
Ugawa, Tomoharu, Jones, Richard E. and Ritson, Carl G. (2014) Reference
Object Processing in On-The-Fly Garbage Collection. In: Proceedings
of the 2014 international symposium on Memory management. ISMM International
Symposium on Memory Management . ACM, New York, USA, pp. 59-69.
ISBN 978-1-4503-2921-7.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/40820/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1145/2602988.2602991

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/40820/
https://doi.org/10.1145/2602988.2602991
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Reference Object Processing in On-The-Fly Garbage Collection

Tomoharu Ugawa
Kochi University of Technology

ugawa.tomoharu@kochi-tech.ac.jp

Richard E. Jones Carl G. Ritson
University of Kent

R.E.Jones@kent.ac.uk C.G.Ritson@kent.ac.uk

Abstract
Most proposals for on-the-fly garbage collection ignore the ques-
tion of Java’s weak and other reference types. However, we show
that reference types are heavily used in DaCapo benchmarks. Of
the few collectors that do address this issue, most block mutators,
either globally or individually, while processing reference types.
We introduce a new framework for processing reference types on-
the-fly in Jikes RVM. Our framework supports both insertion and
deletion write barriers. We have model checked our algorithm and
incorporated it in our new implementation of the Sapphire on-the-
fly collector. Using a deletion barrier, we process references while
mutators are running in less than three times the time that previous
approaches take while mutators are halted; our overall execution
times are no worse, and often better.

Categories and Subject Descriptors D.3.4 [Programing Lan-
guages]: Processors—Memory management (garbage collection)

General Terms Algorithms, Languages

Keywords Garbage Collection; Real-time processing; Java; Weak
Pointers; Jikes RVM

1. Introduction
The last decade has seen significant changes to the environments
in which software is deployed. Developers have turned to man-
aged languages and runtimes for easier deployment and increased
security and multi-core processors are ubiquitous. Many applica-
tions are sensitive to response time: any pauses may be undesirable
or unacceptable. Interactive applications need to respond crisply.
Enterprise applications with highly concurrent workloads cannot
afford to pause transactions, because delays may lead to either a
backlog of re-tried transactions or direct financial loss. Embedded
systems may have hard real-time requirements: all operations must
complete with a fixed time. Stopping all mutators (user threads)
in order to reclaim memory (stop-the-world or STW) garbage col-
lection (GC) is likely to lead to unacceptable pauses. Even though
STW techniques such as generational GC can reduce average pause
times, they do not solve the problem of worst-case pause times
when the entire heap must be collected.

Incremental GC, which interleaves mutator and collector ac-
tions, or concurrent GC, which allows mutator and collector

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISMM ’14, 12 June, 2014, Edinburgh, UK.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2921-7/14/06. . . $15.00.
http://dx.doi.org/10.1145/2602988.2602991

threads to run concurrently, address this problem. However, these
strategies require careful synchronisation between mutators and
collectors for safety (i.e. not reclaiming live objects). Thus, mu-
tators emit read or write barriers as they access object fields in
order to provide the collector with a coherent view of live objects
in the heap. Correct termination of a GC cycle is also tricky: the
simplest and most widely adopted strategy is to stop all mutator
threads briefly to scan their stacks. On-the-fly (OTF) collectors, on
the other hand, attempt never to stop more than one thread at a time
(although even they may have to fall back to STW termination in
the face of pathological mutator behaviour).

Problem solved? Unfortunately not. Java provides reference
type objects — soft, weak and phantom — which can be used for
a variety of purposes such as constructing caches, whose contents
the collector can reclaim when the system is under memory pres-
sure, or creating canonicalised mappings. Although barriers allow
the collector gradually to build up a coherent (if conservative) view
of the live objects in the heap, the Java specification requires ref-
erence type objects to be dealt with atomically by the collector.
The simplest solution would be to stop the world while the collec-
tor processes reference type objects in the termination phase, but
this is unacceptable for a truly on-the-fly collector. Another solu-
tion might be to block only those mutators that try to access ref-
erence type objects during the GC termination phase; we consider
this equally unacceptable.

In this paper, we explore the issues faced by OTF reference
type processing, and provide algorithms which we have model-
checked and added to our new implementation of the Sapphire
OTF copying collector. We find that reference type objects are
(possibly surprisingly) heavily used in the DaCapo suite of Java
benchmarks [5], although there is substantial variation between
programs. Processing reference type objects while mutator threads
are halted adds significantly to the time required to terminate a GC
cycle. We then show how to process Java’s reference type objects
in a fully OTF collector. In summary, our contributions are:

• A study of the usage of reference type objects in DaCapo.
• A formalisation of reference type processing in Java.
• A novel algorithm for OTF processing of reference type objects.
• Verification of our algorithm using the SPIN model checker.
• Implementation of the algorithm for the Sapphire OTF copying

collector [12] in the Jikes RVM virtual machine.
• Experimental evaluation of both blocking and OTF reference

processing methods.

2. Reference Objects
java.lang.ref provides reference object classes, which support
some interaction with the GC. Reference objects may be, in de-
creasing order of strength, soft, weak or phantom. Soft references
are typically used to build caches that the GC can reclaim when

OA B

Figure 1: Soft references to be cleared; A and B are soft reference
objects. They are assumed to be strongly reachable.

it comes under memory pressure, weak references to implement
canonicalised mappings that do not prevent the GC from reclaim-
ing their keys or values, and phantom references for scheduling
cleanup actions more flexibly than is possible with finalisation.

The usual Java strong reference is created with the new op-
erator. Other references are created with the SoftReference,
WeakReference and PhantomReference constructors. For in-
stance, the fragment below creates a strong reference o to an
Object (which we call O) and a weak reference wo to the same
object. Internally, a reference class has a field referent that
holds a (strong) reference to the reference object’s target, i.e.
wo.referent=o:

Object o = new Object(); // call this object O

WeakReference wo = new WeakReference(o);
Object maybeNull = wo.get();
...
o = null;
maybeNull = wo.get();

O will be preserved by the GC as long as it is reachable by some
thread by following a chain of strong references. If O is reachable,
wo.get() will return a strong reference to O. However, at the
second call to wo.get(), O may or may not have been reclaimed
by the GC, depending on what the elided code marked ... does.
Thus, wo.get() may return either a reference to O or null.

