UKC Computing TR 14-97

Ensuring the Productivity of

Infinite Structures’

Alastair Telford? David Turner

September 1997
Revised March 1998

'This work was supported by the UK Engineering and Physical Sciences Research
Council grant number GR/L03279. We would also like to thank members of the
Theoretical Computer Science group at the University of Kent at Canterbury for
their discussions in connection with this work, particularly Andy King, Erik Poll and
Simon Thompson. Eduardo Giménez, of INRIA, France, has also been most helpful
in explaining his ideas and how they have been implemented within the Coq system.

2B-Mail: A.J.Telford@ukc.ac.uk. Tel: +44 1227 827590. Fax: +44 1227 762811.
ESFP webpage: http://www.cs.ukc.ac.uk/people/staff/ajt/ESFP/

Abstract

It is our aim to develop an elementary strong functional programming (ESFP)
system. To be useful, ESFP should include structures such as streams which can
be computationally unwound infinitely often. We describe a syntactic analysis
to ensure that infinitely proceeding structures, which we shall term codata, are
productive. This analysis is an extension of the check for guardedness that has
been used with definitions over coinductive types in Martin-Lo6f’s type theory
and in the calculus of constructions. Qur analysis is presented as a form of
abstract interpretation that allows a wider syntactic class of corecursive defini-
tions to be recognised as productive than in previous work. Thus programmers
will have fewer restrictions on their use of infinite streams within a strongly
normalizing functional language.

Contents

1 Introduction

2 Infinite Objects

21
2.2
2.3

Functional Programming and Infinite Data
Guarded Infinite Objects
Infinite Objects in ESFP

3 Guardedness Analysis

3.1
3.2

The Abstract Guardedness Domain, A
Guardedness Functions 0oL
3.2.1 Commentary on the G Operator Definition

4 Examples of Guardedness Analysis

4.1
4.2

4.3

Detecting Non-Productive Definitions
The Hamming Function
4.2.1 Analysis of Guardedness of comap and comerge
4.2.2 Analysis of Auxiliary Guardedness Functions
4.2.3 Analysis of the Main Function, ham
The Fibonacci List 0 oL
4.3.1 Analysisof fib

5 Proof of Soundness

5.1
5.2
5.3
0.4
9.5

Translation of the Source Language
Guardedness Levels of Substitutions
Stability
Stability of Entirely Guarded Expressions
Proofs of the Main Results

6 Properties of Guardedness Analysis

6.1
6.2
6.3

6.4

Completeness of the Analysis
Comparison with Hughes, Pareto and Sabry Type Inference . . .
Limitations of the Analysis
6.3.1 Limitations due to the Abstract Interpretation
6.3.2 Limitations due to Guardedness
Complexity of the Analysis

7 Conclusions and Future Work

References

List of Tables

=W N =

Rules for codata. o0
Definition of the G operator.
Definition of the F operator.
Definition of the G operator.

=W w N

[l B e> R =]

11
12
13
13
14
15
15

16
16
18
22
25
28

29
29
31
32
32
33
33

34

36

O 00 =

iv UKC Computing TR 14-97

List of Figures

1 Definition of the Hamming function. 12
2 Definition of the Fibonacci list function. 15
3 The Suspend & Unwind Monadic Combinators. 17
4 The Translation of Source Applications, Fa. 17

Ensuring Productivity 1

1 Introduction

We aim to develop an Flementary Strong Functional Programming (ESFP) sys-
tem. That is, we wish to exhibit a language that has the strong normalization
(every program terminates) and Church-Rosser (reduction strategies converge)
properties whilst avoiding the complexities (such as dependent types, compu-
tationally irrelevant proof objects) of Martin-Lof’s type theory [18, 26]. We
would like our language to have a type system straightforwardly based on that
of Hindley-Milner [11, 21] and to be similar in usage to a language such as
Miranda! [28]. The case for such a language is set out in [31] — briefly, we
believe that such a language will allow direct equational reasoning whilst being
sufficiently elementary to be used for programming at the undergraduate level.

For such a language to be generally useful, it must be capable of pro-
gramming input/output and, more generally, interprocess communication. The
methods of doing this in Miranda, Haskell [27] etc., typically involve infinite
lists (or streams), or other non-well-founded structures.

