, it has no unspecified components, no variables. A structure matches a
signature if there is a realisation mapping the specified items of the signature
to concrete items in the structure; similarly, a ground term t matches an open
term p iff there is a substitution σ such that σ(p) = t. A signature is more
general than another one if any structure matching the latter also matches the
former. The same principle on first-order terms gives rise to the subsumption
preorder on open terms, alternatively given as: p ≤ q ⇐⇒ ∃σ. σ(p) = q. Along
the same lines we can pre-order signatures. On first-order terms we have that
F (x, y) subsumes F (z, z) which in turn subsumes F (H(C), H(C)), but neither
subsumption is reversible. The subsumption F (x, y) < F (z, z) on first order
terms corresponds to a sharing constraint in SML signatures.

23

3.2 Functors

Recall the example of integer sets as sorted lists without repetitions we en-
countered earlier. In the example, we defined sets as ordered lists w.r.t. an
externally given partial order. It was a bit clumsy and awkward in several
respects, most notably:

• The incomplete structure A was rather more like a parameter than any-
thing incomplete, since any such A gives rise to integer sets of some de-
scription.

• We defined sets monomorphically for integers, although nothing in the
example really uses the type — replacing the three occurrences of int by
any other monomorphic type would have worked just as well.

• But the polymorphic version would have eluded us: if we replace the three
occurrences of int by ’a then the example becomes effectively useless:
the component A.le would need to be polymorphic and any such function
would not depend on its arguments.

We could remedy the third imperfection by declaring an unknown type and
using this unknown type consistently in place of int. However, we still would
only have one set type available at any one time, and the first imperfection
would be even worse, since we now have two parameter-like beasts on the loose,
scattered around in the source code.

What we need is a notion of parameterised structure; a structure paramet-
erised by another structure. Many languages with a module system do not have
a notion of parameterised module, and most of those who do have a less elab-
orate module system than SML. For some reason, a parameterised module is
called a functor in SML16, although they have very little in common with func-
tors in category theory and zilch with functors in Prolog. A functor parameter
is a structure matching the input interface of a functor — an input interface is
simply a signature.

A signature can be seen as the type of a structure, something we may call a
kind. A functor is (roughly, there is a hitch) a function mapping structures of
one kind to structures of another.

signature PO =
sig

type t;
val le: t*t->bool

end;

This signature encapsulates what we perceived to be the parameters in the set
examples: we want a parameter type without saying what it is plus a partial
order working on that particular type (and not a polymorphic partial order).

16Moscow ML does not support functors, but they are part of the official definition. The
same goes for nested structures as in the INSERT example.

24

For the moment we shall ignore axioms since they do not have any particular
significance concerning the points we need to discuss.

signature INSERT =
sig

structure A:PO;
val insert: A.t * A.t list -> A.t list

end;
signature SET =

sig
structure A:PO;
type set
val empty: set
val addset: A.t * set -> set
val memberset: A.t * set -> bool

end

Given any partial order, we can create an insertion function on lists over that
type. In order to express what an insertion function is we need to mention its
type, making the above definition of the signature INSERT a bit awkward. Of
course, we have not actually specified partial orders and insertion here, because
the signatures do not contain any axioms. Specifying SET was quite similar;
notice that there is no connection between the specified type set and the com-
ponent type of the partial order other than provided by addset and memberset.

The language designers of SML/EML could have avoided the slight awkward-
ness of both INSERT and SET by providing a feature of parameterised signatures,
but they chose not to do so. One can express parameterisation of signatures
differently, though it has to be said that this is one of the less elegant features
of the language. Some of the modifications of signatures in the language revi-
sion SML’97 move the language a bit closer to such a feature of parameterised
signatures.

A functor mapping a structure of kind PO to a structure of kind INSERT could
be written as follows:

functor Insert(S:PO):INSERT =
struct

structure A=S;
fun insert(x,[]) = [x]
| insert(x,y::ys) =

if A.le(x,y) then x::y::ys
else y::insert(x,ys)

end;

There is no type inference for functors in EML; SML allows us to drop the output
signature though and infers it, making everything as transparent as possible.
In EML output signatures are compulsory and employ opaque matching only.
There is no fundamental semantical reason for this syntactic requirement in
EML, it merely enforces a certain programming discipline.

25

Remark: a full-blown generalisation of type inference from functions
to functors is impossible, the type inference problem for functors is
undecidable. This is related to both the undecidability of second-
order unification [Gol81] — which we are hit by when we guess what
type function a type constructor is bound to, and the undecidability
of semi-unification [KTU93] — which comes our way when we are
guessing the type scheme of a value. End of remark.

In fact, in the example SML would have inferred a different output signature
from the one we wrote down. It is intriguing to see why, as it explains the need
for certain features of SML’s module language. Generalising the opaqueness
principle from structures to functors, we should be allowed to replace the functor
body by another one if it still fits the old interface. For instance:

functor Insert’(S:PO):INSERT =
struct

structure A:PO=
struct

datatype t = C of t;
fun le p = true

end;
....

end;

The functor Insert’ differs from Insert only in the structure A. Since both
functors have the same interface, we can use one wherever we can use the other
(in EML; in SML’97 this is true if we use :> instead of : before the output
signature). In particular, this means that they produce the same types.

By comparing the two examples it becomes clear that the functor interface
does not tell us what the type in the returned structure is. To retain type sound-
ness the type-system makes a worst case assumption (Insert’ comes mighty
close to the worst case) which is that the type A.t in the output signature is
freshly created and incompatible with any other type. At this point it should
be said that functors are not quite like functions, because if a functor creates a
fresh type then it does so on each call. Functors are not extensional17.

The creation of a fresh type is not what we wanted. The functors Insert
and Insert’ create fresh types, because their interface fails to express any
dependency between parameter and output. EML/SML provide a feature for
this: sharing constraints.

functor Insert(S:PO):
sig include INSERT; sharing A=S end =

Here, the sharing constraint states that the structure A in the output is the
same as the structure S from the input. The functor Insert’ would not meet
this stricter structure interface.

17It is possible to come up with a module system with extensional functors for transparent
matching, but there are complications. For instance, without restricting other parts of the
language we would lose the decidability of type inference.