2.1 Reachability and referent clearing
The different levels of reachability are defined operationally in the
java.lang.ref package [17].

• An object is strongly reachable if it can be reached by some
thread without traversing any reference objects. A newly-
created object is strongly reachable by its creator thread.

• An object is softly reachable if it is not strongly reachable but
can be reached by traversing a soft reference.

• An object is weakly reachable if it is neither strongly nor softly
reachable but can be reached by traversing a weak reference.
When the weak references to a weakly-reachable object are
cleared, the object becomes eligible for finalization.

• An object is phantom reachable if it is neither strongly, softly
nor weakly reachable, it has been finalized, and some phantom
reference refers to it.

• Otherwise an object is unreachable.

The GC will reclaim any weakly reachable object, and may
decide at its discretion to reclaim any softly reachable object. In
either case, it must clear the referent field of the reference type.

2.2 The challenge for OTF collection
In a concurrent GC, there may be a race between the collector
clearing the reference and a mutator strengthening the reachability
of its target by calling get(). For this reason, the semantics of
reference classes require that, at the time that the GC decides to
reclaim a softly reachable object (O in Fig. 1, for example), it must
also clear atomically

1. all soft references to that object (reference from A in Fig. 1),
and

2. all soft references to other softly-reachable objects from which
that object is reachable through a chain of strong references
(reference from B in Fig. 1).

At the same time as it clears references or at some later time,
the GC may enqueue the reference onto a ReferenceQueue; the
intention of this mechanism is to notify the program of changes in
reachability. Similar semantics apply to weak references / chains
of strong and soft references. In contrast, the get method of a
phantom reference always returns null.

Thus, the challenge for OTF processing of soft (resp. weak)
references is how to clear not only all soft (weak) references to
a softly (weakly) reachable object but also all other soft (weak)
soft references to any other softly (weakly)-reachable objects from
which that object is reachable through a chain of strong (strong or
soft) references in a way that appears atomic to all mutator threads.

3. Related Work
There is a considerable body of work on low pause-time garbage
collection, much of it related to real-time systems [1–4, 6–8, 10,
12, 13, 15, 16, 19–24]. Most papers do not address the question of
processing reference types.

Azul Systems’ Pauseless GC [6] takes the most straightforward
approach to avoiding races between mutator and collector threads
on reference types: at the end of its marking phase, it stops all
mutator threads and does “(in parallel but not concurrent) soft
ref processing, weak ref processing, and finalization.” Click et al.
suggest that they could process references concurrently by having
the GC and mutators race to set a value for referent field with a CAS
operation if the referent is “not-marked-through”. They suggest that
if the mutator succeeds the target’s reachability is strengthened and
the collector knows it, whereas if the GC succeeds the mutator
will see the null. However, this seems insufficient for correct
behaviour as the GC may win one race but lose another, thereby
failing to clear atomically all soft references to an object and all
soft references to any other softly-reachable objects from which
that object is reachable. Reference types are not discussed for other
Azul collectors [13, 24]. The Staccato parallel and concurrent real-
time compacting collector for multiprocessors [16] also stops the
world to process soft, weak and phantom references.

A less intrusive option is to block only those mutators that
attempt to call get() on reference types. Domani et al. extended the
Doliguez-Leroy-Gonthier collector [7] for Java by adding support
for finalisation and reference types [8]. They add a read barrier
to get() that records the referent when called during the marking
trace and before weak references have been processed. After the
GC has completed its mark phase, it acquires a mutual exclusion
lock to prevent any mutator turning a weakly reachable object into
a strongly reachable one. Note that having acquired the lock, the
GC must check again that marking is complete (since a mutator
may have called get()) before it clears all reference types with
unmarked referents.

The original version of the Metronome real-time collector was
incremental, designed for use on a uniprocessor [4]; it did not
handle reference types. IBM’s first production JVM based on
Metronome [1] dealt properly with reference types but was also
incremental rather than concurrent.1 Metronome-TS (“Tax and
Spend”) [2] is incremental, concurrent and parallel. However, al-
though we believe that it may handle reference types properly in
an OTF manner,2 the paper is reticent on details, stating only: “the

1 David Grove, personal communication.
2 David Bacon, personal communication.

full Java language has constructs, such as finalization, weak and
soft references, and string interning, which interact in complex
ways with memory management. These constructs add phases to
the collection cycle: for example, reference clearing can only be
considered once marking is over and it is known which objects are
reachable.”

4. Formal Definition
The semantics of Java’s reference types are not described in the
Java Language Specification 1.7 [17], which instead refers (section
12.6.2) to the documentation for the package java.lang.ref; this
package includes the classes Reference, SoftReference, Weak-
Reference, PhantomReference and ReferenceQueue. Unsur-
prisingly, the English language descriptions of different levels of
reachability given in java.lang.ref are unclear and ambiguous.

4.1 Reachability
In this section, we formalise definitions of reachability and, in the
next, the actions required when the collector clears reference types.
First, let R be a relation on the sets of objects in the heap, Objects,
and slots in the roots, Roots, to objects in the heap,

R ⊆ P((Objects ∪ Roots)× Objects)

Let TC (x,R) be the transitive closure of a relation R from an
object or a slot in the roots, x,

TC (x,R) = {o ∈ Objects|xR∗o}

and expand TC pointwise:

TC (X,R) = {o ∈ Objects|∃x ∈ X.xR∗o}

We can now define the sets of objects that are strongly, softly,
weakly and phantom reachable, given the strong, soft, weak and
phantom reference relations StrR, SoftR, WeakR and PhantR.
The definition of the set of strongly reachable objects,
StrongReachable , is straightforward. Objects in this set must be
preserved by the GC.

