
UKC Computing TR 14{97Ensuring the Productivity ofIn�nite Structures1Alastair Telford2 David TurnerSeptember 1997Revised March 1998

1This work was supported by the UK Engineering and Physical Sciences ResearchCouncil grant number GR/L03279. We would also like to thank members of theTheoretical Computer Science group at the University of Kent at Canterbury fortheir discussions in connection with this work, particularly Andy King, Erik Poll andSimon Thompson. Eduardo Gim�enez, of INRIA, France, has also been most helpfulin explaining his ideas and how they have been implemented within the Coq system.2E-Mail : A.J.Telford@ukc.ac.uk. Tel : +44 1227 827590. Fax : +44 1227 762811.ESFP webpage: http://www.cs.ukc.ac.uk/people/staff/ajt/ESFP/

AbstractIt is our aim to develop an elementary strong functional programming (ESFP)system. To be useful, ESFP should include structures such as streams which canbe computationally unwound in�nitely often. We describe a syntactic analysisto ensure that in�nitely proceeding structures, which we shall term codata, areproductive. This analysis is an extension of the check for guardedness that hasbeen used with de�nitions over coinductive types in Martin-L�of's type theoryand in the calculus of constructions. Our analysis is presented as a form ofabstract interpretation that allows a wider syntactic class of corecursive de�ni-tions to be recognised as productive than in previous work. Thus programmerswill have fewer restrictions on their use of in�nite streams within a stronglynormalizing functional language.

Contents1 Introduction 12 In�nite Objects 22.1 Functional Programming and In�nite Data 32.2 Guarded In�nite Objects . 32.3 In�nite Objects in ESFP . 43 Guardedness Analysis 63.1 The Abstract Guardedness Domain, A 63.2 Guardedness Functions . 73.2.1 Commentary on the G Operator De�nition 84 Examples of Guardedness Analysis 114.1 Detecting Non-Productive De�nitions 114.2 The Hamming Function . 124.2.1 Analysis of Guardedness of comap and comerge 134.2.2 Analysis of Auxiliary Guardedness Functions 134.2.3 Analysis of the Main Function, ham 144.3 The Fibonacci List . 154.3.1 Analysis of �b . 155 Proof of Soundness 165.1 Translation of the Source Language 165.2 Guardedness Levels of Substitutions 185.3 Stability . 225.4 Stability of Entirely Guarded Expressions 255.5 Proofs of the Main Results . 286 Properties of Guardedness Analysis 296.1 Completeness of the Analysis . 296.2 Comparison with Hughes, Pareto and Sabry Type Inference . . . 316.3 Limitations of the Analysis . 326.3.1 Limitations due to the Abstract Interpretation 326.3.2 Limitations due to Guardedness 336.4 Complexity of the Analysis . 337 Conclusions and Future Work 34References 36List of Tables1 Rules for codata. 42 De�nition of the G operator. 83 De�nition of the F operator. 94 De�nition of the GC operator. 30

iv UKC Computing TR 14{97List of Figures1 De�nition of the Hamming function. 122 De�nition of the Fibonacci list function. 153 The Suspend & Unwind Monadic Combinators. 174 The Translation of Source Applications, Fa. 17

Ensuring Productivity 11 IntroductionWe aim to develop an Elementary Strong Functional Programming (ESFP) sys-tem. That is, we wish to exhibit a language that has the strong normalization(every program terminates) and Church-Rosser (reduction strategies converge)properties whilst avoiding the complexities (such as dependent types, compu-tationally irrelevant proof objects) of Martin-L�of's type theory [18, 26]. Wewould like our language to have a type system straightforwardly based on thatof Hindley-Milner [11, 21] and to be similar in usage to a language such asMiranda1 [28]. The case for such a language is set out in [31] | brie
y, webelieve that such a language will allow direct equational reasoning whilst beingsu�ciently elementary to be used for programming at the undergraduate level.For such a language to be generally useful, it must be capable of pro-gramming input/output and, more generally, interprocess communication. Themethods of doing this in Miranda, Haskell [27] etc., typically involve in�nitelists (or streams), or other non-well-founded structures.However, in languages such as Miranda, the presence of in�nite objects de-pends upon the use of the lazy evaluation strategy in that terms are only evalu-ated as far as is necessary to obtain the result of a program. In those languages,in�nite objects are syntactically undi�erentiated from their �nite counterpartsand, indeed, are of the same type. For example, in Miranda, the lists [1] and[1..] both have the type [num], despite the fact that the latter is an in�nitelist (of all the positive integers).It is apparent that such structures pose problems if we wish to construct alanguage that is strongly Church-Rosser. Firstly, how can we ensure that ourprograms reach a normal form? Secondly, how do we do so without relying on aparticular evaluation method, as is the case with Miranda etc.? Finally, shouldin�nite objects have the same type as their �nite counterparts?We have argued in [31] that in�nite structures, which we call codata, shouldbe kept in a separate class of types from the �nite ones (data), re
ecting the factthat they are duals of one another, semantically. We have formulated rules forcodata in an elementary term language in [30]. These rules ensure that programsinvolving codata and corecursion will be strongly Church-Rosser. However, wewould like the ESFP source language to permit more free-wheeling de�nitions,which it should then be possible to translate into the intermediate language. Wenow need a compile-time check to ensure that these de�nitions are well-formedin the sense that the extraction of any piece of data from the codata structurewill terminate. This means that, for example, the heads of in�nite lists mustbe well-de�ned. Or, to put it another way, there is a continuous \
ow" of datafrom the stream. Coquand [2] in Type Theory, and Gim�enez [8], in the Calculusof (Inductive) Constructions, have used the idea of guardedness, �rst proposedby Milner in the area of process algebras [22], to produce methods for checkingwhether corecursive terms are normalizable.We argue that their notion of guardedness is too restrictive for programmingpractice in that it precludes de�nitions such as:evens def= 2} (comap (+2) evens) (1)Here, } is the coconstructor for in�nite lists and comap is the mapping function1Miranda is a trademark of Research Software Limited.

2 UKC Computing TR 14{97over in�nite lists. Clearly, we can extract the nth positive even number fromsuch a list, yet evens is unguarded according to the de�nitions used by Coquandand Gim�enez. Their notions of guardedness would appear to be su�cient fortheir purpose of reasoning about in�nite objects, particularly within the Coqsystem [1], but are too limiting for programming in practice.We have extended the idea of guardedness so that applications to the recur-sive call will not necessarily mean that they will be rejected as being ill-de�ned.To do this we have formulated the guardedness detection algorithm as an ab-stract interpretation. In particular, de�nitions of the form of (1) will be detectedas being guarded. Conversely, our analysis is sound in that it will disallow def-initions such as: bh def= 1} (cotl bh)Here cotl is the tail function over in�nite lists.Hughes, Pareto and Sabry have developed a type inference system [15] thatcan be used to determine whether corecursive de�nitions are productive. Weshall exhibit an example of a productive de�nition that cannot be accepted bytheir system but which is accepted by ours.Whilst it is undecidable whether a corecursive function is well-de�ned theextension to guardedness that we present here makes programming with in�niteobjects more straightforward in a strongly normalizing functional language.Overview of this Paper. In Section 2 we give a summary of the theory be-hind in�nite objects in strongly normalizing systems. We then show in Section 3how the idea of guardedness can be extended by using an abstract interpreta-tion. Examples of how the analysis detects whether a corecursive function iswell-de�ned are given in Section 4. We shall give examples of how our analysiscan accept productive de�nitions that are rejected by the Coquand/Gim�enezguardedness analysis and also by the type inference system of Hughes, Paretoand Sabry. This is followed in Section 5 by a proof that our analysis is sound.We complement this in Section 6 where we demonstrate that our analysis iscomplete with respect to that of Coquand. We also examine other propertiesof our analysis and discuss its advantages over the Hughes, Pareto and Sabrytype inference system. Finally, in Section 7, we present our conclusions andsuggestions for future work.2 In�nite ObjectsIn this section we summarise how in�nite objects have been represented infunctional programming languages such as Miranda and Haskell and in systemsbased upon type theory. In general, in�nite objects may be seen as the greatest�xed points of monotonic type operators. This, together with more details onthe relationship between data and codata can be found in [24]. Here, however,we seek a concrete form of in�nite data structures which does not rely uponthe greatest �xpoint model and, moreover, does not rely on either a particularevaluation strategy or a type-theoretic proof system to have a sound semantics.We describe how we propose to represent in�nite objects in an elementary strongfunctional language and why this requires the automatic syntactic check uponin�nite recursive de�nitions that we present in the following sections.

Ensuring Productivity 32.1 Functional Programming and In�nite DataFunctional programming languages, such as Miranda, have exploited the ideaof lazy evaluation to introduce the idea of in�nite data structures. Hughes haspointed out the programming advantages of in�nite lists in [14]. The disadvan-tages of these methods is that they rely upon a �xed evaluation strategy. InMiranda, de�nitions such asones = 1 : onesonly produce useful results with a lazy evaluation strategy (i.e. based upon call-by-name): a strict evaluation strategy (based upon call-by-value) would producean unde�ned (\bottom") result for an evaluation of such a de�nition. There isalso no guarantee that the streams will generate an arbitrary number of objects.For example, the following is a legal de�nition in Miranda:ones' = 1 : tl ones'However, it is only possible to evaluate the head of this list, whilst the rest isunde�ned. We have argued, in [31], that the existence of such partial objectsgreatly complicates the process of reasoning about in�nite objects.2.2 Guarded In�nite ObjectsCoquand [2] in Type Theory and Gim�enez [8] in the Calculus of Constructionsproduced syntactic checks upon the de�nitions of in�nite data structures whichthey called guardedness. (Gim�enez makes additional restrictions in order tocope with di�culties arising from impredicative types in the Calculus of Con-structions.) The idea is similar to that formulated by Milner [22] for processalgebras in that a check is made that recursive calls only occur beneath con-structors. However, the work of both Coquand and Gim�enez is intended onlyto produce de�nitions of in�nite structures that can be used within a proofsystem such as Coq [1] in order to prove coinductive propositions i.e. types ofin�nite structures. Their de�nitions of guardedness are, however, insu�cientfor a practical programming system. For example, we would not be allowed thefollowing:ints = 1 : map (+1) intsThis is due to the application of map to ints.Hughes, Pareto and Sabry have developed a type inference system, not baseddirectly on the idea of guardedness, for determining whether de�nitions are pro-ductive. In Section 4.3 we give a productive de�nition of the list of Fibonaccinumbers which is rejected by their system but which is accepted by the guard-edness analysis that we de�ne in Section 3. In Section 6.2 we give reasons forwhy we believe that our system has advantages over theirs.Conversely, the reasoning system of Sijtsma [25], being purely semantics-based, is not implementable as an automatic means of detecting whether acodata de�nition is productive.