26

Unfortunately we have met here a feature of SML that has changed in the
SML’97 revision of the language [MTHM97]. The described revised functor
interface was fine in SML’90 and EML, but it is rejected by SML’97. SML’97
only has type sharing, although a restricted form of structure sharing is still
possible as a derived form. The reason the above functor interface is rejected in
SML’97 is that the implicitly shared type S.t comes from outside the signature
in which it is shared.

We can still express a corresponding interface in SML’97, but it requires the
use of a newly added feature. The SML’97 interface of our example is as follows:

functor Insert(S:PO) :> INSERT where type A.t=S.t = ...

In some sense, the new syntax is more appealing, as it is closer to viewing A.t as
a parameter of INSERT rather than a fixed component, but the incompatibility
of versions is nevertheless deplorable.

There is a general trick how one can avoid most of the time the needed
sharing constraints between input and output of a functor. The trick is to use
implicit rather than explicit sharing. For example:

functor Insert2(S:PO) :
sig val insert:S.t*S.t list -> S.t list end =
....

The functor Insert2 has a different kind than Insert, because its result does
not contain a copy of the input structure S. Still, the generated insert function
does indeed operate on the desired lists: the structure identifier S is visible when
we analyse the result signature. We could not have bound this output signature
to a global signature identifier, because we can only define it w.r.t. S.t: this is
a situation in which parameterised signatures would be useful.

Analogous to incomplete structures are incomplete functors in EML: we
simply write a ? for the functor body. Another analogy to structures is verific-
ation: since signatures can contain axioms, writing a functor may leave us with
some proof obligations. The principle should be obvious: a functor is correct
if it maps any structure matching the input structure to a structure matching
the output structure, where “matching” includes the verification of the axioms
in question. Considering that the functor body itself may contain incomplete
declarations, this is not quite the full story: we have to verify that any possible
functor result matches the output signature.

In practice, people tend to apply a functor exactly once, making it effectively
a device to work with incomplete structures. The reason is simply that the
more a functor contains the more specific is its application, and it is not a very
attractive prospect to write a functor that contains very little. For the latter you
need to compose lots of functors to get anywhere, the absence of higher-order
functors (which means that functors themselves can be structure components,
functor parameters, etc.) from the language definition18 does not help either.
Still, with many little functors there is a better chance of reusing code.

18SML of New Jersey supports them though.

27

3.3 Verification

What happens to the properties of structures when they are passed through
signature interfaces? Do they remain the same? Can we lose information? Can
we gain information? Can properties change from true to false, or vice versa?

The general principles answering these questions (to a certain extent, any-
way) are:

• Transparent matching requires the satisfaction of the axioms, but other-
wise it leaves the structure unchanged.

• Opaque matching also requires satisfaction of axioms, but the structure is
afterwards replaced by something arbitrary matching the signature.

• We can lose information.

• We can gain information, though only in a very limited manner.

• Properties never change, unless we generally view everything upto obser-
vational equivalence, most notably the meaning of quantifiers and specific-
ational equality.

We have to elaborate a little bit on these points.
First, EML seems not to support any transparent matching — so the first

point does not apply, does it? It does. EML has implicit transparent matching
at two places: (i) for matching a structure against the argument signature of a
functor, and (ii) for the matching of substructures. Let us forget about (ii) (it
is similar anyway): when we call our functor Insert and apply it to a partial
order, then we do not want this particular partial order to be replaced by an
arbitrary one when we deal with the body of the functor.

The second point is quite simply a direct consequence of our general opaque-
ness principle: any opaque structure binding provides us with an opportunity to
replace the implementing structure by something completely different, as long
as it still matches the interface. This clearly means that we lose information
at opaque structure bindings, or rather that we lose more information than we
already do through transparent matching, like which components of a structure
are available.

In a weak sense, we gain information through both kinds of matching: by
specialising polymorphism, certain formulae which were undefined before may
have a proper meaning after the structure binding. Take the perms example
and the axiom:

axiom forall (x,y) => perms [x,y] == perms [y,x]

This axiom is not satisfied for a polymorphic permutation function perms. But
if the signature interface chooses to specialise the argument type of perms to
unit list then the axiom is true, under both forms of matching.

However, we do not gain information in the strong way we might think we
do. Since quantification and specificational equality are unaffected by scoping

28

changes, transparent matching has no impact on them either. But the same is
true for opaque matching, since both logical features look beyond abstraction
barriers; one can say that they operate on the underlying algebra. The nice
consequence of this is that properties we have once established as true can be
passed through abstraction barriers without any need to re-verify them.

On the downside, this principle of EML deprives us of “true” abstract data-
types and is hence rather counter-intuitive. Example:

signature SET2 =
sig

include SET;
val union: set*set->set
axiom forall (x,y) => union(x,y)==union(y,x)

end;

This looks like a perfectly reasonable requirement for sets. Moreover, we may
think that we can implement these sets by our familiar sorted lists, e.g. in the
following way:

functor SET2(X:PO): sig include SET2 sharing A=X end =
struct

structure A=X;
type set = X.t list;
val empty = []
fun addset(x,[]) = [x]
| addset(x,s as y::z) =

if A.le(x,y) then
if A.le(y,x) then s
else x::s

else y::addset(x,z)
fun memberset(x,[]) = false
| memberset(x,y::z) =

if A.le(x,y) then A.le(y,x)
else memberset(x,z)

fun union([],x) = x
| union(x::xs,z) = addset(x,union(xs,z))

end;

Alas, there is a catch: the functor is not correct according to the official EML
semantics. The problem is that union is not really commutative. It is com-
mutative on all the sets we can form through the signature (sorted lists without
repetitions), but it is not on the underlying implementation (all lists, sorted or
not, repetitions or not) and the quantifier ranges over exactly that.

This is not what one would normally expect. An alternative semantics of
EML could treat this functor as correct, simply by preventing quantifiers and
specificational equality from piercing abstraction barriers. Such an alternative
semantics would indeed make signature matching change the meaning of for-
mulae, it is a major change to the meaning of logical connectives. On the plus

29

side, we would be closer to “real” abstract data types; on the minus side, proofs
become significantly more difficult as almost any formula has to be re-checked
once it passes through an opaque interface.