StrongReachable = TC (Roots,StrR)

However, we believe the java.lang.ref definition of ‘softly
reachable’ is misleading: “An object is softly reachable if it is
not strongly reachable but can be reached by traversing a soft
reference.” It does not specify how many soft references we can
traverse and when but, worse, it does not require that there be no
weak or phantom references in the chain. Without clarifying the
kinds of reference that chains may not contain, the definitions in
the API are inconsistent. We believe the correct specification is,

SoftReachable = TC (Roots,StrR ∪ SoftR)

−StrongReachable

The API definition of ‘weakly reachable’ is similarly unsatis-
factory. Instead, we define

WeakReachable = TC (Roots,StrR ∪ SoftR ∪WeakR)

−StrongReachable − SoftReachable

Finally, we define the set of phantom reachable objects. To be
phantom reachable, an object must have been finalised, so we
assume a set of objects that have been finalised, Finalised .

PhantomReachable =

(TC (Roots,StrR∪SoftR∪WeakR∪PhantR)∩Finalised)
− StrongReachable − SoftReachable −WeakReachable

4.2 Clearing references
The GC clears all references to a weakly reachable object, and can
elect to clear references to a softly reachable object. If it decides to
do so, it must clear atomically all soft (resp. weak) references to the
object and all soft (weak) references to any other softly (weakly)
reachable objects from which that object is reachable through a
chain of strong (soft and strong) references. At the same time it
will declare all of the formerly weakly-reachable objects to be
finalizable and, at that time or later, enqueue those newly-cleared
references that are registered with reference queues.

Thus, if the GC decides to clear a soft reference to a softly
reachable object o, it must also clear all soft references to the set

softToClear(o) = {w ∈ SoftReachable |w StrR∗ o}
In Fig. 1, softToClear (O) is the set of all the normal objects.

The API encourages the GC to preserve some set P of re-
cently created or used soft references. To accommodate this,
we modify the definition of StrongReachable used to calculate
SoftReachable in order to retain objects in P :

StrongReachable ′ = TC (Roots ∪ P, StrR)

Thus, SoftReachable ′ represents the set of softly-reachable objects
that are referents of soft references we have to clear atomically.

In the case of weak references, the GC must clear all weak
references to the set

weakToClear(o) = {w ∈WeakReachable |
w (StrR ∪ SoftR)∗ o}

PhantomReference.get() always returns null so there is no
need to clear phantom references.

5. On-the-fly Reference Processing
In this section, we describe our design and implementation of
OTF processing of reference types. Java provides three types of
reference objects, and the GC must take care to process these in
the correct order, but we do not discuss that here. The focus of our
work is how to have an OTF GC deal with reference type objects —
determining reachability, clearing referents atomically — without
blocking the mutators. For simplicity of exposition, we concentrate
on how we treat weak references, but our implementation deals
properly with all types of reference object.

5.1 Concurrent GC
Concurrent GC algorithms require mutator and GC threads to share
a consistent view of the heap. This is typically achieved through
read or, more commonly, write barriers, which impose a small
overhead on mutator operations [25]. The synchronisation between
mutator and GC is best described through the well-known tricolour
abstraction [18]. In this abstraction, every object is assigned one of
three colours. White objects are unknown to the GC; grey objects
are known the GC but need to be visited again (e.g. to trace their
children); and black objects are known to the GC but need not be
visited again. Tracing live objects is complete as soon as the heap
contains no grey objects: at this point, all strongly reachable objects
have been marked black and, furthermore, if we were to ignore
reference types, any white object can be reclaimed by the GC.

Write barriers can be used to ensure consistency between muta-
tors and collectors by colouring objects. Insertion (or ‘incremental
update’) barriers3 shade grey a white target Dijkstra-style (or the
source, Steele-style) of a reference write, thus preserving the strong
tricolour invariant:

“There are no pointers from black objects to white objects.”
3 We use the terminology of [14].

NORMAL TRACING CLEARING

REPEAT

get() start tracing

no tracing workstart tracing

by collector
by collector (atomic)
by mutator (atomic)

Figure 2: Global reference state transitions.

Deletion (or ‘snapshot-at-the-beginning’) barriers shade grey the
old white target of a deleted reference, preserving the weak tri-
colour invariant:

“All white objects pointed to by a black object are reachable
from some grey object, either directly or through a chain of
white objects.”

Colours can be extended to mutators. The roots of a grey muta-
tor may refer to objects of any colour. Thus, the GC must rescan
its roots in order to terminate tracing. In an OTF setting, the GC
may have to stop a grey mutator repeatedly to scan its roots until is
has succeeded in scanning all mutator threads without having dis-
covered a new grey object. In contrast, once the roots of a black
mutator have been scanned by the collector, they do not need to be
scanned again. Insertion barriers preserve the strong invariant for
grey mutators but cannot support black mutators [18]. Instead, a
black mutator must use a deletion barrier.

5.2 Reference types and termination
The approaches described above are sufficient to ensure safe ter-
mination of a GC cycle in the absence of reference types. At the
conclusion of the trace, they guarantee that no mutator can reach
an unmarked, i.e. white, object through any path of strong refer-
ences. This is an essential requirement for the safe reclamation of
white objects. Note that the GC has traced only strong references
at this point; it does not trace the referents of other reference types.
However, reference types introduce a wrinkle: a mutator can ac-
quire a strong reference to a weakly reachable object by calling
get() on a weak reference that has yet to be cleared. There are sev-
eral known solutions to this problem in a concurrent collector, all
of which block mutators to one degree or another.

The simplest [1] is to stop the world while the collector traces
again in order to identify the weakToClear(o) set defined in
Sec. 4.1; weakly reachable white objects other than this set and
its transitive closure under the strong reference relation are marked
black. A global flag is then set to indicate that the references have
been cleared logically, and the mutators are resumed. Once the flag
is set and while the GC is concurrently and physically clearing
selected weak references, WeakReference.get() returns null if
the referent is white. Domani et al. [8] relax the requirement to
stop the world by having the GC acquire a lock that blocks until the
end of the reference processing phase any mutator that calls get()
while the GC is processing reference types.

However, in a fully OTF collector, we do not want to stop
any mutator, other than briefly to scan its roots. We describe our
solutions for (a) insertion barriers and (b) deletion barriers next.