4 UKC Computing TR 14{97Introduction rule s :: S; fy :: S; x :: S)" T ` X :: TgFix (y = s)x:X ::" TSide condition: X must be purely introductory with regard to x.Write Fix y x:X for �y0 :Fix (y = y0)x:XElimination rule a ::" A ` # a :: AComputation rule# (Fix (y = s)x:X)! X [s=y; (Fix y x:X)=x]Normal form Fix s0 F 0 ::" Twhere s0 and F 0 are both normal forms.Table 1: Rules for codata.2.3 In�nite Objects in ESFPIn ESFP, unlike in functional programming languages such as Haskell, we sep-arate �nite structures (data) from their in�nite counterparts (codata). This isdue to the fact that we cannot rely upon a lazy evaluation strategy to pro-vide a computationally useful semantics for in�nite structures. Indeed we seekreduction transparency. It is claimed that pure functional languages have theadvantage of referential transparency over their imperative counterparts in thatthe meaning of expressions is independent of context. Reduction transparencygoes further in that the semantics of expressions is independent of reductionorder.As in Coquand's approach for type theory [2], we have maintained the pivotalrole of constructors in introducing codata. Thus, although we have separatedcodata from data, we have maintained similar syntactic forms to that of Haskelland Miranda. For example, the following is the type of in�nite lists:codata Colist a def= a}Colist aFunctions upon codata use corecursion: that is they recurse on their resultsrather than their inputs.We need to check that an ESFP program will type check according to a setof rules that also serve to de�ne an intermediate term language into which thetop-level language may be translated. These rules, given in natural deductionstyle, are shown in Table 1 and were �rst given in [30]. They are derived fromthose of Mendler and others [20] for the Nuprl system, a variant of type theory.Brie
y, recursive occurrences of a type are replaced with their suspension(denoted with a "). This terminology comes from the fact that each layer of thestructure lies dormant (\in suspension") until the function is applied. We keep

Ensuring Productivity 5separate reductions upon elements of an in�nite structure from the structure'sconstruction. Data or codata used to construct parts of the structure is stateinformation. An in�nite data structure will consist of:� The data at its topmost level.� A function to generate the next level of the structure, given some stateinformation.This is the suspended part of the structure.Parts of a suspended structure can only be obtained by applying the unwindfunction (#) to produce a normal form of a type T , Ce1 : : : en, where each ei is innormal form. Typically, some of the ei will be the normal forms of suspensionsof type T , " T . We have, in e�ect, made the lazy evaluation strategy that wasimplicit in the Haskell de�nition above, explicit in our approach. This methodthus is also similar to simulations of lazy evaluation that have been producedfor strict languages such as ML, as may be seen in [23].It is the problem of guaranteeing the side condition of \X must be purelyintroductory with regard to x" in the introduction rule that will concern us inthe rest of this paper. Indeed, it is this condition that determines whether ourcodata de�nitions are \productive" or not in the sense that normal forms can beproduced when they are unwound. In [30] the restriction is a purely syntacticone | only constructors and no destructors are permitted. This is similar toCoquand's de�nition of guardedness. It would be more convenient to extendthis in a way that is driven by semantic considerations. Formally, we have thefollowing de�nition:De�nition 2.1 Suppose that we have, f :: A1 ! : : :! An !" T , where n � 0,and that T is a sum of product types (i.e. T def= Pi=mi=1 (Qj=N(i)j=1 Ti;j), whereN(i) � 0). Then f is productive, written Pr(f), if and only if(8a1 :: Ar1 : : : an :: Arn) ((# (f a1 : : : an))� Ci ei;1 : : : ei;N(i))where Ci is a constructor of type T , � is the re
exive, transitive �nite-stepclosure of ��-reduction and each ei;j is in normal form. Here, Ari denotes allthe reducible elements of type Ai (see De�nition 2.2 below). In addition, eachei;j is reducible.This de�nition of productivity can be extended to expressions in the obviousway where we form a combinator abstraction over the expression, e. We writePr(e).In tandem with the above, we have a de�nition of what it means for anexpression to be reducible.De�nition 2.2 An expression, e, is reducible, written Rd(e), if one of thefollowing applies:-1. e is data and is normalizable i.e. is convertible to normal form.2. e is codata and is productive.We assert that expressions e1 : : : en are reducible by using the notation, Rd(e1; : : : en)

6 UKC Computing TR 14{97We shall assume here that all data is strongly normalizing. We ensure pro-ductivity (which is a property of the term model semantics of the ESFP rules)by de�ning an extension of Coquand and Gim�enez's idea of guardedness. Thiswill serve as an abstraction of the property of productivity which is clearlyundecidable.3 Guardedness AnalysisIn this section we de�ne an abstract interpretation to detect whether a functionde�nition is guarded. Rather than work with a concrete semantics2 of in�nitedata structures (which may be expressed via our unwind function, for instance),we use a simpler, abstract semantics, whereby the meaning of a stream is givenas a single ordinal. We do this by a form of backwards analysis which Hughes andothers3 have used to detect properties such as strictness within lazy functionalprograms. The point of a backwards analysis is that abstract properties, suchas the guardedness levels that we shall de�ne below,
ow from the outputs ofprograms to the inputs. This re
ects the intuitive way we think about in�nitestreams: the resulting list, produced rather than analysed by the function, isneither guarded nor is it split up into its component parts. Therefore we knowthat the guardedness level of the result is 0. We thus use 0 as an input toour guardedness functions in order to determine whether the recursive call(s) isguarded. If it is safely guarded by a constructor then the resulting guardednesslevel will be greater than 0.3.1 The Abstract Guardedness Domain, AThe abstract guardedness domain, A, is a complete lattice de�ned as the set,Z [f�!; !g, where �! and ! are the bottom and top points of the lattice,respectively. The usual ordering on Z applies to the rest of the lattice. We referto elements of the lattice as guardedness levels and we call the greatest lowerbound operator (which is necessarily both associative and commutative), min.The guardedness levels represent the depth at which recursion occurs in theprogram graph. �! indicates an unlimited or unknown number of destructions,whilst ! indicates that an in�nite number of constructors will occur before arecursive call is encountered. No one program will use the whole lattice ofguardedness levels since we will only have strictly �nitary de�nitions in oursource language.We also have an associative and commutative addition operation, which isused to combine guardedness levels:! +A x def= !x+A �! def= �! (x 2 Z[f�!g)x+A y def= x+Zy (x; y 2 Z)This addition is used in calculating the resulting guardedness levels of applica-tions and this is why ! takes precedence. In suspended computations if, as a2The Cousots [4] have shown how di�erent semantic views of in�nite structures may berelated through abstract interpretation.3[13] gives a good summary of abstract interpretation and backwards analysis in particularand [12] gives further details of backwards analysis.

Ensuring Productivity 7result of a substitution, ! is the resulting guardedness level, then any corecur-sive calls in either the function being applied or the actual parameters must beirrelevant. This is so as the resulting substitution cannot contain a corecursivecall.3.2 Guardedness FunctionsWe de�ne mappings, called guardedness functions, which transform guardednesslevels. This transformation is based upon the syntax of a function de�nition inthe source language. We assume that codata in our source-level language isbased upon a sugaring of the following abstract syntax of expressions:e ::= x j c j �x:e j Ce1 : : : en j f e j case e of (p1 ! e1) : : : (pn ! en)Each c is a primitive constant and each pi is a pattern match. Each sourcefunction de�nition will give rise to a number of guardedness functions. Thesefunctions are de�ned via an abstract semantic operator, G, which maps fromexpressions to A.De�nition 3.1 Assume that a function de�nition has the form, f x1 : : : xn def= E.Then the guardedness functions of f are de�ned, relative to a vector h ofactual parameter functions, as follows:f#0 h 0 def= G(f; E;h)f#i h 0 def= G(xi; E;h) (i > 0)f#i h g def= g +A f#i h 0 (g 6= 0; i � 0)In the above, f#0 is the principal (or zeroth) guardedness function of f . Itmeasures the degree to which the recursive call of f is guarded by constructorswithin its own de�nition. The addition of the guardedness level of a non-zeroinput to the result of the guardedness function upon a zero input re
ects thefact that we are interested in the guardedness of the resulting substitution.De�nition 3.2 We say that a function f is guarded (relative to a vector, h,of actual parameter functions) if and only iff#0 h 0 >A 0The other guardedness functions, f#i , where i > 0, re
ect the extent towhich the parameters of f are guarded within its de�nition. These auxiliaryguardedness functions are important in that they allow us to determine whetherfunctions passed as parameters to f will be guarded within f . It is by thismechanism of auxiliary guardedness functions that we can determine whetherfunctions of the form, f : : : def= : : : (comap : : : f) : : :, are guarded.The set of guardedness functions thus produced will in general be recursive.Since the guardedness functions are continuous, as we shall prove in Lemma 3.1,below, and, since they operate upon a complete lattice, A, their greatest �xedpoint exists and is found by forming a descending Kleene chain4. The continuityproperty is guaranteed by the following result:4This contrasts with most abstract interpretations which deal with least �xed points andascending chains. However, we have used the de�nitions here to retain compatibility withCoquand's approach. The de�nitions are also compatible with the fact that we are dealingwith the greatest �xed points of coinductive type de�nitions.