There is a semantic reason why the EML semantics was defined that way:
it is viewing a structure/signature matching as a “reduct” operation on algeb-
ras. A semantics dealing properly with observational equivalence would need
to be based on a more sophisticated operation on algebras, also involving a
reachability constraint.

A pragmatic reason to design the EML logic this way was that EML is
supposed to support the development of SML programs. At least SML’90 does
not offer opaque matching and therefore not the security required to justify an
observational reading of EML logic. In particular, an SML program could use
the union function created by the SET2 functor on non-sorted lists, exhibiting
its non-commutative behaviour on the full domain:

structure S:PO =
struct

type t = bool;
fun le(x,y) = not x orelse y

end;
structure SS = SET2(S);
val s1 = SS.empty
val s2 = [true,false]
val a = SS.memberset(false,SS.union(s1,s2))
val b = SS.memberset(false,SS.union(s2,s1))

The above sequence of declarations is illegal in EML, because we used the list
s2 as a set, violating opaqueness. However, it is legal in SML’90 and we find
to our disgust that a is bound to false and b to true.

After the 1997 revision of the SML definition the above example is signi-
ficantly less compelling. We have to change the syntax of the SET2 functor
anyway, because the sharing constraint in its output signature is now illegal,
for the already mentioned reason that it shares a specified type with a type in
the basis. When we turn the sharing constraint into a where-clause then the
example also goes through in SML’97. However, if we also change the : sign
before the output signature to :> then the matching is opaque and the example
is rejected.

30

4 Refinement

So far we have seen many language features describing what we can write in an
EML program, or perhaps we should say “specigram”. An EML program is a
static entity though, once it is there it is there, no need for any development.

So how do we go about developing a program? Where do we start, where
do we stop, what are the steps we can take in between?

There is never a perfect answer to that, everybody has their own style when
it comes to writing and developing a program. Therefore, all EML provides is a
framework in which certain steps are guaranteed to work, certain others involve
proof obligations.

4.1 Adding something new

We can always add a new declaration to whatever we already have, but we have
to make sure of a few details.

Clearly, we should not hide anything, or at least not in such a way that
we change any bindings. Furthermore, we have to make sure that our new
declaration is sound w.r.t. the rest of the program, which means we have to
check that its own axioms are satisfied. We should also make sure that the
declaration does not raise an exception:

val x = let exception a
in 1
end handle _ => 2

In the example, x is bound to 1. If we insert the declaration val z=raise
a after the exception declaration then — although z is never used anywhere
— the binding of x changes to 2. For similar though slightly less compelling
reasons we have to make sure that our declaration terminates: if it does not then
the termination behaviour of the surrounding block of declarations is affected
and EML provides the metapredicates terminates and proper to observe such
changes.

However, we will not need to re-check the rest of our program, because the
EML logic is stable under such extensions.

While it is alright to add a declaration, it is much more problematic to ex-
tend an existing one. In particular, extending a datatype by another constructor
affects the meaning of the associated quantifiers; it also affects the meaning of
functions operating on such a type: functions that used to be indistinguishable
may suddenly be observably different. This problem does not extend to ex-
ception constructors, since the type exn is always open to the addition of new
constructors anyway.

Adding an axiom specification to a signature induces proof obligations: any
structure that supposedly matches the signature in question has to be checked
against the new axiom. This also applies if the signature is (contained in the)
output signature of a functor, but no such check is needed if only the input
signature is affected. Notice that the customers of that structure do not need

31

a re-check: they are supposed to work happily with anything the old interface
provided.

Somewhat surprisingly, it is always possible to add an axiom declaration. If
the axiom is inconsistent with the rest of the program then the meaning of the
new program is just the empty set of environments: but it does have a meaning!

The dual to adding a declaration is removing it. As long as the rest of the
program does not use the declared identifiers we may think that it is always safe
to remove a declaration, but this is not quite the case.

• In order to remove a value declaration we have to make sure that its verific-
ation returns a value, i.e. that it terminates without raising an exception.

• In order to remove an axiom declaration, we have to check that the axiom
expression is always satisfied.

These conditions sound a bit strange, almost paradoxical. We would perhaps
expect something like that when we introduce a declaration, but not when we
remove it. First, the reason for requiring non-exception raising behaviour is
rather easy to explain, because it is dual to our earlier example:

val x = let exception a; val z=raise a
in 1
end handle _ => 2

In the example, x is bound to 2, but if we remove the (unused) declaration of z
then x is bound to 1.

The reason for requiring termination of value declarations is twofold: on
the hand we have problems dual to the introduction of non-termination, i.e.
the metapredicates are affected; more importantly though, our requirement is
similar to the requirement than an axiom is satisfied before it can be removed.
Axiom declarations restrict the choices we may have for preceding declarations.
The presence of such a restriction may be needed to ensure the verification of
another structure declaration. Example:

fun pred (x:int) = ? : bool;
val x:int = ?
axiom pred x;
signature P = sig val y: int; axiom pred y end;
structure S:P = struct val y = x end

This sequence of declarations verificates quite happily. The axiom makes sure
that whatever choice we make for pred and x, pred x evaluates to true. This
is needed for the verification of the final structure declaration. If we remove the
axiom then we have a wider choice for pred and x — too wide for the verification
of S. Notice that the axiom is already sometimes satisfied, meaning for some of
the choices we have earlier. However, it is not always satisfied and this is the
property we need to safely remove an axiom declaration.

32

4.2 Replacing question marks

The most obvious development step is the replacement of a ? by concrete code.
Under which conditions is this correct? Of course, it has to pass the type-check,
but apart from that?

If the incomplete declaration in question is either a structure or functor
declaration then we have to check the axioms of the accompanying signature.
That is all. The reason why this is sufficient is that we have opaque structures
only, which keeps proof obligations strictly local. There is a general trick to
ensure that this (almost) always works. If we start with

signature S = sig ... axiom P end;
structure A:S = ?

then we can push the proof obligation inside our structure as follows:

signature S = sig ... axiom P end;
structure A:S = struct axiom P end;

By simply repeating the axiom from the signature in the structure we make
sure that our development step is correct. In particular the body of the new
structure can contain incomplete declarations itself. Effectively we have delayed
the proof to the point when we want to discard the axiom in the structure body.