5.3 Insertion barrier solution
Our insertion barrier solution is a natural extension to the GC’s
incremental update termination loop: we repeatedly scan roots and
trace until our work queue is empty. We add to the GC a global flag
that can take one of four states: NORMAL, TRACING, CLEANING and

collection() {
insertionBarrier ← ON;
transitiveClosureFromRoot();
while(true) {
refState ← TRACING;
handshake();
transitiveClosureNoRootScan();
scanRoot();
if(workQueue.empty() &&

CAS(refState, TRACING, CLEANING))
break;

}
insertionBarrier ← OFF;
clearReference();
refState ← NORMAL;
handshake();
reclaim();

}

Figure 3: Insertion barrier: collector

get() {
while(true) {
switch(refState) {
case NORMAL: case REPEAT:
return referent;

case TRACING:
if (referent=null||COLOR(referent))=WHITE)
return referent;

CAS(refState , TRACING, REPEAT);
break; /* retry */

case CLEANING:
if (referent=null||COLOR(referent))=WHITE)
return referent;

return null;
}

}
}

Figure 4: Insertion barrier: WeakReference.get()

REPEAT. The state transition diagram for this flag is shown in Fig. 2,
and pseudocode for the collector and for the WeakReference.get
method is shown in Figs. 3 and 4.

The system is in the NORMAL state when GC is not running. To
start a new GC cycle, the collector turns on the insertion barrier4

and traces strong references in the usual way before starting the
insertion barrier termination loop. The task of the termination loop
is to establish a consistent view, shared between mutators and
collectors, of the reachability of objects while the mutators are
running and possibly calling get().

The loop starts by setting the tracing state to TRACING and
handshaking with mutators to ensure that they have all observed
this transition. The collector then traces from the work queue of
grey objects (transitiveClosureNoRootScan) and scans the
roots again. If the work queue is empty, the GC attempts to set
the tracing state to CLEANING using an atomic compare and swap
operation (CAS). If this succeeds, tracing has terminated and the

4 We do not discuss here the subtleties on initiating a GC cycle for an OTF
collector; see [14] for details.

collection() {
insertionBarrier ← ON;
transitiveClosureFromRoot();
deletionBarrier ← ON;
handshake();
scanRoot();
insertionBarrier ← OFF;
while(true)
refState ← TRACING;
handshake();
transitiveClosureNoRootScan();
if(workQueue.empty() &&

CAS(refState , TRACING, CLEANING))
break;

}
deletionBarrier ← OFF;
clearReferences();
refState ← NORMAL;
handshake();
reclaim();

}

Figure 5: Deletion barrier: collector

collector can proceed to clearing weak objects’ referents. At this
point, we know precisely which objects to preserve and which weak
reference objects’ get methods should return null.

However, while the GC is TRACING, a mutator may call get()
on a weak reference object whose referent is white. In this case, the
mutator needs to force the collector to iterate its termination loop
again. We do so by adding a read barrier to get that atomically sets
the GC’s state to REPEAT; to avoid a race condition, the mutator
must also retry get’s loop. While the GC is not TRACING or has
to REPEAT, or if the referent is not white, get() simply returns the
referent. The read barrier does not need to shade the target of the
referent as we can defer this to the next root scan. However, once
the GC has transitioned to the CLEANING state, get() must return
null for any non-white, i.e. black, referent. In this way, it appears
to the mutator that all weak reference objects selected for clearing
are cleared atomically. Once the weak references have been cleared,
the GC resets its state to NORMAL, handshakes with the mutators and
then reclaims any garbage.

5.4 Deletion barrier solution
Measurements of reference processing with an insertion barrier
(Sec. 7) showed that the GC sometimes takes a long time to com-
plete due to the frequent use of WeakReference.get(). Perhaps
this is not surprising since insertion barrier mutators are grey and
so may need to be scanned several times to terminate, even in the
absence of reference types. In contrast, a black mutator supported
by a deletion barrier needs its stack to be scanned only once.

Our deletion barrier variant for reference object processing is
shown in Fig. 5 and 6. We run the Sapphire OTF collector with
its insertion barrier on as usual during the initial marking phase.
However, before we start to process reference types, we switch
on a deletion barrier, handshake with the mutators to ensure that
they notice, and scan the roots. Note that an OTF collector requires
both insertion and deletion barriers to be on while thread stacks
are scanned to blacken the mutators [7]. Once the roots have been
scanned, we can turn the insertion barrier off.

As with the insertion barrier, our deletion barrier scheme also
requires a termination loop but does not need to rescan mutator
roots. Instead, the get read barrier must shade the referent in both

get() {
while(true) {
switch(refState) {
case NORMAL:
return referent;

case REPEAT:
if (referent=null||COLOR(referent))=WHITE)
return referent;

COLOR(referent) ← GREY;
return referent;

case TRACING:
if (referent=null||COLOR(referent))=WHITE)
return referent;

if (CAS(refState , TRACING, REPEAT)) {
COLOR(referent) ← GREY;
return referent;

}
break; /* retry */

case CLEANING:
if (referent=null||COLOR(referent))=WHITE)
return referent;

return null;
}

}
}

Figure 6: Deletion barrier: WeakReference.get()

the REPEAT and the TRACING states as we cannot rely on a future
root scan to discover it.

5.5 Soft and Phantom references
Phantom reference objects are straightforward to process in an
OTF manner since there is no interaction between collector and
mutator: PantomReference.get() always returns null. However,
the API encourages the GC to retain recently allocated or used soft
reference objects. We treat these by marking them and their strong
transitive closures black. We treat any other soft reference objects
in the same way as weak reference objects.

6. Model Checking
We verified our framework for OTF reference processing using the
SPIN model checker [11]. SPIN exhaustively checks all possible
interleavings of processes. Since we deal with soft references as if
they are strong or weak references depending on memory pressure,
we focused on weak references. We verified the following proper-
ties:

P1 (Safety) A mutator will never see a reclaimed object.
P2 (Consistency) Once a get() method called on a reference object

returns null, a mutator will never see the referent of that object.