8 UKC Computing TR 14{97G(f; f;h) def= 0 (2)G(f; c;h) def= ! (3)G(f; x;h) def= ! (4)G(f; fname;h) def= S(f; fname; hi) (5)G(f; �x:E;h) def= G(f; E;h) (6)G(f; C a1 : : : an;h) def= 1 + i=nmini=1 G(f; ai;h) (7)G(f; F a;h) def= F(f; F; 1; hai;h) (8)G(f; (case s of hp1; e1i : : : hpn; eni);h) def= min(i=nmini=1 min(G(f; ei;h);P (pi; ei)h g); g)(9)where g = G(f; s;h)Table 2: De�nition of the G operator.Lemma 3.1 The guardedness functions that we form are continuous, that isthey are both monotonic (so that (x � y)) (f# h x � f# h y)) and preservegreatest lower bounds (so that f#h min(x; y) = min(f# h x; f# h y)).Proof. The continuity of the guardedness functions follows immediately from+A being continuous, monotonic and distributive over min; and the de�nitionof guardedness functions on non-zero, non-omega guardedness levels i.e. thatf# hx def= x+ f# h 0. In the case of the input guardedness level being ! thenif x � y and either or both of x and y is ! then it must follow that f y = !.Similarly, for x = ! and any y,f min(!; y) = f y = min(!; f y) = min(f x; f y) 2The G operator is used to de�ne the guardedness functions over the syntacticform of expressions in the source language. In de�ning this operator, we alsoneed, in general, a vector of actual parameter functions, h. This re
ects thefact that our function de�nitions may be higher-order, as is the case with comapwhich applies a function to every element of a list. In practice, however, we shalloften omit this vector where it is inessential or empty.De�nition 3.3 (The G operator) Suppose that we have a named entity, f ,which may be either a function or a variable name. We de�ne the G operator,which produces the guardedness level of f relative to an expression in the sourcelanguage, E, and a vector of actual parameter functions, h, in Table 2. Thede�nition of G involves the auxiliary operators, S, F and P, described below.3.2.1 Commentary on the G Operator De�nition.Clauses (8) and (9) extend the de�nitions of Guardedness given by Coquandand Gim�enez. (8) permits a function F (which may possibly be f itself) to beapplied to an expression involving f . Furthermore, the function under analysismay be called as an actual parameter to itself and still may be guarded. (9)allows the possibility of corecursion occurring within the switch expression of acase.

Ensuring Productivity 9F(f; f; i;a;h) def= min(0; f#i bG(f; ai;h)) (10)In the above, b = a[h=x] (Component by component substitution.)F(xj ; xj ; i;a;h) def= min(0;F(xj ; hj ; i;a;h)) (11)F(mk;mk; i;a;h) def= min(0; nom# G(mk; ai;h)) (12)F(f; fname; i;a;h) def= min(S(f; fname; b);N (f; fname; i;a;h)) (13)Here, b = a[h=x].F(f; xj ; i;a;h) def= F(f; hj ; i;a;h) (14)F(f; pk; i;a;h) def= nom# G(f; ai;h) (15)F(f; F 0 b; i;a;h) def= min(g0; g00) (16)Here, g0 = F(f; F 0; i; c;h); g00 = F(f; F 0; i+ 1; c;h); c = hb; a1 : : : aniTable 3: De�nition of the F operator.Function applications. In clause (8) F is the guardedness function applica-tor : it is a function which constructs a guardedness function application fromthe corresponding application in the source program. Table 3 gives the de�nitionof F which produces applications of guardedness functions from applications inthe source syntax.In the de�nition, fname 2 FnNames, the syntactic domain of functionnames; xi 2 ParNames, the syntactic domain of formal parameter variables,not including pattern matching variables; mi 2 MatchVar, the syntactic do-main of pattern matching variables. The S operator, which calculates the guard-edness level of a function name within the body of another function, is describedbelow. The auxiliary function, N , produces the guardedness level of the appli-cation of a named function:N (f; fname ; i;a;h) def= � fname#i b g if i � Arity(fname)nom# g otherwiseHere, b = a[h=x] and g = G(f; ai;h).The basic idea is that the ith auxiliary guardedness function is applied tothe guardedness level of the ith actual parameter. To do this it uses the form ofthe function being applied, F , together with the index i of the actual parameter,ai, and a new list of actual parameter functions formed by appending all theactual parameters of F to the vector h.If F is a variable, for example, an abstraction will be constructed so thatwhen one of the actual parameter functions, h, is substituted the correct guard-edness function application will result. Where the ith auxiliary guardednessfunction does not exist, due to applications which return a function as theirresult, we must instead safely approximate using the nom# function.It should be noted that f can be applied to a call of itself and still beguarded, provided that its auxiliary guardedness functions return appropriateresults on the guardedness levels of the actual parameters.Where we do not know the actual parameter functions that comprise h, anabstraction will be constructed over h.

10 UKC Computing TR 14{97Note that lambda lifting upon our de�nitions is required and that lambdaabstractions should be treated as named functions when they are applied.The de�nition gives us the following for named function applications and wecan derive similar results for other applicative forms.Lemma 3.2G(f; fname a1 : : : an;h) = min(S(f; fname ; b); i=nmini=1 N (f; fname ; i;a;h))b = a[h=x] where x consists of the formal parameters.Proof. By induction on the number of actual parameters. 2Examples of this will be seen in Sect. 4 where the second argument of comapis applied in the de�nition of the Hamming function. This method of dealingwith general applications, including higher-order constructs, comes from [12].The S operator. In the above, S is the substituted guardedness level off in F . It is intended to ensure that functions are guarded within mutuallyrecursive de�nitions. If fname y1 : : : ym def= E thenS(f; fname ;h) def= G(f; E;h)Here the idea is to produce the guardedness level of the function being analysedrelative to its actual occurrences within another function's de�nition.Case expressions. Clause (9) extends the class of de�nitions that are allowedin that the recursive call may conceivably occur in the switch, s, of the caseexpression. This means that the guardedness of s, relative to the recursive callis paramount when considering the guardedness of the whole expression: thecase expression cannot be productive if the switch is not productive. This iswhy the resulting guardedness level is the minimum of the guardedness level ofthe switch together with the guardedness level of the rest of the components ofthe case expression. Even if the switch is productive, we have to ensure thateach part of the structure that may be split up by this pattern matching processis in turn guarded. This is done by de�ning the pattern guardedness function, P ,for every pattern, expression pair in the case statement. P is de�ned as follows:P (pi; ei)h 0 def= j=N(i)minj=1 (G(vji ; ei;h)�D(vji ; pi))Here, D is the level of destruction function of the in�nite object, f i.e. thedepth of a pattern matching variable where depth is measured by the numberof constructors. It is de�ned as follows:D(v; v) def= 0D(v; x) def= �!D(v; C q1 : : : qn) def= 1 + i=nmaxi=1 D(v; qi)Here, max and � are the dual operations to min and +, respectively. In thede�nition of P , above, vji 2 Var(pi) where Var(pi) is the set of variables in the

Ensuring Productivity 11pattern, pi. In addition, N(i) def= jVar(pi)j. If analyse over our intermediatelanguage there is no need for the D function since there the patterns can onlybe one-level deep: in order to get to refer to the third element of an in�nitelist, say, we would have to apply the unwind function (#) three times. Thus,in this case, we may simply subtract one from the guardedness level for eachapplication of the unwind function.It may be noted that, in the de�nition of the F operator it is possiblethat terms in the vector h may contain pattern matching variables. To avoidpattern-matching variable capture, therefore, it is necessary that �-conversionsare performed. When any pattern-matching variable is applied, however, thenom# guardedness function will be its abstract interpretation. This re
ectsthe fact that we cannot determine, in general, the guardedness properties of anarbitrary function that has been projected from a data structure.An alternative approach to �nding the guardedness level of each patternmatching variable would be to substitute the projection, �i;j s for each occur-rence of vji in ei and then calculate the guardedness level of the function f inthe resulting expression. The projection function5, �i;j , would be de�ned thus:�i;j t def= case s of pi ! vji (17)This would produce �D(vji ; pi) as the result of its auxiliary guardednessfunction, where pi is exactly the same pattern as in the original case expression.4 Examples of Guardedness AnalysisIn this section we show how guardedness functions may be used to detectwhether certain streams are well-de�ned or not. As a substantial example,we look at the Hamming function which, in the form that we give, cannot bedetected as being guarded by the de�nitions of Coquand [2] or Gim�enez [8]. Inanother example we show that a form of the list of Fibonacci numbers, which thetype inference method of Hughes et al. [15] will not accept, is guarded accordingto our analysis.In the analyses that follow we shall assume that the guardedness functionsof purely recursive functions such as compare will be the identity guardednessfunction. We shall omit the vector of actual parameter functions except wherenecessary. We shall also refer to larger expressions by E, E0, E00 etc. We shallalso assume that de�nition via pattern matching is a sugaring of nested caseexpressions. The type Colist here consists of the streams of integers.4.1 Detecting Non-Productive De�nitionsConsider the de�nition: ones def= 1} (cotl ones)where cotl gives the tail of an in�nite list:cotl (h}t) def= t5�i;j is not total over the type of t but it is total in the context that it is used within thecase expression. That is, we are assured that t is of the subtype of terms that begin with theconstructor Ci. This form of subtyping is used in [19].

12 UKC Computing TR 14{97ham :: Colistham def= 1}(comerge (comap (�2) ham) (comap (�3) ham))comap :: (Int �! Int) �! Colist �! Colistcomap f (a}y) def= (f a)}(comap f y)comerge :: Colist �! Colist �! Colistcomerge l@(a}x)m@(b}y) def=case compare a b ofLT! a}(comerge xm)EQ! a}(comerge xy)GT! b}(comerge l y)Figure 1: De�nition of the Hamming function.The de�nition of ones is obviously non-productive since its tail consists of anirresolvable circularity. This is detected as follows:ones#0 0 = G(ones ; 1}cotl(ones))= 1 + G(ones ; cotl(ones))= 1 + cotl#1 G(ones ; ones)= 1 + cotl#1 0Now, cotl#1 0 = G(l; case lof(h}t)! t)= P ((h}t); t) G(l; l)= min(G(h; t) � 1;G(t; t)� 1)= min(! � 1; 0� 1)= �1Hence, G(ones ; 1}cotl(ones)) = 0Thus the de�nition of ones is not guarded.4.2 The Hamming FunctionThe Hamming function, ham is de�ned as the list of positive integers that haveonly 2 and 3 as their prime factors | further details on such a function can befound in [6]. It and functions used in its de�nition are given in a Haskell-likesyntax in Figure 1.In the analyses that follow we shall assume that the guardedness functionsof purely recursive functions such as compare will be the identity guardednessfunction. We shall omit the vector of actual parameter functions except wherenecessary and refer to larger expressions by E, E0, E00 etc. We shall also assumethat de�nition via pattern matching is a sugaring of nested case statements.