The above claim was made with a proviso. There are actually two provisos:
(i) if we viewed everything up to observational equivalence (the official EML
semantics does not) then this trick is too simplistic: module interfaces affect the
meaning of formulae modulo observational equivalence; (ii) in the (fortunately
rare) case that the implemented operations are more polymorphic than their
specifications and if the axiom P uses implicit typing, then copying P literally
into the body is not fully satisfactory: it could be that P is satisfied for the type
instance the signature demands but not in the general case.

Replacing a ? in a type declaration is always fine. Often we would like to
replace such an incomplete type declaration by a fresh datatype declaration.
This is possible, though one should keep in mind that such a development is
made up of several more elementary steps including the addition of a declaration:
whenever we introduce a datatype we also introduce its constructors.

If we replace a ? value expression by a more concrete expression, we have
to make sure that it does not raise an exception, and also that its evaluation
terminates. The absence of exceptions is needed because of nasty examples
like the one in the previous section; moreover, the semantics of EML assumes
that the ? replacement does not raise an exception. This does not apply for ?
protected by functional abstractions, which can be arbitrarily nasty.

Notice that replacing a value ? does not involve checking any axioms. We
do not need that, because we simply picked one of the choices for ? all of
which would make the rest of the program pass the verification. In particular, it
trivially passes the verification if a following axiom (declaration) is not satisfied.
This may seem paradoxical again, but is perfectly in line with the observation

33

made earlier that discarding an axiom forces us to prove it while we can add it
at our pleasure.

Of course, we would like to avoid undiscardable axioms, because they prevent
us from completing a program development.

4.3 Divide et impera

When we replace a question mark we may choose something rather concrete
as its replacement, i.e. we may make a coding step. Or we may not. In order
to make any progress it would be fine to choose something that is more con-
crete, without going all the way towards a running implementation. In other
words: we may choose a top-down strategy of program development and make
a decomposition step.

Most typically, this applies for incomplete structure and functor declarations.
Given an incomplete structure declaration, we can attempt to decompose it into
a functor and another structure, both for the time being incomplete as well. We
can proceed analogously for incomplete functor bodies.

By doing such a decomposition, we have implicitly introduced several proof
obligations. The general picture is the following: We start with

structure A:S = ?

and decompose it into a functor and another structure:

structure B:S’ = ? ;
functor G(X:S’):S = ? ;
structure A:S = G(B)

Notice that we also need to define a new signature S’ to make sense of it all. Is
such a decomposition always correct? It is indeed, but then we have not made
much progress. The reason the decomposition is always correct is that we used
signatures that exactly fitted the requirements.

It remains correct if we allow sharing constraints in the output signature
of G. Adding sharing constraints is always correct w.r.t. to EML’s standard
semantics; the story is somewhat different if specifications can be satisfied up
to observational equivalence. More sharing, more observers, more things to
quantify over, less observational equivalence.

Instead of using signatures that exactly fitted the requirements, we could
have used ones that only entail them. For example, we could use a different
signature S’’ as input for G but then we would introduce a proof obligation:
any structure matching S’ has also to match S’’. A similar modification is also
possible concerning the connection of the output signature of G and S. Moreover,
we could also allow sharing between the input and output of G.

There are two typical problems that one faces when adjusting the input
and output interface of a functor. These are underspecification and overspe-
cification. We have overspecified the functor if it is impossible to produce the
required output from the available input. We need to know more about the

34

input. For example, if the input just gives us two abstract types a and b and
the required output contains a function of type a->b that always terminates
then we cannot deliver. There is no functor meeting this requirement. As a
whole, the functor is overspecified because its input is underspecified; similarly,
it could be overspecified, because its output is as well.

During a program refinement, one typically goes through a series of over- and
underspecifications: getting a specification right is just as difficult as getting the
program right. The specification part of the language is more expressive than
the programming part, allowing specifications to be more concise than programs.
The added expressiveness is a two-edged sword though — it is not only easier
to get it right, it is also easier to get it wrong.

35

5 A Case Study

Let us see at an example of how one can go on to develop an EML program.
Suppose we wanted a little program that implements ML pattern matching.

The first problem we face is: how do we specify it, what actually is ML
pattern matching? We can (and are likely to) be very conservative in our first
attempt. We start with terms and patterns, so we are given:

signature Term =
sig

type term;
type pattern;

end;

and we want a structure defining substitutions, substitution application and
matching a term against a pattern. Something like this:

signature Match =
sig

structure T: Term;
type substitution;
val apply: substitution -> T.pattern -> T.term
val match: T.term * T.pattern -> substitution option
axiom forall s as (t,pat) =>

(case match s of
SOME r => apply r pat == t
| NONE => not (exists r’ => apply r’ pat == t))

end

functor M(X:Term) : sig include Match sharing X=T end = ?

Can this possibly work? Without any information how patterns and terms are
connected we have little chance of creating a meaningful substitution applica-
tion. No chance at all, actually. It is an awful thought, but perhaps we get away
with a meaningless notion of substitution application? After all, we have not
asked very much about apply. One possible solution to the specified problem
is the following:

functor M(X:Term) : sig include Match sharing X=T end =
struct

structure T=X;
type substitution = unit
fun apply p = apply p
fun match p = NONE

end;

36

It indeed matches our specification. Of course, this functor is nowhere near
implementing ML pattern matching, our specification was too general, we un-
derspecified our problem. An obvious modification is to require that apply is
total, in other words we add the following axiom specification to the signature
Match:

axiom forall (p,s) => apply s p proper

With this additional claim we have outlawed the earlier attempt for M, since it
did not provide a total apply function. Now we face another problem: there
is no (fully-coded) M that satisfies the specification, we have overspecified our
problem.