However, in languages such as Miranda, the presence of infinite objects de-
pends upon the use of the lazy evaluation strategy in that terms are only evalu-
ated as far as is necessary to obtain the result of a program. In those languages,
infinite objects are syntactically undifferentiated from their finite counterparts
and, indeed, are of the same type. For example, in Miranda, the lists [1] and
[1..] both have the type [num], despite the fact that the latter is an infinite
list (of all the positive integers).

It is apparent that such structures pose problems if we wish to construct a
language that is strongly Church-Rosser. Firstly, how can we ensure that our
programs reach a normal form? Secondly, how do we do so without relying on a
particular evaluation method, as is the case with Miranda etc.? Finally, should
infinite objects have the same type as their finite counterparts?

We have argued in [31] that infinite structures, which we call codata, should
be kept in a separate class of types from the finite ones (data), reflecting the fact
that they are duals of one another, semantically. We have formulated rules for
codata in an elementary term language in [30]. These rules ensure that programs
involving codata and corecursion will be strongly Church-Rosser. However, we
would like the ESFP source language to permit more free-wheeling definitions,
which it should then be possible to translate into the intermediate language. We
now need a compile-time check to ensure that these definitions are well-formed
in the sense that the extraction of any piece of data from the codata structure
will terminate. This means that, for example, the heads of infinite lists must
be well-defined. Or, to put it another way, there is a continuous “flow” of data
from the stream. Coquand [2] in Type Theory, and Giménez [§8], in the Calculus
of (Inductive) Constructions, have used the idea of guardedness, first proposed
by Milner in the area of process algebras [22], to produce methods for checking
whether corecursive terms are normalizable.

We argue that their notion of guardedness is too restrictive for programming
practice in that it precludes definitions such as:

evens L 2 & (comap (+2) evens) (1)

Here, <) is the coconstructor for infinite lists and comap is the mapping function

I'Miranda is a trademark of Research Software Limited.

2 UKC Computing TR 14-97

over infinite lists. Clearly, we can extract the nth positive even number from
such a list, yet evens is unguarded according to the definitions used by Coquand
and Giménez. Their notions of guardedness would appear to be sufficient for
their purpose of reasoning about infinite objects, particularly within the Coq
system [1], but are too limiting for programming in practice.

We have extended the idea of guardedness so that applications to the recur-
sive call will not necessarily mean that they will be rejected as being ill-defined.
To do this we have formulated the guardedness detection algorithm as an ab-
stract interpretation. In particular, definitions of the form of (1) will be detected
as being guarded. Conversely, our analysis is sound in that it will disallow def-

initions such as:
def

bh = 1< (cotl bh)
Here cotl is the tail function over infinite lists.

Hughes, Pareto and Sabry have developed a type inference system [15] that
can be used to determine whether corecursive definitions are productive. We
shall exhibit an example of a productive definition that cannot be accepted by
their system but which is accepted by ours.

Whilst it is undecidable whether a corecursive function is well-defined the
extension to guardedness that we present here makes programming with infinite
objects more straightforward in a strongly normalizing functional language.

Overview of this Paper. In Section 2 we give a summary of the theory be-
hind infinite objects in strongly normalizing systems. We then show in Section 3
how the idea of guardedness can be extended by using an abstract interpreta-
tion. Examples of how the analysis detects whether a corecursive function is
well-defined are given in Section 4. We shall give examples of how our analysis
can accept productive definitions that are rejected by the Coquand/Giménez
guardedness analysis and also by the type inference system of Hughes, Pareto
and Sabry. This is followed in Section 5 by a proof that our analysis is sound.
We complement this in Section 6 where we demonstrate that our analysis is
complete with respect to that of Coquand. We also examine other properties
of our analysis and discuss its advantages over the Hughes, Pareto and Sabry
type inference system. Finally, in Section 7, we present our conclusions and
suggestions for future work.

2 Infinite Objects

In this section we summarise how infinite objects have been represented in
functional programming languages such as Miranda and Haskell and in systems
based upon type theory. In general, infinite objects may be seen as the greatest
fixed points of monotonic type operators. This, together with more details on
the relationship between data and codata can be found in [24]. Here, however,
we seek a concrete form of infinite data structures which does not rely upon
the greatest fixpoint model and, moreover, does not rely on either a particular
evaluation strategy or a type-theoretic proof system to have a sound semantics.
We describe how we propose to represent infinite objects in an elementary strong
functional language and why this requires the automatic syntactic check upon
infinite recursive definitions that we present in the following sections.