These properties are from the mutator’s view because there can
be a variety of implementations of ‘clearing’. In our implementa-
tion, logically cleared references appeared cleared to mutator. Prop-
erty P1 is required regardless of the existence of reference objects.
But P1 also requires that, if a mutator loads a referent of a reference
object, the referent has not been reclaimed. Property P2 implies the
atomicity that the API definition requires. Assume that a weak ref-
erence to an object o is cleared in spite of retaining another weak
reference to an object w ∈ weakToClear (o). Since the weak ref-
erence is cleared, a mutator may see that get() returns null. But,

root

reference objects

normal objectsx

r

r

r

o

o

o

Figure 7: The model

while(true) {
int i = random.nextInt(5);
switch (i) {
case 0: x = vr0.get(); break;
case 1: x = vr1.get(); break;
case 2: x = vr2.get(); break;
case 3: if (x)= null) x = x.next; break;
case 4: x = null; break;

}
}

Figure 8: Simple mutator

since o is weakly-reachable through w, the mutator may also see o,
contrary to P2.!

Since bounded model checking does not deal with infinite state,
we checked the properties for the limited model shown in Fig. 7.
This model has three pairs of reference and normal objects, namely
r0, r1, r2 for references and o0, o1, o2 for the corresponding nor-
mal objects. These normal objects are linked in a list, but there are
no other strong references to them. We assumed that all reference
objects remain directly strongly reachable from the root and that
the mutator can always call get() methods on them.

Fig. 8 shows the mutator’s pseudocode: vri is a local variable
whose value is a reference object ri, and x is another local variable.
The mutator repeatedly and arbitrarily calls a get() method to load
the referent to x, loads the ‘next’ object of x, or clears x. Since we
focus on the behaviour of references, the mutator does not write to
any object. Thus, our model does not have write barriers.

Fig. 9 shows the model of the get() method on the reference
object ri, for a collector using an insertion barrier. This model is
faithful to Fig. 4. The return value is passed to the caller through
the parameter ret . mark[i] and CLEARED[i] represent the colour of
oi and whether ri has been cleared or not, respectively. When get()
returns oi, it sets i to ret . In order to check P2, the model also puts
i and ret in global variables getRef_arg and getRef_ret.

For the collector side, our model is faithful to the pseudocode
in Fig. 3 and 5. At the end of a cycle, the collector reclaims white
objects by calling reclaim(): we introduce a fourth object state
RECLAIMED. Our model of reclaim() reclaims white objects and
reverts the black objects to white. P1 and P2 can be interpreted as:

P1 !((x)= NULL) =⇒ (mark[x])= RECLAIMED))

P2 !(RETNULLi =⇒ ¬♦(x = i)) (i = 1, 2, 3)

where RETNULLi ≡(getRef_arg= i)∧ (getRef_ret= NULL).
We have model checked these properties with models both for

collectors with an insertion barrier and a deletion barrier. We also
tried to model check the termination property.

P3 (Termination) GC eventually terminates.

inline getRef(i, ret) {
do::(refState == NORMAL ||

refState == REPEAT) ->
if::CLEARED[i] -> ret = NULL

::else -> ret = i
fi;
break

::(refState == TRACING) ->
if::(!CLEARED[i] && (mark[i] == WHITE)) ->

CAS(refState, TRACING, REPEAT)
/* continue */

::(!CLEARED[i] && (mark[i] != WHITE)) ->
ret = i;
break

::else ->
ret = NULL;
break

fi
::(refState == CLEANING) ->
if::(!CLEARED[i] && (mark[i] == WHITE)) ->

ret = NULL
::(!CLEARED[i] && (mark[i] != WHITE)) ->
ret = i

::else -> ret = NULL
fi;
break

od;
d_step { /* d_step is an atomic action */

getRef_arg = i;
getRef_ret = ret

};
}

Figure 9: Promela model of a Reference.get() method with an
insertion barrier

However, we found that, with an insertion barrier, the mutator
can continually prevent the collector from breaking out of the
termination loop, even if we assume weakly fair scheduling. The
reason for this is that, while the collector is tracing or checking
if the work queue is empty, a mutator has a chance to load a
white referent to a local variable x and then clear x. The mutator
changes refState to REPEAT when it loads a reference with get(),
thus forcing the collector to trace again. However, if the mutator
has cleared x, the collector will not find, and hence shade, a new
white referent: the number of white objects is not reduced and so
no progress is made. Fortunately, the deletion barrier version does
make progress, since get() shades white objects grey.

7. Evaluation
We built our OTF reference processing framework in Jikes RVM
and evaluated it with our new implementation of the Sapphire col-
lector [12], running DaCapo benchmarks that would run (10 from
the 2006 and 6 from the 2009 suite). All measurements were per-
formed on a 4-core, 3.4 GHz Intel Core i7-4770 CPU running
Ubuntu Linux 12.04.4.

7.1 Reference Type Usage
To understand the behaviour of the benchmarks, we measured how
often reference types were used. Fig. 10 shows the number of calls
of a get() method per second in each 10 ms time window; the x-
axis is the normalised elapsed time of the program.

a

C
al
ls
to

R
e
f
e
r
e
n
c
e
.
g
e
t
()

p
er

se
co
nd
×
10

6

 0

 1

 2
T = 2152ms

antlr6

 0

 1

 2
T = 9453ms

bloat6

 0

 1

 2
T = 45954ms

eclipse6

 0

 1

 2
T = 1512ms

fop6

 0

 1

 2
T = 4427ms

hsqldb6

 0

 1

 2
T = 13639

ms

jython6

 0

 1

 2
T = 9355ms

luindex6

 0

 1

 2
T = 4827ms

lusearch6

 0

 1

 2
T = 5569ms

pmd6

 0

 1

 2
T = 3502ms

xalan6

 0

 1

 2
T = 5112ms

avrora9

 0

 1

 2
T = 2651ms

luindex9

 0

 1

 2
T = 4139ms

lusearch9

 0

 1

 2
T = 3005ms

pmd9

 0

 1

 2
T = 4480ms

sunflow9

 0

 1

 2
T = 3790ms

xalan9

Figure 10: Frequency of calls to get() in DaCapo (10 ms quanta); the x-axis is the normalised entire execution time, T.