Still, there was nothing wrong with the additional axiom for Match, we just
need to refine the signature Term and provide some connection between patterns
and terms.

signature Term =
sig

type term;
type pattern;
type symbol;
val tform: symbol * term list -> term;
val pform: symbol * pattern list -> pattern

end;

That looks a bit more like it, but is it all we need? Clearly not. With the
extended version of Term we are able to specify the homomorphic property of
apply, which should be included in the requirements of Match.

axiom forall (c,ps,s) =>
apply s (T.pform(c,ps)) == T.tform(c,map(apply s)ps)

On the other hand, the extension is of no use whatsoever when it comes to
implementing apply or match. For the implementation of apply we need the
converse of pform, we need to be able to decompose patterns. Not every pattern
is a constructor pattern though, we also want variables. Thus our next attempt
at signature Term is:

datatype (’a,’b) Either = Left of ’a | Right of ’b
signature Term =

sig
type term;
type pattern;
type symbol;
type variable;
val tform: symbol * term list -> term;
val pform: symbol * pattern list -> pattern;
val pembed: variable -> pattern

37

val pdestruct: pattern ->
(variable,symbol * pattern list) Either

axiom forall t => tform t proper
axiom forall cps => pdestruct(pform cps) == Right cps
axiom forall v => pdestruct (pembed v) == Left v
axiom forall p => case pdestruct p of

Left v => pembed v == p
| Right cps => pform cps == p

end;

The axioms provide a connection between composition and decomposition of
patterns. They also mean that all specified operations are total — for the
pattern operations this is implicit from their axioms: the constructors Left
and Right are total, hence the right-hand sides of both equations are always
defined and thus the left-hand sides have to be defined as well, which — for
any particular choice of arguments — requires the properness of pembed and
pform. Similarly, pdestruct is total, because case is strict in its discriminating
expression.

Do we have enough information around to implement our functor M? Perhaps
we have, perhaps we have not. We have been looking for additional structure ne-
cessary to implement substitution application. We have not looked at matching
yet. Perhaps we should make a decomposition step then, settling substitution
application now and leaving matching for later.

signature Substitute =
sig

structure T: Term
type substitution
val apply: substitution -> T.pattern -> T.term
axiom forall (s,p) => apply s p proper
axiom forall (c,ps,s) =>

apply s (T.pform(c,ps)) == T.tform(c,map(apply s)ps)
end;
functor Sub(X:Term):sig include Substitute sharing X=T end = ?
functor Match(X:Substitute):

sig include Match
sharing T=X.T
sharing type substitution = X.substitution

end = ?
functor M(X:Term):

sig include Match
sharing X=T

end = Match(Sub(X))

Can we implement this lot then? Our attention has focussed so far on
substitution application, so we are in with a shout for Sub:

38

functor Sub(X:Term):sig include Substitute sharing X=T end =
struct

structure T=X;
type substitution = variable -> T.term
fun apply s p =

case T.pdestruct p of
Left v => s v
| Right (c,ps) => T.tform(c,map(apply s) ps)

end

Looks cool! Is it correct? No! Why not? We required that apply is a total
function and the above is not, simply because the type substitution contains
partial functions as well. Can we restrict this type to total functions only? No,
EML does not provide such a feature.

What can we do? We could regard the totality requirement for apply as an
overspecification, but it is not easy to refine. Instead, we could use association
lists instead of functions:

fun assoc [] x = NONE
| assoc ((v,a)::xs) x = if v=x then SOME a else assoc xs x

fun finmap [] = true
| finmap ((v,a)::xs) = finmap xs andalso

case assoc xs v of NONE => true
| _ => false

However, this also means that the domain of the function we want to model is
an equality type. This means that we have to refine the signature Term again
and make variable an equality type. After this modification we can write:

functor Sub(X:Term):sig include Substitute sharing X=T end =
struct

structure T=X;
type substitution = (variable,T.term) list
fun apply s p =

case T.pdestruct p of
Left v => (case assoc s v of

NONE => ?
| SOME a => a)

| Right (c,ps) => T.tform(c,map(apply s) ps)
end

That was not entirely successful either, note the remaining ?. If the pattern
contains a variable that is not accounted for in our substitution then we face
the problem what to do with it. In the context of ML pattern matching this
situation should never arise, but here we are stuck again, because we do not
have this information available here.

One way to proceed is to incorporate in our specification that this situation
cannot arise. For example, we introduce something like a substitution domain,

39

relativising the totality of apply w.r.t. such a domain and demanding that match
generates a substitution with a particular domain.

In the context of a writing an SML implementation that way would be quite
appropriate, but for our purposes it is a bit over the top. We could simply go for
ordinary pattern matching of first-order terms and only need that variables can
be embedded into terms as well. In other words, we make another modification
of the signature Terms and include a function tembed:variable -> term. This
allows us to replace the question mark in Sub by T.tembed v.

By putting all of this together we obtain a candidate for an implementation
of substitution application:

signature Term =
sig

type term
type pattern
type symbol
eqtype variable
val tform: symbol * term list -> term
val pform: symbol * pattern list -> pattern
val pembed: variable -> pattern
val tembed: variable -> term
val pdestruct: pattern ->

(variable,symbol * pattern list) Either
axiom forall t => tform t proper
axiom forall v => tembed v proper
axiom forall cps => pdestruct(pform cps) == Right cps
axiom forall v => pdestruct (pembed v) == Left v
axiom forall p => case pdestruct p of

Left v => pembed v == p
| Right cps => pform cps == p

end;
functor Sub(X:Term):sig include Substitute sharing X=T end =

struct
structure T=X;
type substitution = (T.variable,T.term) list
fun apply s p =

case T.pdestruct p of
Left v => (case assoc s v of

NONE => T.tembed v
| SOME a => a)

| Right (c,ps) => T.tform(c,map(apply s) ps)
end

Now we have coded the functor Sub, or have we? There is indeed a problem,
it concerns the termination behaviour of equal. Let us try to find an input
for Sub that breaks its specification, in other words: a pathological structure
implementing terms.

40

structure PathologicalCounterexample: Term =
struct

type term=unit and symbol=unit and variable=unit;
datatype pattern = V | C of unit -> pattern list
fun tform _ = () and pform(_,xs) = C(fn () => xs)
fun tembed _ = () and pembed _ = V
fun pdestruct V = Left ()
| pdestruct (C f) = Right ((),f())

val littlebastard =
let fun recu () = [C recu]
in C recu
end

end;

This weird structure indeed matches our signature Term. The offending problem
concerning the correctness of our Sub implementation is caused by the presence
of such strange patterns as the littlebastard. If we apply a substitution to
littlebastard then our implementation will not terminate: each decomposi-
tion of littlebastard gives us a new copy of the little fellow.