Ensuring Productivity 134.2.1 Analysis of Guardedness of the comap and comerge Functions.comerge#0 0 = G(comerge ; case l of (a}x)! E0)= G(comerge ; E0)= G(comerge ; case m of (b}y)! E00)= G(comerge ; E00)= G(comerge ; case compare a b of E000)= G(comerge ; E000)= min(G(comerge ; a}(comerge xm));G(comerge ; a}(comerge x y));G(comerge ; b}(comerge l y)))= min(1 + G(comerge ; comerge xm);1 + G(comerge ; comerge x y);1 + G(comerge ; comerge l y))= min(1; 1; 1) = 1Therefore, comerge is guarded.comap#0 0 = G(comap ; (fa)}(comap f y))= 1 + G(comap ; comap f y)= 1 + 0 = 1Therefore, comap is guarded.4.2.2 Analysis of Auxiliary Guardedness Functions of comap andcomerge.In order to analyse the ham function we shall need to know the level of guard-edness of the second argument of comap and of both of the two arguments ofcomerge . comap#2 hhi 0 = G(l; case l of (a}y)! E0)= min(G(l; E0; hhi);P (a}y; E0) hhi 0; 0)G(l; E0; hhi) = G(l; (fa)}(comap f y); hhi) = !P (a}y; E0) hhi 0 = min(G(a;E0; hhi)� 1;G(y; E0; hhi)� 1)G(a;E0; hhi) = 1 +F(a; f; 1; hai; hhi)= 1 + h#1 0G(y; E0; hhi) = 1 + comap#2 hhi 0It follows that,comap#2 hhi 0 = min(h#1 0; comap#2 hhi 0; 0)Note that comap#2 depends upon the form of the actual parameter, h. Typ-ically, the stream consists of data elements and so the function being applied

14 UKC Computing TR 14{97by comap will have a guardedness function equivalent to the identity. However,it is possible that a corecursive function may be applied in the case where thestream consists of a list of codata. In such a case, the application of the guard-edness function, h, will ensure that the stream itself is productive only if eachof its tributaries, so to speak, is productive.The analysis of the auxiliary functions of comerge proceeds as follows.comerge#1 0 = G(l; case l of (a}x)! E0)= min(G(l; E0);P (a}x;E0) 0; 0)G(l; E0) = 1 + comerge#1 0P (a}x;E0) 0 = min(G(a;E0)� 1;G(x;E0)� 1)G(a;E0) = G(a; case m of (b}y)! E00)= G(a; case compare a b of E000)= min(1 + G(a; a); 1 + G(a; a); !) = 1G(x;E0) = min(1 + comerge#1 0; 1 + comerge#1 0; !)Thus,comerge#1 0 = min(1� 1;min(1 + comerge#1 0; 1 + comerge#1 0; !)� 1; 0)= min(0; comerge#1 0; 0)The greatest �xpoint of the functional corresponding to this equation is 0.Likewise, comerge#2 0 = min(G(b; E00)� 1;G(y; E00)� 1; 0), and the solutionto this is also 0.4.2.3 Analysis of the Main Function, ham.ham#0 0 = 1 + G(ham ; comerge (comap (�2) ham) (comap (�3) ham))= 1 +min(S(ham ; comerge);(comerge#1 G(ham ; (comap (�2) ham)));(comerge#2 G(ham ; (comap (�3) ham))))= 1 +min(!;G(ham ; comap (�2) ham);G(ham ; comap (�3) ham))(The above follows since comerge#1 and comerge#2 both give 0 when applied to 0and ham does not occur within the de�nition of comerge or any functions calledthrough comerge .)G(ham ; comap (�2) ham) = comap#2 h(�2)i 0 =GFP F#where F# = �f:(min((�2)#1 0; f; 0)). Now, GFP F# = 0, since (�2)#1 0 = 0,and so G(ham ; comap (�2) ham) = 0. Similarly, G(ham ; comap (�3) ham) = 0,and thus we obtain, ham#0 0 = 1 +min(!; 0; 0) = 1Therefore, ham is guarded.

Ensuring Productivity 15�b :: Colist�b def= 0}(1}(cosuml �b (cotl �b)))cosuml :: Colist �! Colist �! Colistcosuml xy def= zipWith (+)xyzipWith :: (Int �! Int) �! Colist �! Colist �! ColistzipWith f (a}x) (b}y) def= (f a b)}(zipWith f x y)Figure 2: De�nition of the Fibonacci list function.4.3 The Fibonacci ListIn this section we analyse a function that produces the list of Fibonacci num-bers. The function �b, given in Figure 2, calculates this list and is productive.However, the type inference method of Hughes, Pareto and Sabry will not acceptthis algorithm since:. . . the system cannot prove that the application (cotl �b) will suc-ceed. This is because the structure of the de�nition does not matchthe structure of the termination proof for �b. (Section 7.1 of [15])(We have altered their notation slightly so that it is consistent with ours.) How-ever, we shall show that our analysis detects �b as being guarded and thereforeacceptable.4.3.1 Analysis of �b.To analyse �b, we �rst produce expressions for the auxiliary guardedness func-tions of cosuml and zipWith . We take the guardedness functions of + to be theidentity. cosuml#1 0 = zipWith#2 h(+)i 0zipWith#2 h(+)i 0 = min((+)#1 0; zipWith#2 h(+)i 0)= min(0; zipWith#2 h(+)i 0)The greatest �xed point solution to the above is 0. Similarly, cosuml#2 0 = 0.It then follows that:�b#0 0 = 2 +min(cosuml#1 0; cosuml#2 (cotl#1 0))= 2 +min(0;�1 + 0)= 1Consequently, �b is guarded.

16 UKC Computing TR 14{975 Proof of SoundnessIt is necessary to show that any function that is detected as being guarded byour abstract interpretation will indeed be productive in the sense that it willbe possible to obtain the normal form of any element of the structure within a�nite time | the intuitive meaning of De�nition 2.1.Precisely, we are claiming that the following class of functions, those thatare entirely guarded, are productive.De�nition 5.1 If a (de�ning) expression, e, is guarded wrt a function name,f , of type A, and e contains only reducible constants apart from f then the ex-pression e and its function f are called entirely guarded, written EG(e; f; A).The following result does indeed show that our analysis is sound.Theorem 5.1 (Due to Coquand, 1993) If we assume that all data termsare reducible then a codata function, f , will be productive for any set of inputsif it is entirely guarded.Structure of the Proof. Our proof of Theorem 5.1 proceeds as follows. Weneed to translate our source language into the formal language in which suspen-sions (using a Fix constructor) and unwinds are used to introduce and eliminatecodata, respectively. This enables us to relate our formal de�nition of produc-tivity (De�nition 2.1) to the abstract interpretation that we have described.We then give a result (Lemma 5.2) which establishes the guardedness level thatresults from a substitution. As in the typed lambda calculus (see, for example,[10] for a proof by Girard of strong normalization which formed the model of ourproof6), we need to prove productivity by induction over types by establishinga stronger criterion of stability (see De�nition 5.3) for all guarded de�nitions.We also introduce the idea of neutral terms (as proposed by Girard) in order tosimplify the structure of our proof. We show in Lemma 5.3 that all stable codataexpressions are productive. We show in Lemmas 5.5, 5.6 and 5.7 stability resultsfor products, abstractions and case expressions, respectively. In Lemma 5.9 weshow that all substitution instances (see De�nition 5.5) of entirely guarded def-initions are stable. This then leads to Lemma 5.10 which states that all entirelyguarded expressions are stable. This then allows us to prove Theorem 5.1.Note that although our proof of correctness is on the assumption that wehave a monomorphic language, we believe that our analysis is also applicable tosystems with shallow polymorphism (i.e. the polymorphism of Hindley-Milnertype inference). This belief is based on the fact that the analysis simply reliesupon the program being well-typed rather than monomorphically typed.5.1 Translation of the Source LanguageThe translation that we shall make is to treat suspension and its associatedunwinding as a monad. We need to make a translation which, e�ectively, treatsdata in a call-by-value way and codata in a call-by-name way. The backgroundto such a monadic translation has been given by Wadler in [32].6It should be noted, however, that Girard's use of the term reducibility di�ers from ours.His idea of reducibility corresponds to our one of stability (which is also used in [26]). Ourde�nition of reducibility comes from that of Coquand [2].

Ensuring Productivity 17mapS :: (t �! u) �! " t �! " umapS f l def= Fix l (�s! �g ! (f(# s)))apBindS :: (t �! " u) �! " t �! " uapBindS f l def= Fix l (�s! �g !# (f(# s)))compBindS :: " (t �! u) �! " t �! " ucompBindS f l def= Fix l (�s! �g ! (# f)(# s))compMapS :: " (t �! u) �! t �! " ucompMapS f l def= Fix l (�s! �g ! (# f)s)Figure 3: The Suspend & Unwind Monadic Combinators.1. If F � :: T �! U then(a) If a� is not suspended then (Fa)� = F �a�(b) If a� is suspended then (Fa)� = mapS F �a�2. If F � :: T �! " U then(a) If a� is not suspended then (Fa)� = F �a�(b) If a� is suspended then (Fa)� = apBindS F �a�3. If F � ::" (T �! U) then(a) If a� is not suspended then (Fa)� = compMapS F �a�(b) If a� is suspended then (Fa)� = compBindS F �a�Figure 4: The Translation of Source Applications, Fa.De�nition 5.2 We make the following translation from ESFP, our source levelprogramming language, to ESFPFC, in which codata is formalised by suspensionsand unwinds.Types. Suppose that we have codata type de�nitions of the form:-codata T t1 : : : tn def= : : : T : : :(Here t1 : : : tn are type variables.) Then each occurrence of T on the right-hand side of the type de�nition should be replaced by " T . If T occurs asthe result type of a function then that result type becomes " T .Expressions. The change to expressions relates purely to applications. Allapplications in expressions and sub-expressions are translated using themonadic combinators in Fig. 3. The translation algorithm, to producethe translation of an application, Fa which we denote (Fa)� is given inFig. 4. If the result of this translation has a suspended type but the originalapplication did not have a suspended type as its result and the originalapplication was not an argument to another application then we unwindthe translated application i.e. we get # (Fa)�.As should be expected, we have the following result.