Contrary to our expectations, some programs used reference
types heavily (more than 1 million times per second), but this varies
between programs. Most showed a small peak at the beginning of
execution; we found that these were due to the Jikes RVM class
loader. Often programs made little further use of reference types but
jython6 made heavy use of them in particular phases. In contrast,
lusearch6, lusearch9, xalan6 and xalan9 made substantial use of
reference types for much of their execution. We conclude that

LESSON 1. An OTF GC must not ignore reference types.

7.2 Reference Processing Time: blocking schemes
Some implementations block mutator threads during reference
type processing. To measure how long a mutator thread would be
blocked if reference types were not handled OTF, we implemented
two additional variants of reference type processing.

STW The collector stops all mutators during reference processing
(tracing to determine reachability and clearing references).

lock The collector acquires a lock to block any mutator that calls
get() during reference processing. For this variant, we experi-
mented with both insertion and deletion barriers.

To stress the reference type processing mechanisms, we config-
ured Sapphire to perform back-to-back collection cycles, initiating
the next as soon as the previous one had completed, using two col-
lector threads. To avoid having any GC cycle fall back from OTF to

stop-the-world collection because a mutator is starved of memory,
we ran each benchmark in a 1 GB heap.We do not pretend that this
is a suitable configuration for normal use. Despite this, we observed
starvation in an execution of lusearch6 and lusearch9 due to their
high allocation rate. We ignored any pauses not due to reference
processing.

Fig. 11 shows frequency distribution histograms of reference
processing pauses, using 3 ms bins, in jython6 and DaCapo 2009
benchmarks (luindex9, whose result was similar to avrora9, is
omitted to save space), using ‘compiler replay’ (methods pre-
compiled based on an off-line profile [9], measurements started
on benchmark rather than VM startup); each benchmark was ex-
ecuted three times (there was little variation between executions).
Note that the STW histogram shows the distribution of times taken
to complete the entire reference processing phase, whereas the lock
histograms show the distribution of times for which a mutator was
blocked because it called get() in a reference processing phase.

Unsurprisingly, stop-the-world reference processing consis-
tently stopped mutators for only a limited time. Most pauses were
less than 6 ms (maximum 9 ms). In contrast, the locking approach
sometimes stopped mutators for up to 12 ms in lusearch9 and xal-
an9, regardless of the barrier used. We also measured reference pro-
cessing time without compiler replay and taking VM startup into
account. Broadly, the distributions were similar, although pauses
taking VM startup into account were longer, up to 24 ms in xalan9
(Fig. 12).

F
re
qu

en
cy

(%
) 0.1

 1

 10

 100

 0 6 12 18 24 30

STW
lock ins
lock del

jython6 pause times (ms)

 0.1

 1

 10

 100

 0 6 12 18 24 30

STW
lock ins
lock del

avrora9 pause times (ms)

 0.1

 1

 10

 100

 0 6 12 18 24 30

STW
lock ins
lock del

lusearch9 pause times (ms)

 0.1

 1

 10

 100

 0 6 12 18 24 30

STW
lock ins
lock del

pmd9 pause times (ms)

 0.1

 1

 10

 100

 0 6 12 18 24 30

STW
lock ins
lock del

sunflow9 pause times (ms)

 0.1

 1

 10

 100

 0 6 12 18 24 30

STW
lock ins
lock del

xalan9 pause times (ms)

Figure 11: Frequency of pause times (3 ms bins) in jython6 and DaCapo 2009 (compiler replay, measurement starts with benchmark). Note
that the y-axis is logarithmic.

F
re
qu

en
cy

(%
) 0.1

 1

 10

 100

 0 6 12 18 24 30

STW
lock ins
lock del

jython6 pause times (ms)

 0.1

 1

 10

 100

 0 6 12 18 24 30

STW
lock ins
lock del

avrora9 pause times (ms)

 0.1

 1

 10

 100

 0 6 12 18 24 30

STW
lock ins
lock del

lusearch9 pause times (ms)

 0.1

 1

 10

 100

 0 6 12 18 24 30

STW
lock ins
lock del

pmd9 pause times (ms)

 0.1

 1

 10

 100

 0 6 12 18 24 30

STW
lock ins
lock del

sunflow9 pause times (ms)

 0.1

 1

 10

 100

 0 6 12 18 24 30

STW
lock ins
lock del

xalan9 pause times (ms)

Figure 12: Frequency of pause times (3 ms bins) in jython6 and DaCapo 2009 (without compiler replay, measurement starts with VM). Note
that the y-axis is logarithmic.

By processing references in stop-the-world manner, the collec-
tor can use all resources available, and so reference processing
completes promptly. In contrast, if we allow mutators to run as long
as they do not use references, the collector may run more slowly.
Handshakes with the mutators will also delay the collectors. Fur-
thermore, write barriers may potentially force collectors to trace
again though we did not observe this. All of this extends reference
processing time. Thus, the locking approach may block mutators
for longer than the stop-the-world approach. In contrast, our OTF
reference processing framework does not pause mutators other than
to scan an individual mutator’s roots.

7.3 OTF Reference Processing Time
Mutator calls to get() may force an OTF collector to trace again
several times, potentially endlessly (Sec. 6). However, in practice
reference processing terminates in a short time. Tab. 1 shows how

many times the GC was forced to re-trace, for our different vari-
ants of reference processing, using compiler replay. In our mea-
surements, we never observed more than one iteration for the STW
and lock approaches, although this is theoretically possible.

With OTF, we observed multiple re-tracings, particularly and
unsurprisingly using an insertion barrier. Most benchmarks need
to re-trace more than 10 times and lusearch9, which has many
mutator threads that allocate at a high rate, needed 62 iterations.
One reason for this behaviour is that insertion barrier collectors
scan all the mutators even though there may be only few objects
to be traced. Scanning mutators takes long time, which increases
the chance of mutators forcing the collectors to trace again. In
contrast, processing with deletion barriers tended to converge in
at most 3 iterations.