Ensuring Productivity 3

2.1 Functional Programming and Infinite Data

Functional programming languages, such as Miranda, have exploited the idea
of lazy evaluation to introduce the idea of infinite data structures. Hughes has
pointed out the programming advantages of infinite lists in [14]. The disadvan-
tages of these methods is that they rely upon a fixed evaluation strategy. In
Miranda, definitions such as

ones = 1 : ones

only produce useful results with a lazy evaluation strategy (i.e. based upon call-
by-name): a strict evaluation strategy (based upon call-by-value) would produce
an undefined (“bottom”) result for an evaluation of such a definition. There is
also no guarantee that the streams will generate an arbitrary number of objects.
For example, the following is a legal definition in Miranda:

ones’ = 1 : tl ones’

However, it is only possible to evaluate the head of this list, whilst the rest is
undefined. We have argued, in [31], that the existence of such partial objects
greatly complicates the process of reasoning about infinite objects.

2.2 Guarded Infinite Objects

Coquand [2] in Type Theory and Giménez [8] in the Calculus of Constructions
produced syntactic checks upon the definitions of infinite data structures which
they called guardedness. (Giménez makes additional restrictions in order to
cope with difficulties arising from impredicative types in the Calculus of Con-
structions.) The idea is similar to that formulated by Milner [22] for process
algebras in that a check is made that recursive calls only occur beneath con-
structors. However, the work of both Coquand and Giménez is intended only
to produce definitions of infinite structures that can be used within a proof
system such as Coq [1] in order to prove coinductive propositions i.e. types of
infinite structures. Their definitions of guardedness are, however, insufficient
for a practical programming system. For example, we would not be allowed the
following:

ints = 1 : map (+1) ints

This is due to the application of map to ints.

Hughes, Pareto and Sabry have developed a type inference system, not based
directly on the idea of guardedness, for determining whether definitions are pro-
ductive. In Section 4.3 we give a productive definition of the list of Fibonacci
numbers which is rejected by their system but which is accepted by the guard-
edness analysis that we define in Section 3. In Section 6.2 we give reasons for
why we believe that our system has advantages over theirs.

Conversely, the reasoning system of Sijtsma [25], being purely semantics-
based, is not implementable as an automatic means of detecting whether a
codata definition is productive.

4 UKC Computing TR 14-97

Introduction rule

szS;{y=S,z:S8S=1T+ XuT}
Fix(y=s)x. X 2T

Side condition: X must be purely introductory with regard to x.
Write Fixy z. X for Ay’ .Fix(y =y")z. X

Elimination rule
a:tAFla: A
Computation rule

L (Fix(y=s)z. X) = X|[s/y, (Fixyz. X)/x]

Normal form
Fixs' F' =1 T

where s’ and F’ are both normal forms.

Table 1: Rules for codata.

2.3 Infinite Objects in ESFP

In ESFP, unlike in functional programming languages such as Haskell, we sep-
arate finite structures (data) from their infinite counterparts (codata). This is
due to the fact that we cannot rely upon a lazy evaluation strategy to pro-
vide a computationally useful semantics for infinite structures. Indeed we seek
reduction transparency. It is claimed that pure functional languages have the
advantage of referential transparency over their imperative counterparts in that
the meaning of expressions is independent of context. Reduction transparency
goes further in that the semantics of expressions is independent of reduction
order.

As in Coquand’s approach for type theory [2], we have maintained the pivotal
role of constructors in introducing codata. Thus, although we have separated
codata from data, we have maintained similar syntactic forms to that of Haskell
and Miranda. For example, the following is the type of infinite lists:

. def .
codata Colista = a{ Colista
Functions upon codata use corecursion: that is they recurse on their results
rather than their inputs.

We need to check that an ESFP program will type check according to a set
of rules that also serve to define an intermediate term language into which the
top-level language may be translated. These rules, given in natural deduction
style, are shown in Table 1 and were first given in [30]. They are derived from
those of Mendler and others [20] for the Nuprl system, a variant of type theory.