18 UKC Computing TR 14{97Lemma 5.1 The guardedness levels of corresponding functions and parametersare preserved by the translation described in De�nition 5.2.Proof. By structural induction on the expressions of the language: the basicstructure of functions has not changed in that we have only added monadiccombinators in the place of simple application. 2For the sake of brevity, in the sequel we shall take the reduction of codataexpressions to mean the unwinding of the corresponding monadic applications.5.2 Guardedness Levels of SubstitutionsWe now show how the guardedness levels of substitutions relate to those ofapplications.Lemma 5.2 If fname x1 : : : xn def= E and we have the application, fname a1 : : : anwhere elements from a vector s of free variables may occur in the ai then, if his the vector of actual parameters to be substituted for s,G(f; E[a=x];h) � min(S(f; fname ; b); i=nmini=1 fname#i b gi)Here, gi = G(f; ai;h) and b = a[h=s].Equivalently, we have:G(f; E[a=x];h) � min(G(f; E;h); i=nmini=1 gi + G(xi; E;h))Proof. The proof is by structural induction over the forms of de�ning expres-sions: de�ning expressions must all be of �nite length and have only a �nitenumber of forms. For the sake of brevity, we shall use E0 to denote E[a=x] and,similarly, a0 to denote ha1[a=x] : : : ap[a=x]i.Base cases1. For recursive occurrences, where no application is involved, both sides areequal to 0 unless g is �! in which case the inequality holds.2. For constants, the LHS is !, as is the RHS unless g is �! in which casethe inequality holds.3. If the variable is xi then E[a=xi] = ai. In addition,G(xi; xi;h) = 0and so the RHS becomes,i=nmini=1 (G(f; xi;h);G(f; ai;h)) = G(f; ai;h)and thus the LHS equals the RHS.

Ensuring Productivity 19Inductive cases1. Abstractions. This case follows immediately by induction from the def-inition of the G operator.2. Constructor expressions. We have:G(f; E[a=x];h) =G(f; C e1[a=x] : : : en[a=x];h)= 1 + j=nminj=1 G(f; ej [a=x];h)� fBy the induction hypothesis.g1 + j=nminj=1 (min(G(f; ej ; b); i=nmini=1 G(f; ai;h) + G(xi; ej ; b)))= min(1 + j=nminj=1 G(f; ej ; b); 1 + i=nmini=1 G(f; ai;h) + j=nminj=1 G(xi; ej ; b))= min(G(f; C e1 : : : en; b); i=nmini=1 G(f; ai;h) + G(xi; C e1 : : : en; b))3. case expressions. For the sake of brevity, we shall denote the originaland substituted expressions as follows:CE def= case S of hp1; e1i; : : : hpn; eniCE 0 def= case S0 of hp1; e01i; : : : hpn; e0niNow, G(f;CE 0;h) = min(j=nminj=1 min(G(f; e0j ;h);P (pj ; e0j)h g0); g0)Here, g0 = G(f; S0;h) and we have that,P (pj ; e0j)h 0 = k=N(i)mink=1 (G(vkj ; e0j ;h)�D(vkj ; pj))Now, D(vkj ; pj) is the same for both ej and e0j . Moreover, since vkj doesnot occur in ak, it follows that,P (pj ; e0j)h 0 = P (pj ; ej)h 0By the induction hypothesis, we have,G(f; e0j ;h) � min(G(f; ej ; b); i=nmini=1 G(f; ai;h) + G(xi; ej ; b))g0 � min(G(f; S; b); i=nmini=1 G(f; ai;h) + G(xi; S; b))By using the associativity and commutativity of min and that + dis-tributes over min, we have,G(f;CE 0;h) �min(j=nminj=1 (min(min(G(f; ej ; b);P (pj ; ej) bG(f; S; b));i=nmini=1 G(f; ai;h) + min(G(xi; ej ; b);P (pj ; ej) bG(xi; S; b)))); g0)

20 UKC Computing TR 14{97We can apply the associativity, commutativity and distributivity proper-ties again to obtain the required result. That is,G(f;CE 0;h) � min(G(f;CE ; b); i=nmini=1 G(f; ai;h) + G(xi;CE ; b))4. Applications. To prove the statement for applications we shall also useinduction on the number of applications in the expression.Firstly, we make the following de�nitions, where c is the actual parameterlist in the application in the expression E:c0 = c[a=x]d = c0[h=s] = c[a=x][h=s] = c[b=x]The following are our base cases in our induction over the number ofapplications:(a) F(f; f; j; c0;h) =min(0; f#j dG(f; c0j ;h))� fBy the structural IH for c0j .gmin(0;min(f#j d min(G(f; cj ; b); i=nmini=1 G(f; ai;h) + G(xi; cj ; b)))= fBy continuity.gmin(0;min(f#j dG(f; cj ; b); f#j d i=nmini=1 (G(f; ai;h) + G(xi; cj ; b))))= fBy associativity of min and continuity.gmin(min(0; f#j dG(f; cj ; b)); i=nmini=1 (G(f; ai;h) + f#j dG(xi; cj ; b))))= min(F(f; f; j; c; b); i=nmini=1 (G(f; ai;h) +F(xi; f; j; c; b)))Consequently, we have that:j=pminj=1 F(f; f; j; c0;h) � min(G(f; E; b); i=nmini=1 (G(f; ai;h) + G(xi; E; b)))(b) F(xl; xl; j; c0;h) = min(0;F(xl; al; j; c0;h))Since no free variables may occur in al, the result will follow byinduction if and only if it holds for all other expressions that mayreplace al.(c) F(mx;mx; j; c0;h) = min(0; nom# G(mx; c0;h))This case follows similarly to that for (4a) above: we use the con-tinuity of the guardedness function nom# in conjunction with theassociativity of min.

Ensuring Productivity 21(d) For F(f; fn ; j; c0;h), if j > Arity(fn) then the result holds triviallysince by de�nition the guardedness level must be�!. If j � Arity(fn)thenF(f; fn; j; c0;h) =min(S(f; fn ;d);N (f; fn ; j; c0;h))= min(S(f; fn ;d); fn#j dG(f; c0j ;h))� fBy the structural IH.gmin(S(f; fn ; b); fn#j d min(G(f; cj ; b); i=nmini=1 (G(f; ai;h) + G(xi; cj ; b))))= fBy continuity and the associativity of min.gmin(min(S(f; fn ; b);N (f; fn ; j; c; b));i=nmini=1 (G(f; ai;h) +N (xi; fn; j; c; b)))Thus we have that,j=pminj=1 F(f; fn ; j; c0;h) � min(G(f; E; b); i=nmini=1 (G(f; ai;h) + G(xi; E; b)))(Note that the above argument is valid also for recursive calls offname .)(e) F(f; xj ; i; c0;h) = F(f; hj ; i; c0;h) and so the result follows by induc-tion if we assume that it is true for hj .(f) F(f;mk; i; c0;h) = nom# G(f; c0i;h) and so the result follows as in(4c) above.The inductive case, for more than one application, is as follows.F(f; F 0 b0; j; c0;h) = min(g0; g00)Here, g0 = F(f; F 0; j; c0;h) and g00 = F(f; F 0; j + 1; c0;h) where, if c0 =hc01 : : : c0mi, then e0 = hb0; c01 : : : c0mi.Since both g0 and g00 operate over F 0, the induction hypothesis appliesin both cases as the number of applications in the expression has beenreduced by one. We thus have:g0 = min(F(f; F; j; c; b); i=nmini=1 G(f; ai;h) +F(xi; F; j; c; b))g00 = min(F(f; F; i+ 1; c; b); i=nmini=1 G(f; ai;h) +F(xi; F; j + 1; c; b))It follows from the associativity of min and the distributivity of + overmin that,F(f; F 0 b0; j; c0;h) �min(min(F(f; F; j; c; b);F(f; F; j + 1; c; b));i=nmini=1 (G(f; ai;h) + min(F(xi; F; j; c; b);F(xi; F; j + 1; c; b))))= min(F(f; F b; j; c; b); i=nmini=1 (G(f; ai;h) +F(xk ; F b; j; c; b))) 2

22 UKC Computing TR 14{975.3 StabilityWe now introduce the idea of stability (using the terminology of [26] for thetyped lambda calculus). Our base types for our system include the integers,Int , and all �nite types including the booleans, Bool , and characters, Char .De�nition 5.3 An expression e of type A is stable, written St(e; A)� If e is of base type and e is reducible (see De�nition 2.2) then St(e; A).(Note that this means in the case of base types that the expression mustbe strongly normalising.)� If e is a sum of products type i.e. A �Pi=mi=1 (Qj=nj=1 Ai;j) then St(e; A) ifand only if 9i :8j :St(�i;j e; A) where �i;j is the relevant projection func-tion.� If e is of a functional type i.e. A � B �! C then St(e; A) i� 8b:St(b; B))St(eb; C).In order to make the structure of the proof clearer, we introduce the idea ofneutrality.De�nition 5.4 An expression, e, is neutral if and only if it is a variable, apre-de�ned constant or an application i.e. it is neither a constructor expression(i.e. e is of the form C e1 : : : en) nor is it an abstraction (i.e. e is of the form�x:E) and nor is it a case expression.We now show that stable codata expressions are productive.Lemma 5.3 Where A is a codata type we have:1. If St(a;A) then Pr(a)2. If St(a;A) and a� a0 then St(a0; A)3. If Ne(a) and if 8ti:(a! ti) ^ St(ti; T)) St(ti; T) then St(a; T)Proof. The proof for all clauses is by simultaneous induction over the type A.Base Types. We do not have to examine base types since they are all in thedata class and we assume that all data is strongly normalising.Sum of Products. 1. Suppose that a is stable of type Pi=mi=1 (Qj=nj=1 Ai;j).Then, for some i and any j, �i;j a is stable (by de�nition) and bythe induction hypothesis (IH) for Ai;j is reducible. Now, �i;j a ��i;j a0 � ei;j where ei;j is reducible and a0 is of the form, Ci ei;1 : : : ei;m.Consequently, a is reducible.2. If a � a0 then for some i and any j, �i;j a � �i;j a0. a is stable andso is each �i;j a0 by de�nition. Thus, by the IH for Ai;j , �i;j a0 isstable and, consequently, a0 is stable.3. Suppose that a is neutral and that St(a0; A) where a ! a0. By theassumption of neutrality, (i.e. a is not of the form, Ci ei;1 : : : ei;n),�i;j a� �i;j a0for some i. Now, by de�nition, since a0 is stable so is �i;j a0. Inaddition, �i;j a is neutral and so, by the IH, �i;j a is stable. Thus ais stable.