Fig. 13 shows the distribution of times for OTF reference pro-
cessing phases (using compiler replay); the times for STW are

F
re
qu

en
cy

(%
)

 0.1

 1

 10

 100

 0 6 12 18 24 30

STW
lock ins
lock del

 0.1

 1

 10

 100

 0 6 12 18 24 30

OTF ins
OTF del

jython6 reference processing times (ms)

 0.1

 1

 10

 100

 0 6 12 18 24 30

STW
lock ins
lock del

 0.1

 1

 10

 100

 0 6 12 18 24 30

OTF ins
OTF del

avrora9 reference processing times (ms)

 0.1

 1

 10

 100

 0 30 60 90 120 150 180 210 240 270 300

STW
lock ins
lock del

 0.1

 1

 10

 100

 0 30 60 90 120 150 180 210 240 270 300

OTF ins
OTF del

lusearch9 reference processing times (ms)

 0.1

 1

 10

 100

 0 6 12 18 24 30

STW
lock ins
lock del

 0.1

 1

 10

 100

 0 6 12 18 24 30

OTF ins
OTF del

pmd9 reference processing times (ms)

 0.1

 1

 10

 100

 0 6 12 18 24 30 36 42 48

STW
lock ins
lock del

 0.1

 1

 10

 100

 0 6 12 18 24 30 36 42 48

OTF ins
OTF del

sunflow9 reference processing times (ms)

 0.1

 1

 10

 100

 0 6 12 18 24 30

STW
lock ins
lock del

 0.1

 1

 10

 100

 0 6 12 18 24 30

OTF ins
OTF del

xalan9 reference processing times (ms)

Figure 13: Reference processing time (3 ms bins) in jython6 and DaCapo 2009 (compiler replay, measurement starts with benchmark)

Table 1: Maximum iteration counts (it.) for termination, benchmark execution times (mean t ms. and standard deviation σ over 10 runs, best
in bold), number of threads that could be runnable without the reference lock (act) and number of threads blocked by the lock (blk) using
compiler replay (measurement starts with benchmark).

STW lock ins lock del OTF ins OTF del
it t σ it t σ act blk it t σ act blk it t σ it t σ

jython6 1 7775 70 1 7334 50 1.98 0.37 1 9881 63 1.98 0.34 2 7159 71 1 7047 66
avrora9 1 5642 199 1 5253 81 3.74 0.23 1 5238 56 3.79 0.19 12 5311 54 2 5314 45
luindex9 1 2404 50 1 2343 58 2.00 0.60 1 2372 155 2.00 0.53 13 2209 47 1 2270 37
lusearch9 1 4933 46 1 4869 32 3.42 2.06 1 4891 49 3.41 2.00 62 5328 71 2 4658 103
pmd9 1 4417 69 1 4216 146 3.35 0.91 1 4333 50 3.34 0.79 13 4281 66 3 4581 63
sunflow9 1 5270 246 1 4968 354 5.31 0.26 1 4793 39 5.26 0.22 3 4889 341 1 4782 85
xalan9 1 5164 48 1 5039 42 3.29 1.88 1 4850 37 3.19 1.71 2 4877 50 1 4746 59

those of Fig. 11. The processing times reflect the number of time
the GC has to re-trace; reference processing with insertion barriers
shows long tails especially for lusearch9. In contrast, reference pro-
cessing with deletion barriers finished in under 20 ms except for a
small fraction of collections in sunflow9; total reference processing
time was always within three times that of the lock approach.

LESSON 2. OTF reference processing phases are longer in the
worst case, but with deletion barriers, not by much.

Even with insertion barriers, they are likely to be acceptable. With
OTF processing, mutators continue to run, provided they do not ex-
haust memory (admittedly this risk is increased with a longer ref-
erence processing time), in sharp contrast to the other approaches.
Tab. 1 shows the overall execution time in milliseconds (arithmetic
mean and standard deviation) of each benchmark. We note that in
five out of seven cases OTF reference processing led to the shortest
execution times, though often the difference was small. The lock-
ing approach blocks only those mutators that call get() during the
reference processing phase. For this approach, Tab. 1 also shows
the average number of active (runnable) threads including those
blocked on the reference lock (‘act’), and the average number of
threads blocked on this lock (‘blk’). Of course, all the benchmarks
have more threads than ‘act’ but some of these are blocked for other
reasons. Because we have four cores (eight hardware threads) and
two GC threads, we note that if act − blk < 2(6) then some cores
(hardware threads) would be idle.

LESSON 3. Overall execution time is not increased significantly by
processing references OTF, and is often reduced.

However, Sapphire executes other GC phases OTF, trading pause
time for increased overall execution time. The differences due to
the way reference types are processed are small in comparison.

8. Conclusion
Reference types are frequently used in a significant number of
programs. Our novel reference processing framework for fully OTF
collectors works most efficiently with deletion barriers, but also
supports with insertion barriers. We process reference types OTF
while mutators are running in less than three times the time that
previous approaches take while mutators are blocked. Furthermore,
OTF reference processing typically reduces overall execution time.

Acknowledgments
We are grateful to Rick Hudson and Intel for a license to implement
Sapphire in Jikes RVM, and Laurence Hellyer for his work on Sap-
phire. We are also grateful for the support of the JSPS KAKENHI
Grant Number 25330080, the EPSRC through grant EP/H026975/1
and Google’s Summer of Code.

References
[1] J. Auerbach, D. F. Bacon, B. Blainey, P. Cheng, M. Dawson,

M. Fulton, D. Grove, D. Hart, and M. Stoodley. Design and
implementation of a comprehensive real-time Java virtual machine. In
7th ACM & IEEE International Conference on Embedded Software,
pages 249–258, Salzburg, Austria, Sept. 2007. ACM Press.