Briefly, recursive occurrences of a type are replaced with their suspension
(denoted with a 1). This terminology comes from the fact that each layer of the
structure lies dormant (“in suspension”) until the function is applied. We keep

Ensuring Productivity)

separate reductions upon elements of an infinite structure from the structure’s
construction. Data or codata used to construct parts of the structure is state
information. An infinite data structure will consist of:

e The data at its topmost level.

e A function to generate the next level of the structure, given some state
information.
This is the suspended part of the structure.

Parts of a suspended structure can only be obtained by applying the unwind
function ({) to produce a normal form of a type T', Ce; .. .e,, where each e; is in
normal form. Typically, some of the e; will be the normal forms of suspensions
of type T', T T'. We have, in effect, made the lazy evaluation strategy that was
implicit in the Haskell definition above, explicit in our approach. This method
thus is also similar to simulations of lazy evaluation that have been produced
for strict languages such as ML, as may be seen in [23].

It is the problem of guaranteeing the side condition of “X must be purely
introductory with regard to z” in the introduction rule that will concern us in
the rest of this paper. Indeed, it is this condition that determines whether our
codata definitions are “productive” or not in the sense that normal forms can be
produced when they are unwound. In [30] the restriction is a purely syntactic
one only constructors and no destructors are permitted. This is similar to
Coquand’s definition of guardedness. It would be more convenient to extend
this in a way that is driven by semantic considerations. Formally, we have the
following definition:

Definition 2.1 Suppose that we have, f :: Ay — ... = A, =1 T, wheren > 0,

def

and that T is a sum of product types (i.e. T = ZZZ”(;:V(Z) T;;), where

N(i) > 0). Then f is productive, written Pr(f), if and only if
(Vay :: AT . ..ap 2 AY) (U (far .. a,)) = Ciein - e; neiy)

where C; is a constructor of type T, — is the reflexive, transitive finite-step
closure of Bn-reduction and each e; ; is in normal form. Here, A} denotes all
the reducible elements of type A; (see Definition 2.2 below). In addition, each
eij 15 reducible.

This definition of productivity can be extended to expressions in the obvious
way where we form a combinator abstraction over the expression, e. We write

Pr(e).

In tandem with the above, we have a definition of what it means for an
expression to be reducible.

Definition 2.2 An expression, e, is reducible, written Rd(e), if one of the
following applies:-

1. e is data and is normalizable i.e. is convertible to normal form.
2. e is codata and is productive.

We assert that expressions ey .. . e, are reducible by using the notation, Rd(e1,...e,)

6 UKC Computing TR 14-97

We shall assume here that all data is strongly normalizing. We ensure pro-
ductivity (which is a property of the term model semantics of the ESFP rules)
by defining an extension of Coquand and Giménez’s idea of guardedness. This
will serve as an abstraction of the property of productivity which is clearly
undecidable.

3 Guardedness Analysis

In this section we define an abstract interpretation to detect whether a function
definition is guarded. Rather than work with a concrete semantics? of infinite
data structures (which may be expressed via our unwind function, for instance),
we use a simpler, abstract semantics, whereby the meaning of a stream is given
as a single ordinal. We do this by a form of backwards analysis which Hughes and
others® have used to detect properties such as strictness within lazy functional
programs. The point of a backwards analysis is that abstract properties, such
as the guardedness levels that we shall define below, flow from the outputs of
programs to the inputs. This reflects the intuitive way we think about infinite
streams: the resulting list, produced rather than analysed by the function, is
neither guarded nor is it split up into its component parts. Therefore we know
that the guardedness level of the result is 0. We thus use 0 as an input to
our guardedness functions in order to determine whether the recursive call(s) is
guarded. If it is safely guarded by a constructor then the resulting guardedness
level will be greater than 0.

3.1 The Abstract Guardedness Domain, A

The abstract guardedness domain, A, is a complete lattice defined as the set,
Z U {—w,w}, where —w and w are the bottom and top points of the lattice,
respectively. The usual ordering on Z applies to the rest of the lattice. We refer
to elements of the lattice as guardedness levels and we call the greatest lower
bound operator (which is necessarily both associative and commutative), min.