Ensuring Productivity 23Function Spaces. 1. If St(a;B �! C), let x be a variable of type B. Bythe IH, part 3, for A, x is stable. Hence, ax is stable by de�nition.Now, the IH, part 1, for C guarantees that ax is productive. However,ax is �-equivalent to a when abstracting over x and thus a must beproductive.2. If a � a0 and St(a0; B �! C), take b such that St(b; B). Then abis stable and ab � a0b. By the IH for C, a0b is stable and thus a0 isstable.3. Suppose that a of type B �! C is neutral and that if a! a0 then a0is stable. Let b be a stable expression of type B. By the IH, part 1,for B, b is reducible. We now argue by induction on the size of thereduction path of b that the neutral expression ab reduces in one stepinto stable terms only.In one step, ab converts to one of the following. (There are no otherpossibilities since a is assumed to be neutral.)� a0b with a0 one step from a. As a0 is stable and b is, a0b is stable.� ab0 with b0 one step from b. b0 is stable by IH, part 2, for B.Since the reduction path for b0 is of smaller size (and we canonly have a �nite number of unwindings) than that of b, we haveby induction that ab0 is stable.Thus the IH, part 3, allows us to conclude that ab is stable and so ais stable. 2The following can be proved by induction on the number of reduction steps.Lemma 5.4 Suppose that e is neutral and that e� e0 and e0 is stable. If everyintermediate expression (i.e. those apart from e and e0) on any reduction pathfrom e to e0 is neutral then e is stable.We now show in the following three lemmas how stability is propagatedthrough non-neutral terms.Lemma 5.5 If, 9i :8j :St(ei;j ; Ai;j)then 9i :St(Ci ei;1 : : : ei;m; A)Proof. Since for some i and any j, St(ei;j ; Ai;j), ei;j is reducible by Lemma 5.3,part 1, we can argue by induction on the sum of the sizes of the reduction paths ofthe ei;j that �i;j (Ciei;1 : : : ei;n) is stable. This converts to one of the following:-� ei;j which is stable.� �i;j (Ciei;1 : : : e0i;k : : : ei;n) | here e0i;k is one step from ei;k. By Lemma 5.3,part 2, e0i;k is stable and as e0i;k has a shorter reduction path than ei;k, itfollows by induction that the resulting expression is also stable.Thus �i;j a converts in one step to stable terms only and so by Lemma 5.3,part 3, it is stable. Hence a is stable. 2

24 UKC Computing TR 14{97Lemma 5.6 If for all stable b of type B, c[b=x] is stable then so is �x:c.Proof. We need to show that (�x:c)b is reducible for all reducible b. We reasonby induction on the sum of the sizes of the reduction paths of c and b.(�x:c)b converts in one step to one of the following� c[b=x] which is stable by assumption.� (�x:c0)bwith c0 one step from c. Thus c0 is stable by Lemma 5.3, part 2, as citself must be stable by the assumption (which includes null substitutions).Thus by induction on the size of the reduction paths, (�x:c0)b must alsobe reducible.� (�x:c)b0 with b0 one step from b. This follows similarly to the above case.So (�x:c)b (which is neutral) converts in one step to a stable expression and so(�x:c)b and thus (�x:c) are stable by Lemma 5.3, part 3. 2Lemma 5.7 If S is stable and each ei[�i;j S=vji] is stable thencase S ofhp1; e1i : : : hp1; eniis stable.Proof. We reason by induction on the sum of the sizes of the reduction pathsof S and all the ei. The expressioncase S ofhp1; e1i : : : hp1; eniconverts in one step to one of the following.� case S0 ofhp1; e1i : : : hp1; eniwith S0 one step from S. By Lemma 5.3, part 2, S0 is stable and, as thesum of the sizes of the reduction paths has decreased we have by the IHthat the whole expression is stable.� ei[�i;j S=vji]This is stable by assumption. 2We then have the following one-step conversion lemma.Lemma 5.8 If e[h=s]! e0[h=s] where none of the si is bound in e, each hi isstable and e0[h=s] must be stable then e[h=s] is stable.Proof. We give a sketch of the proof which is very similar to those of Lem-mas 5.5, 5.6 and 5.7. Lemma 5.3, part 3 means that we only have to deal, bystructural induction, with the cases of non-neutral terms.

Ensuring Productivity 25� e is �x:E. Then the relevant case is wheree0[h=s] = �x:E0[h=s]Now, for any stable term a of the correct type,E0[h=s][a=x]is stable. In addition, (�x:E[h=s]) a = E[a=x;h=s]We can then argue, as in Lemma 5.6, by induction on the sum of the sizesof the reduction paths of E and a to show that E[a=x;h=s] is stable. Itthen follows from Lemma 5.6 that e is stable.� e is Ciei;1 : : : ei;p. The argument is similar to that of Lemma 5.5.� e is a case expression. The argument is similar to that of Lemma 5.7. 25.4 Stability of Entirely Guarded ExpressionsWe have the following de�nition that names the possible expressions that mayarise by substitution of stable expressions for variables.De�nition 5.5 An s-instance e0 of an expression e is a substitution instance,e0 � e[g1=x1; : : : ; gr=xr]where each gi is stable.The crucial lemma is then as follows:Lemma 5.9 If e is an entirely guarded (for some function f) expression thenall s-instances, e', of expression, e, are stable.Proof. The proof is by structural induction over the forms of de�ning expres-sions: de�ning expressions must all be of �nite length and have only a �nitenumber of forms. We label the vector of substituting expressions h and thevector of parameters that they are replacing, s.Base cases1. Constants. No substitutions are possible within a constant c and c mustbe guarded. Now c is neutral and, by assumption, productive and thereforeby Lemma 5.3, part 3 it is stable.2. Variables. By assumption, each input, hi that will replace the variableis stable and so the result follows.3. Single Recursive Occurrences. By the assumption of guardedness,these cannot occur at the top level of the entirely guarded expression.

26 UKC Computing TR 14{97Inductive cases1. Abstractions. A lambda abstraction, of the form �y:E, of type A �! Bis guarded i� E is guarded. By the induction hypothesis (IH), therefore,E[h=s] is stable for any stable a of type A. It follows by Lemma 5.6 that�y:E[h=s] is stable.2. Constructor expressions.(C e1 : : : ep)[h=s] = C b1 : : : bpWhere bi = ei[h=s].If f#0 h 0 � 2 then G(f; ei;h) � 1 for each i and therefore the result followsimmediately by induction and Lemma 5.5.Suppose then that f#0 h 0 = 1. By the de�nition of unwinding, eachoccurrence of f in F is replaced by fu in the reduct wherefu = �s:C e1 : : : epThen we can observe that the guardedness level of f within Cb1[fu=f] : : : bp[fu=f]must be 2 since each occurrence of f is guarded by an additional construc-tor. (This comes from Lemma 5.2.) In addition, the guardedness level of fwithin each bi[fu=f] must be at least 1. Hence, each bi[fu=f] is stable bythe IH. Now, since we do not have any substitutions for bound variablesin bi or bi[fu=f] and bi ! bi[fu=f]it follows from Lemma 5.8 that each bi is stable. Consequently, it followsby Lemma 5.5 that C b1 : : : bp must be a stable expression.3. Function applications. First we observe that, due to the de�nition ofguardedness, corecursive applications of the form,f a1 : : : anwhere n � 0 cannot occur at the top level in our de�nitions. Such termscan only be detected as being guarded if they occur within a constructorexpression, as covered in case (2) above.We argue over the remainder of the possible forms by induction on thenumber of applications involved.Named function application. Here we examine the case of the appli-cation of a named function. We assume that we have an applicationof the form: fname a1 : : : anwhere fname x1 : : : xn def= E. In what follows, b = a[h=s] where a isthe vector of actual parameters to fname .Since the application is guarded, then in the case where n � Arity(fname)0 < G(f; fname a1 : : : an;h)= fBy Lemma 3.2.g

Ensuring Productivity 27min(S(f; fname ; b); i=nmini=1 N (f; fname ; i;a;h))� fBy Lemma 5.2.gG(f; E[a1=x1 : : : an=xn];h)Now, suppose that we replace the original application, fnamea1 : : : an,with fname 0 s1 : : : sp where s1 : : : sp are the bound variables of F andfname 0 s1 : : : sp def= E[a1=x1 : : : an=xn]Then, since f does not occur in any si,G(f; fname 0 s1 : : : sp;h) = G(f; E[a1=x1 : : : an=xn];h)Therefore, by the IH over fname 0, fname 0 is stable. In addition,each si is stable and thus by de�nition, fname 0 s1 : : : sp is stable.Furthermore,(fname 0 s1 : : : sp)[h=s]� E[a1=x1 : : : an=xn][h=s]and so E[a1=x1 : : : an=xn][h=s] is stable by Lemma 5.3. In addition,(fname a1 : : : an)[h=s]� E[a1=x1 : : : an=xn][h=s]and any reduction path involves only neutral expressions. It then fol-lows by Lemma 5.4 that any s-instance of the application fname a1 : : : anmust be stable.Now, if n > m, wherem = Arity(fname), then, since the applicationis guarded, for all 1 � i � n�m,nom# G(f; am+i;h) = !Thus, G(f; am+i;h) = ! and it follows that for any G, where Gx def=(fname b1 : : : bm bm+1 : : : bm+i)x, with b as above, G#1 must produce! on this input too. It then follows from Lemma 5.2 and inductionthat G am+i is stable and so fname a1 : : : an is stable.Variable applications. In addition, in the case of the application ofordinary variables, the application is stable i� guardedness impliesstability in all other cases. This is due to the fact that a componentof the vector, h, is substituted for the variable. Furthermore, no suchvariables may occur within h as h may only be constructed by anapplication of the S operator. In that case, the vector used, b, makessubstitutions for each variable in the argument vector, a. (In otherwords, variable applications will reduce to one of the other cases.)Pattern matching variable application. The de�nition of guarded-ness means that applications involving pattern matching variablescannot be detected as being guarded, where the guardedness level ofthe parameter is not !, since the resulting guardedness level is �!.The case where the guardedness level of the parameter is ! is similarto that for named function applications where the number of actual

28 UKC Computing TR 14{97parameters is greater than the arity of the named function. Here,since for any i, nom# G(f; ai;h) = ! then for any function fm thatit is matched with the variable, m, the application fm a1 : : : ak mustbe stable since the guardedness functions in each case must return!. Moreover, fm must exist since for the application of a patternmatching variable to be guarded it must be enclosed within a caseexpression which itself must be guarded. This in turn ensures thatthe switch of the case must be guarded and so the switch expressionmust be stable and therefore reducible. The typing constraints (aswe have assumed that we are working within a Hindley-Milner typesystem) then ensure that the pattern must be matched.4. Case expressions. We assume here, without loss of generality, thateach case expression only contains one level of destruction: to obtain sub-structures requires applications of case expressions upon pattern-matchingvariables.It follows directly from the assumption of guardedness that the switch Smust be guarded for f (with respect to h), where S is the switch expressionin case S ofhp1; e1i : : : hpn; eniand, therefore, by the induction hypothesis, S[h=s] must be stable andtherefore reducible and so that it should reduce to some pattern pj .It therefore only remains to show that each ei[�i;j S=vji] is guarded for fwith h as inputs since it will then follow from our inductive assumptionthat each ei[�i;j S=vji] is stable. Let us substitute �i;j Sfor vji in ei, Then,by Lemma 5.2 we get,j=N(i)minj=1 G(f; ei[�i;j S=vji];h) �j=N(i)minj=1 min(G(f; ei;h);G(f; �i;j S;h) + G(vji ; ei;h))Here, N(i) is the number of variables in the pattern pj . Now, the aux-iliary guardedness function of �i;j produces �1 on an input of 0 and soG(f; �i;j S;h) is equal to G(f; S;h)� 1. Then,G(f; �i;j S;h) + G(vji ; ei;h) = G(f; S;h) + G(vji ; ei;h)� 1= P (pj ; ei)hG(f; S;h)> 0(The last inequality follows by the assumption of guardedness.) SinceG(f; ei;h) must also be greater than 0 it follows that f must be guarded ineach ei[�i;j S=vji]. It follows that each ei[�i;j S=vji] is stable and thereforethe entire case expression is stable by Lemma 5.7. 25.5 Proofs of the Main ResultsThe above result allows us a straightforward proof of the following.