[2] J. Auerbach, D. F. Bacon, P. Cheng, D. Grove, B. Biron, C. Gracie,
B. McCloskey, A. Micic, and R. Sciampacone. Tax-and-spend:
Democratic scheduling for real-time garbage collection. In 8th ACM
International Conference on Embedded Software, pages 245–254,
Atlanta, GA, 2008. ACM Press.

[3] H. Azatchi, Y. Levanoni, H. Paz, and E. Petrank. An on-the-fly
mark and sweep garbage collector based on sliding views. In ACM
SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, ACM SIGPLAN Notices 38(11), pages
269–281, Anaheim, CA, Nov. 2003. ACM Press.

[4] D. F. Bacon, P. Cheng, and V. Rajan. A real-time garbage collector
with low overhead and consistent utilization. In 30th Annual
ACM Symposium on Principles of Programming Languages, ACM
SIGPLAN Notices 38(1), pages 285–298, New Orleans, LA, Jan.
2003. ACM Press.

[5] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss,
A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage,
and B. Wiedermann. The DaCapo benchmarks: Java benchmarking
development and analysis. In ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, ACM
SIGPLAN Notices 41(10), pages 169–190, Portland, OR, Oct. 2006.
ACM Press.

[6] C. Click, G. Tene, and M. Wolf. The Pauseless GC algorithm.
In M. Hind and J. Vitek, editors, 1st ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, pages
46–56, Chicago, IL, June 2005. ACM Press.

[7] D. Doligez and G. Gonthier. Portable, unobtrusive garbage collection
for multiprocessor systems. In 21st Annual ACM Symposium on
Principles of Programming Languages, pages 70–83, Portland, OR,
Jan. 1994. ACM Press.

[8] T. Domani, E. K. Kolodner, E. Lewis, E. E. Salant, K. Barabash,
I. Lahan, E. Petrank, I. Yanover, and Y. Levanoni. Implementing an on-
the-fly garbage collector for Java. In C. Chambers and A. L. Hosking,
editors, 2nd International Symposium on Memory Management, ACM
SIGPLAN Notices 36(1), pages 155–166, Minneapolis, MN, Oct.
2000. ACM Press.

[9] A. Georges, L. Eeckhout, and D. Buytaert. Java performance
evaluation through rigorous replay compilation. In ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, ACM SIGPLAN Notices 43(10), pages 367–384,
Nashville, TN, Oct. 2008. ACM Press.

[10] R. Henriksson. Scheduling Garbage Collection in Embedded Systems.
PhD thesis, Lund Institute of Technology, July 1998.

[11] G. J. Holzmann. The SPIN Model Checker: Primer and Reference
Manual. Addison-Wesley, 2004.

[12] R. L. Hudson and J. E. B. Moss. Sapphire: Copying garbage collection
without stopping the world. Concurrency and Computation: Practice
and Experience, 15(3–5):223–261, 2003.

[13] B. Iyengar, G. Tene, M. Wolf, and E. Gehringer. The Collie: a wait-
free compacting collector. In McKinley and Vechev, editors, 11th
International Symposium on Memory Management, pages 85–96,
China, June 2012. ACM Press.

[14] R. Jones, A. Hosking, and E. Moss. The Garbage Collection
Handbook: The Art of Automatic Memory Management. CRC Applied
Algorithms and Data Structures. Chapman & Hall, Aug. 2012.

[15] T. Kalibera. Replicating real-time garbage collector for Java. In
7th International Workshop on Java Technologies for Real-time and
Embedded Systems (JTRES), pages 100–109, Madrid, Spain, Sept.
2009. ACM Press.

[16] B. McCloskey, D. F. Bacon, P. Cheng, and D. Grove. Staccato: A
parallel and concurrent real-time compacting garbage collector for
multiprocessors. IBM Research Report RC24505, IBM Research,
2008.

[17] Oracle Corp. Java Platform, Standard Edition 7: API Specification,
2013.

[18] P. P. Pirinen. Barrier techniques for incremental tracing. In S. L.
Peyton Jones and R. Jones, editors, 1st International Symposium on
Memory Management, ACM SIGPLAN Notices 34(3), pages 20–25,
Vancouver, Canada, Oct. 1998. ACM Press.

[19] F. Pizlo, D. Frampton, E. Petrank, and B. Steensgard. Stopless:
A real-time garbage collector for multiprocessors. In G. Morrisett
and M. Sagiv, editors, 6th International Symposium on Memory
Management, pages 159–172, Montréal, Canada, Oct. 2007. ACM
Press.

[20] F. Pizlo, A. L. Hosking, and J. Vitek. Hierarchical real-time garbage
collection. In ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems, ACM SIGPLAN Notices
42(7), pages 123–133, San Diego, CA, June 2007. ACM Press.

[21] F. Pizlo, E. Petrank, and B. Steensgaard. A study of concurrent
real-time garbage collectors. In R. Gupta and S. P. Amarasinghe,
editors, ACM SIGPLAN Conference on Programming Language
Design and Implementation, ACM SIGPLAN Notices 43(6), pages
33–44, Tucson, AZ, June 2008. ACM Press.

[22] F. Pizlo, L. Ziarek, P. Maj, A. L. Hosking, E. Blanton, and J. Vitek.
Schism: Fragmentation-tolerant real-time garbage collection. In
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ACM SIGPLAN Notices 45(6), pages 146–159,
Toronto, Canada, June 2010. ACM Press.

[23] M. Schoeberl and W. Puffitsch. Non-blocking object copy for real-
time garbage collection. In 6th International Workshop on Java
Technologies for Real-time and Embedded Systems (JTRES), pages
77–84, Santa Clara, CA, Sept. 2008. ACM Press.

[24] G. Tene, B. Iyengar, and M. Wolf. C4: The continuously concurrent
compacting collector. In H. Boehm and D. Bacon, editors, 10th
International Symposium on Memory Management, pages 79–88, San
Jose, CA, June 2011. ACM Press.

[25] X. Yang, S. M. Blackburn, D. Frampton, and A. L. Hosking. Barriers
reconsidered, friendlier still! In McKinley and Vechev, editors, 11th
International Symposium on Memory Management, pages 37–48,
China, June 2012. ACM Press.