Do we care about such pathological monsters? We should do. What is the
alternative? Where is the borderline between pathological nonsense and sensible
examples? We know where this borderline is: it is given by our signatures.
Anything matching the signature is a sensible example, anything else is not of
our concern.

In other words: patterns are still underspecified. What is missing is an
induction principle for patterns. There are several ways of creating one. The
simplest is to specify pattern as a datatype, i.e. to reveal its implementation
in the signature. For our purposes this is the very last resort. An alternative
would be to add an induction principle through a functional — in the same way
foldr works for lists; however, this does not really solve the core of the problem,
because we would still need to make assertions concerning the termination of the
functional. Instead, we can try to specify the induction principle more directly:

datatype nat = Zero | Succ of nat
infix >>
fun Zero >> _ = false
| Succ _ >> Zero = true
| Succ x >> Succ y = x >> y

signature NatInduction =
sig

type any
val measure: any -> nat
axiom forall x => measure x proper

end;

Why have I not used int instead of nat? Two reasons: (i) there are negative
integers, messing up the induction principle with the additional requirement

41

that the measure should return positive values. More importantly, (ii) there is
a maximum value of type int, making the type in a strict sense ineligible as an
induction vehicle for any type with (conceptually) infinitely many values.

A second question one may ask: why have we not stated a more general
induction principle, after all we can quantify over functions? We can quantify
over functions, but we cannot quantify over predicates. EML logic remains
first-order, a general induction principle requires second-order logic.

Now we can express that the type pattern has an induction principle, and
that the measure of a pattern decreases when we decompose it.

signature Term =
sig

type term and pattern
type symbol
eqtype variable
val tform: symbol * term list -> term
val pform: symbol * pattern list -> pattern
val pembed: variable -> pattern
val tembed: variable -> term
val pdestruct: pattern ->

(variable,symbol * pattern list) Either
axiom forall t => tform t proper
axiom forall v => tembed v proper
axiom forall cps => pdestruct(pform cps) == Right cps
axiom forall v => pdestruct (pembed v) == Left v
axiom forall p => case pdestruct p of

Left v => pembed v == p
| Right cps => pform cps == p;

structure Ind: sig include NatInduction
sharing type any=pattern

end
axiom forall (s,xs,ys,p) =>

Ind.measure(pform(s,xs @ [p] @ ys)) >>
Ind.measure p

end;

Our pathological counter-example is now ruled out, because there is no corres-
ponding measure function that satisfies the last axiom of our new version of
Term. We do not have to change anything in our implementation of Sub. Since
the measure decreases each time we decompose a pattern, we know that our
apply function terminates.

To complete the implementation of M there remains the task to code Match.
On the basis of the given data this is impossible, because we do not have any
method to decompose a term. We also would need to be able to compare
symbols, i.e. the symbol we get from decomposing a pattern with the one we
get from decomposing a term. So we either have to modify Term yet again, or
we need a new signature Term2 for this particular purpose.

42

If we think about it a little, it becomes clear that we need essentially the
same structure for terms and patterns. Additional to that we need to be able
to compare symbols in order to compare the head of a pattern with the head
of a term. Writing everything twice is something we would definitely want to
avoid. Instead, we extract the common structure:

signature SimpleTerm =
sig

type term;
eqtype symbol;
eqtype variable;
val form: symbol * term list -> term;
val embed: variable -> term
val destruct: term ->

(variable,symbol * term list) Either
axiom forall cts => destruct(form cts) == Right cts
axiom forall v => destruct (embed v) == Left v
axiom forall t => destruct t proper
structure Ind: sig include NatInduction

sharing type any=term
end

axiom forall (s,xs,ys,p) =>
Ind.measure(form(s,xs @ [p] @ ys)) >>

Ind.measure p
axiom forall t => case destruct t of

Left v => embed v == t
| Right s => form s == t

end;

This is the structure common to both patterns and terms. To form a new
version of Term we just take two copies of it, i.e. two structures both matching
this signature. However, we should not forget to share the types of symbols and
variables, because we want the same variables and the same symbols in both
patterns and terms.

signature Term2 =
sig

structure P: SimpleTerm and T: SimpleTerm;
sharing type P.symbol=T.symbol
sharing type P.variable=T.variable

end;
functor Adjust(X:Term2):

sig include Term;
sharing type term=X.T.term
sharing type pattern=X.P.term
sharing type symbol=X.T.symbol

43

sharing type variable=X.T.variable
end = ?

Writing the implementation for Adjust should be obvious, it is essentially a
bunch of renamings, although some values are not exported. The purpose of
writing Adjust is that we can continue using our other functor Sub. The overall
picture is now as follows. First, we need a new input signature for the Match
functor:

signature MatchInput =
sig

structure X: Substitute;
structure Y: Term2;
sharing type Y.P.term=X.T.pattern;
sharing type Y.T.term=X.T.term;
sharing type Y.T.symbol=X.T.symbol;
sharing type Y.T.variable=X.T.variable

end;
functor Match(M: MatchInput):

sig include Match
sharing T=M.X.T
sharing type substitution = M.X.substitution

end = ?

The signature Substitute does not contain enough information about our
terms, which is the reason why we need to keep a copy of the Term2 struc-
ture we start with — the Sub functor forgets too much information, so we can
only partly use its output. Considering the mountain of sharing equations we
have to produce to persuade EML that we still work with the same sort of terms,
this is not the likely way we would proceed in practice. It is easier to modify
the interface and implementation of Sub accordingly. For our purposes though,
it is somewhat enlightening to push some of the language features to their ugly
limit.