Ensuring Productivity 29Lemma 5.10 All entirely guarded expressions, de�ning some function f , arestable.Proof. Each expression, e, of type A, is the trivial s-instance of itself and soby Lemma 5.9, EG(e; f; A)) St(e; A). 2Thus we are able to prove our main theorem of soundness, Theorem 5.1.Proof. By Lemma 5.10 all entirely guarded de�ning expressions are stable andby Lemma 5.3 all stable codata expressions are productive. 2Theorem 5.1 is a safety criterion for our abstraction interpretation. Thismeans that a function can be seen to have a guardedness level greater than orequal to that given by the analysis. To formalise this we make a mapping fromexpressions into A as follows:De�nition 5.6 abs (f a1 : : : an) def= � ! if f is productive0 otherwiseWe consequently have the following corollary to Theorem 5.1.Corollary 5.1 The following holds for any function, f , for arbitrary well-formed and well-typed, reducible actual parameters, a. We assume that all dataterms are normalizable: abs (f a1 : : : an) �A f#0 a 06 Properties of Guardedness Analysis6.1 Completeness of the AnalysisWe can formalise Coquand's de�nition of guardedness [2] over our abstractdomain, A, and this gives the GC operator shown in Table 6.1. The SC operatoris the counterpart to the S operator and is de�ned in a parallel way. Note thatit is implicit in Coquand's de�nition of guardedness that a function is guardedi� it is guarded across all function de�nitions. (This is the check made in theCoq system [1, 9].)Our system for detecting productivity is stronger than Coquand's, due tothe Hamming function example and the following completeness result.Theorem 6.1 (Completeness) For corresponding expressions in ESFP andCoquand's type theory [2], GC(f; E) � G(f; E;h)where h is any set of well-formed expressions not containing free variables andwhere each hi will have the same type as the corresponding free variable xi inE.Proof. Our proof is by structural induction over expressions.Base cases GC(f; f) = 0 = G(f; f;h)GC(f; x) = ! = G(f; x;h)GC(f; c) = ! = G(f; c;h)

30 UKC Computing TR 14{97GC(f; f) def= 0 (18)GC(f; c) def= ! (19)GC(f; x) def= ! (20)GC(f; �x:E) def= GC(f; E) (21)GC(f; C a1 : : : an) def= 1 + i=nmini=1 GC(f; ai) (22)GC(f; (case s of hp1; e1i : : : hpn; eni)) def= min(i=nmini=1 GC(f; ei); nom# GC(f; s)) (23)GC(f; f a1 : : : an) def= min(0; i=nmini=1 nom# GC(f; ai)) (24)GC(f; fname a1 : : : an) def= min(SC(f; fname); i=nmini=1 nom# GC(f; ai)) (25)GC(f; xi a1 : : : an) def= min(minF2FnNamesnffg(SC(f; F)); i=nmini=1 GC(f; ai)) (26)GC(f; pi a1 : : : an) def= i=nmini=1 nom# GC(f; ai) (27)Table 4: De�nition of the GC operator.Inductive cases1. Using the induction hypothesis we have that:GC(f; �x:E) = GC(f; E) � G(f; E;h) = G(f; �x:E;h)2. GC(f; C a1 : : : an) = 1 + i=nmini=1 GC(f; ai)� fBy the induction hypothesis.g1 + i=nmini=1 G(f; ai;h)= G(f; C a1 : : : an;h)3. GC(f; f a1 : : : an) = min(0; i=nmini=1 nom# GC(f; ai))If GC(f; ai) = ! for each i thenGC(f; f a1 : : : an) = 0 = G(f; f a1 : : : an;h)since, for each i, f#i a! = !. If GC(f; ai) 6= ! then �! results and so theinequality must be satis�ed.4. GC(f; fname a1 : : : an) = min(SC(f; fname); i=nmini=1 nom# GC(f; ai))

Ensuring Productivity 31If, for any i, GC(f; ai) 6= ! then the result is �! and so the inequalityholds.In the case that ! results then, by the induction hypothesis, G(f; ai;h) = !and so ! will result from the application of any guardedness function, inparticular fname#i for any i and also for nom#. In addition, it also followsfrom the induction hypothesis that SC(f; fname) � S(f; fname ; b). It thusfollows that the required inequality holds.5. Consider the application, xk a1 : : : anand suppose that for each i, GC(f; ai) = ! (since otherwise the inequalitywill hold trivially). Now, ifminF2FnNamesnffg(SC(f; F)) 6= �!then it must be the case, due to the de�nition of GC , that f does not occuras the actual parameter to any function. In particular, for any applicationof the form f a1 : : : anin any function F , then f does not occur in any ai. Moreover, if a formalparameter, xj , of F occurs in ai then xj cannot be replaced by any ex-pression containing f since otherwise there would be an application of Fwith f in one of the actual parameters. It follows that any term hk thatwould replace xk when evaluating F must have either a named functionor a pattern matching variable at its head. In the case of the former,minF2FnNamesnffg(SC(f; F)) � SC(f; fname) � S(f; fname ;h)with the second inequality being the induction hypothesis. Then, by as-suming the induction hypothesis on each actual parameter, the overallresult holds.In the case of a pattern matching variable being the head function, theresult holds due to the induction hypothesis on each actual parameter.6. The case for the application of pattern matching variables follows imme-diately from the induction hypothesis for each actual parameter, ai.6.2 Comparison with Hughes, Pareto and Sabry Type In-ferenceHughes, Pareto and Sabry have developed a type inference system for deducingthe correctness of reactive systems, where the latter are modelled as functionalprograms upon streams [15]. Their approach consists of developing a system ofsized types. Sized types consist of standard types tagged with either an integeror !. This ordinal tag, i, is meant to indicate that the stream has at leasti elements. Uni�cation of types and terms then includes a constraint-solvingphase in which a system of inequalities over ordinal variables is solved.We do not know precisely how our analysis relates to the type inferencesystem of [15], despite the fact that any type inference system can be viewed as

32 UKC Computing TR 14{97an abstract interpretation [3]. However, we have shown in Section 4.3 that ouranalysis allows a productive de�nition of the list of Fibonacci numbers whichis not accepted by their system. Moreover, we believe that our system is lesscomplicated than theirs in that it requires only one phase, the calculation ofguardedness functions, after Hindley-Milner type inference. The Hughes, Paretoand Sabry system, on the other hand, requires that a constraint solving systemis used to ensure that the sized types (that have been inferred in a sequel tostandard type inference) are consistent.Their system, as it has been implemented, is also only semi-automatic, unlikeours: in order not to compromise the strength of the resulting constraint lan-guage they have actually produced a type checker which \requires all let-boundvariables of a program to be annotated with sized type signatures, but infers thetypes for all other expressions". Their decision to use type checking rather thaninference was also in
uenced by the complexity of solving letrec-expressions. Bycontrast, our system is completely automatic and does not require any prelimi-naries aside from standard Hindley-Milner type inference. Furthermore, we donot have to concern ourselves with the power of the available constraint solvingsystems: the only limitations (as discussed in Section 6.3 below) are built intothe guardedness analysis system itself.6.3 Limitations of the AnalysisWe now look brie
y at the ways in which the analysis is limited in that there arecertain productive functions which will not be detected as being guarded. Thelimitations arise from two directions. Firstly, our abstract interpretation hasbeen chosen to be easily implementable and of practical complexity. However,more sophisticated analyses may be able to detect a wider class of functions asbeing guarded. Secondly, the basic idea of a de�nition being guarded, beingtaken from process algebras, would also appear to impose a constraint on theclass of de�nitions that can be admitted.In either case we believe that such restrictions can be justi�ed in a teachingcontext and can be summarised by some intuitive rules for the construction ofcorecursive de�nitions.6.3.1 Limitations due to the Abstract Interpretation.The main limitations on the class of corecursive algorithms admitted is due tothe fact that our analysis is really just \�rst order and a little bit" as Hughesphrased it [12]. The analysis cannot, for instance, detect guardedness when apattern matching variable is applied to a recursive call since we do not haveany way of knowing the auxiliary guardedness functions of any term that willbe matched by the variable. The same problem applies when a function isreturned as a result by an expression and this resulting function then appliedto a recursive call. This is why the nom# guardedness function, which returns�! on all results apart from !, is used in the de�nition of our analysis. Forexample, the following function is productive but will not be detected as beingguarded: f def= 1}(fst cofnpair f)Here, cofnpair def= (coid ; coid) where coid is the identity function over codata.

Ensuring Productivity 33It is unclear how this restriction could be overcome without greatly increas-ing the complexity of the analysis, as is the case with Hughes's truly higher-orderanalysis in [12].This restriction could probably be justi�ed to students by using the aboveargument (that we do not know what the function that is extracted will do tothe codata being corecursively de�ned) and we may summarise the restrictionby saying that \No indirect applications to corecursive calls are allowed".6.3.2 Limitations due to Guardedness.The origin of the idea of guardedness in process algebra provides a more subtlerestriction on the algorithms that will be allowed. This is due to the fact that aguarded process, as de�ned in [22], for example, involves sequential compositionso that the process X de�ned by a � t can only be guarded if X does not occurin a. That is, forward references may not be made to parts of the tail of theprocess, t.This means that, similarly, corecursive calls may not occur in the head of acolist, say. For example, the following is productive according to our unwindingrules but it is not guarded:f def= cohd(cotlf)}(1}f)In general, we cannot have functions of the form:f def= (cohd cl1)}cl2Here, cl1 and cl2 are some functions involving f .It is unclear whether this would be a signi�cant restriction to the program-mer. Moreover, disallowing such occurrences of f is in keeping with our intuitionthat certain in�nite structures represent sequences of values where each valuemay depend upon previous values in the sequence but not latter ones. It shouldbe straightforward, therefore, to justify this restriction pedagogically e.g. \wecannot refer back to the whole structure until some elements have been de�ned".6.4 Complexity of the AnalysisHere we describe the computational complexity of the analysis that we havegiven. This is naturally of concern to use since we seek to produce a useful func-tional programming system in which de�nitions may be checked for reducibilitywithout imposing an intolerable burden on the compilation process.It is straightforward to see from the de�nition of G that the guardedness anal-ysis of an expression in the language will have linear complexity with respectto the size of the expression, if we assume that the primitive abstract domainfunctions, min, and +A have linear complexity. In addition, as discussed in [5],where the analysis does not depend on any actual parameters (i.e. the func-tion de�nition does not include any applications of the formal parameters), theprincipal guardedness function will be completely determined by, at worst, njAjcombinations of argument values, where n is the number of arguments to thefunction. This is so since there are jAj possibilities in determining the �xpointof each auxiliary guardedness function. It is important to realise that whilstjAj is @0, we only use a small subset, f�!;�2;�1; 0; 1; 2; !g in practice. We

34 UKC Computing TR 14{97also emphasise the fact that this is the worst case complexity: we will only haveto compute the auxiliary guardedness functions for those parameters which willcorrespond to a recursive call. This is unlike strictness analysis, for example,where we wish to determine whether each and every parameter is strict.Complexity increases, however, in the higher-order case where the guarded-ness functions depend upon actual parameters. Here the principal guardednessfunction will be completely determined by, at worst, jAjn combinations of ar-gument values, since the guardedness of each parameter may depend on that ofall the others.This potentially exponential worst-case complexity is mitigated by the fol-lowing factors:-� The number of actual parameters in corecursive function de�nitions whichare applied to corecursive calls of the function is typically two at the most.� The size of the abstract domain that is used in practice has less than tenvalues. It should also be noted that we are using a simple extension of theintegers and so the domain operations should be e�cient. Moreover, weare not having to deal with a structured abstract domain where we seekto determine the abstract properties of the tail of a list, for example.� Hindley-Milner type inference itself has potentially exponential worst-casecomplexity | see [17].Since we have an in�nite domain, we have to guard against the possibilityof an in�nitely descending �xpoint computation as in the following example:g s l def=if s thencotl lelse g s (cotl l)This requires the solution of �f:min(�1; f � 1). However, we can easily detectsuch computations and make the result �!. The detection can be done byseeing whether a pre-�xpoint has a lower value than that with 0 substituted forf .7 Conclusions and Future WorkWe have demonstrated that a form of abstract interpretation, which may beshown to be sound, can be used to extend the notion of guardedness for in�nitedata structures. Such a method can be incorporated within a compiler for anelementary strong functional programming language to detect whether in�niteobjects are productive or not. We have suggested that the overhead of perform-ing this analysis should be polynomial in practice and so should not impactbadly upon any future compiler for an elementary strong functional language.We would expect to be able to perform a similar analysis for data i.e. theleast �xed points of inductive type de�nitions. This would naturally followsince Gim�enez [8] de�ned the dual notion of guarded by destructors for recursivefunction de�nitions over data. Consequently, we would expect to be performing

Ensuring Productivity 35the dual analysis (with least �xed points rather than greatest �xed points)over the same abstract domain, A. It would also be worth comparing such anapproach to that of Walther recursion where a decidable test for a broader classof de�nitions than primitive recursion has been established [19]. Similarly, itwould appear worthwhile to investigate the link to work by Giesl on automatedtermination proofs for nested and mutually recursive functional programs [7].Another avenue for future research would be to investigate the meta-theoreticproperties of this analysis. We have employed a backwards analysis in the styleof Hughes [12] and it is unclear whether a forwards analysis would be su�cientto obtain the same results. A reason why forwards analysis may be inadequatefor guardedness detection is that, for certain de�nitions, we have to determinewhether the head of a Colist is guarded. It is known that, using a standardforward analysis, it is not possible to detect head-strictness of lists [16].We conclude that a syntactic check for productivity in a simply-typed yetexpressive functional language is made feasible by the work presented.

36 UKC Computing TR 14{97References[1] The Coq project. World Wide Web page by INRIA and CNRS, France, 1996.URL: http://pauillac.inria.fr/~coq/coq-eng.html.[2] T. Coquand. In�nite objects in type theory. In H. Barendregt and T. Nipkow,editors, Types for Proofs and Programs (TYPES '93), volume 806 of Lecture Notesin Computer Science, pages 62{78. Springer-Verlag, 1993.[3] P. Cousot. Types as abstract interpretations. In 24th ACM Symposium on Prin-ciples of Programming Languages, pages 316{331, Paris, France, January 1997.ACM Press.[4] P. Cousot and R. Cousot. Inductive de�nitions, semantics and abstract interpre-tation. In Proceedings of the 19th ACM Symposium on Principles of ProgrammingLanguages, pages 83{94. ACM press, 1992.[5] K. Davis and P. Wadler. Strictness analysis in 4D. In S. L. Peyton Jones et al.,editors, Functional Programming, Glasgow 1990, pages 23{43. Springer-Verlag,1991.[6] E.W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.[7] J. Giesl. Termination of nested and mutually recursive algorithms. Journal ofAutomated Reasoning, 19:1{29, August 1997.[8] E. Gim�enez. Codifying guarded de�nitions with recursive schemes. In P. Dybjer,B. Nordstr�om, and J. Smith, editors, Types for Proofs and Programs (TYPES'94), volume 996 of Lecture Notes in Computer Science, pages 39{59. Springer-Verlag, 1995. International workshop, TYPES '94 held in June 1994.[9] E. Gim�enez. Guardedness algorithm for co-inductive types. Coq club mailing list(coq-club@pauillac.inria.fr) correspondence, April 1997.[10] J-Y. Girard, P. Taylor, and Y. Lafont. Proofs and Types. Cambridge UniversityPress, 1989.[11] J.R. Hindley. The principal type scheme of an object in combinatory logic. Trans-actions of the American Mathematical Society, 146:29{60, 1969.[12] R.J.M. Hughes. Backwards analysis of functional programs. In D. Bj�rner, A.P.Ershov, and N.D. Jones, editors, Partial Evaluation and Mixed Computation,pages 187{208. Elsevier Science Publishers B.V. (North-Holland), 1988.[13] R.J.M. Hughes. Compile-time analysis of functional programs. In Turner [29],pages 117{155.[14] R.J.M. Hughes. Why functional programming matters. In Turner [29], pages17{42.[15] R.J.M. Hughes, L. Pareto, and A. Sabry. Proving the correctness of reactivesystems using sized types. In 23rd ACM Symposium on Principles of ProgrammingLanguages, St Petersburg, Florida, January 1996. ACM Press.[16] S. Kamin. Head-strictness is not a monotonic abstract property. InformationProcessing Letters, 41(4):195{198, 1992.[17] H. Mairson. Deciding ML typability is complete for deterministic exponentialtime. In POPL '90, pages 382{401. ACM Press, January 1990.[18] P. Martin-L�of. An intuitionistic theory of types: predicative part. In H.E. Roseand J.C. Shepherdson, editors, Proceedings of the Logic Colloquium, Bristol, July1973. North Holland, 1975.[19] D. McAllester and K. Arkoudas. Walther recursion. In M.A. Robbie and J.K.Slaney, editors, 13th Conference on Automated Deduction (CADE 13), volume1104 of Lecture Notes in Computer Science, pages 643{657. Springer-Verlag, 1996.

Ensuring Productivity 37[20] P.F. Mendler, P. Panangaden, and R.L. Constable. In�nite objects in type the-ory. Technical Report TR 86-743, Department of Computer Science, CornellUniversity, Ithaca, NY 14853, 1987.[21] A.J.R.G. Milner. Theory of type polymorphism in programming. Journal ofComputer and System Sciences, 17(3):348{375, 1978.[22] A.J.R.G. Milner. A Calculus of Communicating Systems, volume 92 of LectureNotes in Computer Science. Springer-Verlag, 1980.[23] L.C. Paulson. ML for the Working Programmer. Cambridge University Press,second edition, July 1996.[24] J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Technical ReportCS-R9652, CWI, Netherlands, CWI, PO Box 94079, 1090 GB Amsterdam, TheNetherlands, 1996.[25] B.A. Sijtsma. On the productivity of recursive list de�nitions. ACM Transactionson Programming Languages and Systems, 11(4):633{649, October 1989.[26] S.J. Thompson. Type Theory and Functional Programming. Addison-Wesley,1991.[27] S.J. Thompson. Haskell: The Craft of Functional Programming. Addison-Wesley,1996.[28] D.A. Turner. Miranda: A non-strict functional language with polymorphic types.In J.P. Jouannaud, editor, Proceedings IFIP International Conference on Func-tional Programming Languages and Computer Architecture, volume 201 of LectureNotes in Computer Science. Springer-Verlag, September 1985.[29] D.A. Turner, editor. Research Topics in Functional Programming, University ofTexas at Austin Year of Programming Series. Addison-Wesley, 1990.[30] D.A. Turner. Codata. Unpublished technical note (longer article in preparation),February 1995.[31] D.A. Turner. Elementary strong functional programming. In P. Hartel andR. Plasmeijer, editors, FPLE 95, volume 1022 of Lecture Notes in ComputerScience. Springer-Verlag, 1995. 1st International Symposium on Functional Pro-gramming Languages in Education. Nijmegen, Netherlands, December 4{6, 1995.[32] P. Wadler. Comprehending monads. Mathematical Structures in Computer Sci-ence, 2:461{493, 1992. Special issue of selected papers from 6'th Conference onLisp and Functional Programming.