Of course, we still have to code Match. Based on whatever implementation
we provide for Match we can implement our overall goal, the functor M as follows:

functor M(Z:Term2):
sig include Match

sharing type Z.T.term=T.term
sharing type Z.P.term=T.pattern
sharing type Z.T.symbol=T.symbol
sharing type Z.T.variable=T.variable

end =
let structure A:sig include MatchInput; sharing Y=Z end =

struct structure X=Sub(Adjust(Z));
structure Y=Z

end

44

in Match(A)
end

As the example shows, EML/SML support let-expressions on the structure level.
We needed this feature here, because every structure in EML (not SML) is
required to be equipped with an interface. In particular, we could not have
applied the functor Match to the anonymous structure A is bound to. There is
a conceptual reason for this restriction, but I somehow fail to remember what
it was exactly.

After this fight with sharing constraints (it should be clear by now why they
are not very popular amongst programmers), we are still left with the task of
coding Match.

functor Match(M: MatchInput):
sig include Match

sharing T=M.X.T
sharing type substitution = M.X.substitution

end =
struct

open M.X;
fun match(t,p) =

case M.X.pdestruct p of
Left v => ?

| Right (s,ps) =>
(case M.Y.T.destruct t of

Left v’ => NONE
| Right (s’,ts) =>

if s=s’ then matchlist(ts,ps)
else NONE)

and matchlist([],[]) = ?
| matchlist([],p::ps) = NONE
| matchlist(t::ts,[]) = NONE
| matchlist(t::ts,p::ps) =

glue(match(t,p),matchlist(ts,ps))
and glue x = ? : substitution option

end;

As we can see, there are still three question marks left. We still have to
solve the problems of (i) which substitution matches a term against a variable
pattern, (ii) which substitution matches an empty list of terms against an empty
list of patterns, and (iii) how can we glue two substitutions together into one.
We can see how far we are yet away from our goal: we have absolutely no way
yet to form a substitution and without the type assertion in the body of glue
type inference would suggest type ’a option as result type throughout.

We are hampered by the security of the module system again, because not
having access to the internal structures of substitutions prevents us from solving
the problems right away. The Substitute signature is program-internal and

45

we can put as much information into it as we desire. As a matter of good
programming style we would like to put as little into it as possible. But we have
to address the mentioned problems.

For addressing these problems it is insufficient just to provide functions of
the required types, even if we implement them in the right way. The problem is
that their implementation is protected behind a signature interface and we can
only rely on what the signature promises. We could proceed along these lines,
but we would need rather elaborate axioms to secure the meaning we need.
Instead, the signature Substitute could export a more general substituiton-
building operation and leave the task to form it correctly to its customer.

signature Substitute =
sig

structure T: Term
type substitution
val apply: substitution -> T.pattern -> T.term
val sform: (T.variable*T.term) list -> substitution
axiom forall (s,p) => apply s p proper
axiom forall (c,ps,s) =>

apply s (T.pform(c,ps)) == T.tform(c,map(apply s)ps)
axiom forall (v,xs) =>

(finmap xs implies
apply(sform xs)(T.pembed v) ==
(case assoc xs v of

NONE => T.tembed v
| SOME t => t))

end;

This specification only states the behaviour of sform in case its argument is a
finite map, i.e. if it does not associate a variable more than once. Otherwise,
it could do anything. This design decision makes it rather easy to implement
sform in the needed modification of Sub:

functor Sub(X:Term):sig include Substitute sharing X=T end =
struct

structure T=X;
type substitution = (T.variable*T.term) list
fun apply s p =

case T.pdestruct p of
Left v => (case assoc s v of

NONE => T.tembed v
| SOME a => a)

| Right (c,ps) => T.tform(c,map(apply s) ps)
fun sform xs = xs

end

Clearly, this implementation also satisfies a stricter axiom in which we drop
the finmap requirement. By having restricted the safety guarantee of sform we

46

have hidden an implementation detail of sform. Any customer of the signature
Substitute can only reliably use the function sform in connection with proper
finite maps. It would not be of much help anyway to reveal the missing detail
as we shall see in a moment.

First, here is a little auxiliary function for working with values of type ’a
option.

infixr >>=
fun NONE >>= f = NONE
| (SOME x) >>= f = f x

This is a very useful little function when it comes to composing functions that
return optional results. So useful that the language Haskell opted for predefining
it and supporting it with a special syntax.

functor Match(M: MatchInput):
sig include Match

sharing T=M.X.T
sharing type substitution = M.X.substitution

end =
struct

open M.X;
fun match’(t,p) =

case M.Y.P.destruct p of
Left v => SOME [(v,t)]

| Right (s,ps) =>
(case M.Y.T.destruct t of

Left v’ => NONE
| Right (s’,ts) =>

if s=s’ then matchlist(ts,ps)
else NONE)

and matchlist([],[]) = SOME []
| matchlist([],p::ps) = NONE
| matchlist(t::ts,[]) = NONE
| matchlist(t::ts,p::ps) =

match’(t,p) >>= (fn xs =>
matchlist(ts,ps) >>= (fn ys => SOME (xs@ys)))

fun match x = match’ x >>= (fn xs =>
if finmap xs then SOME (sform xs)

else NONE)
end;

Is this correct? Almost, but not quite. Our implementation correctly treats the
“SOME” case of the original specification of match, but there remains a problem
with the “NONE” case.

We simply do not know if the pattern we started with was linear or not,
i.e. whether it contained repeated variables. The totality requirement for pform

47

means that there are non-linear patterns and our specification of Substitute
explains that substitution application is defined on non-linear patterns as well.
On the other hand, match always returns NONE when given a non-linear pattern.
This is not always correct; in particular, we could well match the same variable
more than once against the same term.

Superficially, this looks like a self-inflicted injury: we exported sform as a
partial map and now we suffer from its partiality. Looking a bit closer we may
detect though that a total sform would not have helped us here: if the associ-
ation list associates different terms with the same variable then the matching
result should be NONE.

There is a choice: we can leave Match unchanged but make the appropriate
modifications to rule out non-linear patterns; or, we modify Match to cope with
the offending case. The required modification of match is not too difficult to
find:

fun squeeze [] = SOME []
| squeeze ((v,t)::xs) =

squeeze xs >>= (fn ys => case assoc xs v of
NONE => SOME ((v,t)::ys)
| SOME u => if equal(t,u) then SOME ys else NONE)

fun match x = match’ x >>=
(fn xs => squeeze xs >>= (SOME o sform))

Unfortunately, we have cheated a little bit: we do not have a function equal
operating on terms. An easy way out would be to require term to be an equality
type and then using the predefined = function. This is possible, but not very
nice for a number of reasons. In particular, we already have enough information
available to write an equality function ourselves:

functor Equal(X:SimpleTerm):
sig

val equal:X.term*X.term->bool
axiom forall (t,u) =>(t==u)=equal(t,u)

end =
struct

fun equal(t,u) = case X.destruct t of
Left v =>
(case X.destruct u of

Left v’ => v=v’ | _ => false)
| Right(s,ts) =>
(case X.destruct u of Left _ => false |

Right(s’,us)=> s=s’ andalso eql(ts,us))
and eql([],[]) = true
| eql(x::xs,y::ys) = equal(x,y) andalso eql(xs,ys)
| eql _ = false

end

This is obviously correct, or is it? Could we possibly have missed anything?

48

Possibly yes, but we did not. Our specification of SimpleTerm — more
specifically, the axiom with the case expression — ensured that destruct is
injective, hence it reflects equality. Without this our functor Equal would not
be correct. Another property we have to secure is the termination of equal,
simply because == is total. Here we can use again (now for the third time) that
we have an induction principle for terms.

Where we do we stand now? We have finished our development. The final
versions of Sub and M we have already seen, the final version of Match is the
following.

functor Match(M: MatchInput):
sig include Match

sharing T=M.X.T
sharing type substitution = M.X.substitution

end =
struct

open M.X;
fun match’(t,p) =

case M.Y.P.destruct p of
Left v => SOME [(v,t)]

| Right (s,ps) =>
(case M.Y.T.destruct t of

Left v’ => NONE
| Right (s’,ts) =>

if s=s’ then matchlist(ts,ps)
else NONE)

and matchlist([],[]) = SOME []
| matchlist([],p::ps) = NONE
| matchlist(t::ts,[]) = NONE
| matchlist(t::ts,p::ps) =

match’(t,p) >>= (fn xs =>
matchlist(ts,ps) >>= (fn ys => SOME (xs@ys)));

structure E = Equal(M.Y.T);
fun squeeze [] = SOME []
| squeeze ((v,t)::xs) =

squeeze xs >>= (fn ys => case assoc ys v of
NONE => SOME ((v,t)::ys)
| SOME u => if E.equal(t,u) then SOME ys

else NONE)
fun match x = match’ x >>=

(fn xs => squeeze xs >>= (SOME o sform))
end;

49

6 Conclusion

Is there a moral after this, just as at the end of each episode of our average
American TV sitcom?

Our case study makes formal program development appear a more complic-
ated task than programming, even than programming with correctness proofs.
To a degree, it quite simply is more complicated: we have not only developed
(and proved correct) a program that solves our immediate problem of imple-
menting substitution and matching, we have developed a collection of modules
for this problem that are individually replacable by anything else matching the
same interface.

One could say: we have got rid of hidden assumptions. Our program works,
because every module has separately been made sure to work, it does not just
work by accident. If it works by accident then it also may fail to work by accident
if one of our hidden assumptions are violated. Our modularised solution gives
us added flexibility when it comes to maintain and modify the program — we
only have to modify and check the modules whose interfaces we touch.

The added flexibility comes with a price of additional proof obligations. But
it also gives us more insight into our problem: we seriously have to address the
questions “what do we really have to assume to solve this problem” and “what
can we really guarantee about our solution if we only know that much about
these other modules?”

Apart from the modularity issues, our development revealed another class
of assumptions. We typically assume that the various functions we call ter-
minate on all inputs and we rely on induction principles without ever actively
noticing it. By solely relying on the logical assertions in our module interfaces
we are consistently forced to consider the worst case, and the worst case gives
us ample opportunities for termination failure. Isolating an abstract type from
its usage through module interfaces often forces us to include an induction (or
co-induction) principle for reasoning about this type. EML is expressive enough
to deal with this problem but it does not provide much support for the user.

50

References

[DM82] Luis Manuel Martins Damas and Robin Milner. Principal type
schemes for functional programs. In 9th ACM Symposium on Prin-
ciples of Programming Languages, pages 207–212, 1982.

[EM85] Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Spe-
cifications I, volume 6 of EATCS Monographs on Theoretical Com-
puter Science. Springer, 1985.

[GGM93] Carl A. Gunter, Elsa L. Gunter, and David B. MacQueen. Comput-
ing ML equality kinds using abstract interpretation. Information
and Computation, 107(2):303–323, December 1993.

[Gol81] W. D. Goldfarb. The undecidability of the second-order unification
problem. Theoretical Computer Science, 13:225–230, 1981.

[KST94] Stefan Kahrs, Don Sannella, and Andrzej Tarlecki. The definition
of Extended ML. Technical Report ECS-LFCS-94-300, University
of Edinburgh, 1994.

[KST95] Stefan Kahrs, Don Sannella, and Andrzej Tarlecki. A gentle in-
troduction into the definition of Extended ML. Technical Report
ECS-LFCS-95-322, University of Edinburgh, 1995.

[KST97] Stefan Kahrs, Don Sannella, and Andrzej Tarlecki. The semantics
of Extended ML: A gentle introduction. Theoretical Computer Sci-
ence, 173(2):445–484, 1997.

[KTU93] A.J. Kfoury, J. Tiuryn, and P. Urcyczyn. The undecidability
of the semi-unification problem. Information and Computation,
102(1):83–101, January 1993.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The Definition of
Standard ML. MIT Press, 1990.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen.
The Definition of Standard ML (Revised). MIT Press, 1997.

[San89] Donald Sannella. Formal program development in Extended ML
for the working programmer. Technical Report ECS-LFCS-89-102,
University of Edinburgh, 1989.

[Tho91] Simon Thompson. Type Theory and Functional Programming.
Addison-Wesley, 1991.

[Wad89] Philip Wadler. Theorems for free. In Functional Programming Lan-
guages and Computer Architecture, pages 347–359. ACM, 1989.

[Wir90] Martin Wirsing. Algebraic specification. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, chapter 13,
pages 675–788. Elsevier Science Publishers, 1990.

51