The guardedness levels represent the depth at which recursion occurs in the
program graph. —w indicates an unlimited or unknown number of destructions,
whilst w indicates that an infinite number of constructors will occur before a
recursive call is encountered. No one program will use the whole lattice of
guardedness levels since we will only have strictly finitary definitions in our
source language.

We also have an associative and commutative addition operation, which is
used to combine guardedness levels:

def
WHAT = W

z4a-—w™ (zx € ZU{-w})

de
THAY ;fx+zy (r,y € 7)
This addition is used in calculating the resulting guardedness levels of applica-
tions and this is why w takes precedence. In suspended computations if, as a

2The Cousots [4] have shown how different semantic views of infinite structures may be
related through abstract interpretation.

3[13] gives a good summary of abstract interpretation and backwards analysis in particular
and [12] gives further details of backwards analysis.

Ensuring Productivity 7

result of a substitution, w is the resulting guardedness level, then any corecur-
sive calls in either the function being applied or the actual parameters must be
irrelevant. This is so as the resulting substitution cannot contain a corecursive
call.

3.2 Guardedness Functions

We define mappings, called guardedness functions, which transform guardedness
levels. This transformation is based upon the syntax of a function definition in
the source language. We assume that codata in our source-level language is
based upon a sugaring of the following abstract syntax of expressions:

ex=z|c|Az.e|Ce...e,| fe|caseeof (p1 = e1)...(pn — €n)

FEach ¢ is a primitive constant and each p; is a pattern match. FEach source
function definition will give rise to a number of guardedness functions. These
functions are defined via an abstract semantic operator, G, which maps from
expressions to A.

Definition 3.1 Assume that a function definition has the form, f x1 ...z, = E.
Then the guardedness functions of f are defined, relative to a vector h of
actual parameter functions, as follows:

fEro™ 61, B, n)

FFroY @B R) (>0
fEPhg gtaffR0 (9#£0,i>0)

In the above, fg# is the principal (or zeroth) guardedness function of f. It
measures the degree to which the recursive call of f is guarded by constructors
within its own definition. The addition of the guardedness level of a non-zero
input to the result of the guardedness function upon a zero input reflects the
fact that we are interested in the guardedness of the resulting substitution.

Definition 3.2 We say that a function f is guarded (relative to a vector, h,
of actual parameter functions) if and only if

fER0O>40

The other guardedness functions, fz#, where ¢ > 0, reflect the extent to
which the parameters of f are guarded within its definition. These auziliary
guardedness functions are important in that they allow us to determine whether
functions passed as parameters to f will be guarded within f. It is by this

mechanism of auxiliary guardedness functions that we can determine whether

functions of the form, f... o (comap ... f)..., are guarded.

The set of guardedness functions thus produced will in general be recursive.
Since the guardedness functions are continuous, as we shall prove in Lemma 3.1,
below, and, since they operate upon a complete lattice, A, their greatest fized
point exists and is found by forming a descending Kleene chain*. The continuity
property is guaranteed by the following result:

4This contrasts with most abstract interpretations which deal with least fixed points and
ascending chains. However, we have used the definitions here to retain compatibility with
Coquand’s approach. The definitions are also compatible with the fact that we are dealing
with the greatest fixed points of coinductive type definitions.

8 UKC Computing TR 14-97

G(f. £.h) <0 (2)
G(f,e.h) 2w (3)
G(f,z,h) 2w (4)
G(f, fname, h) < S(f, faame, ()) (5)
G(f, rz.E,h) “ G(f,E,h) (6)
G(f,Car...an,h) ™ 1+m1n G(f,ai, h) (7)
G(f,Fa,h) 2 F(f,F,1,(a), h) (8)
G (case s of (p1.e1) .. . {pn,en)), h) L min(min min(G(f, ei, h). P (v, :) hg).) (9)
where g = G(f, s, h)

Table 2: Definition of the G operator.

Lemma 3.1 The guardedness functions that we form are continuous, that is
they are both monotonic (so that (x < y) = (f#* hz < f# hy)) and preserve
greatest lower bounds (so that f#*h min(z,y) = min(f# hz, f# hy)).

Proof. The continuity of the guardedness functions follows immediately from
+A being continuous, monotonic and distributive over min; and the definition
of guardedness functions on non-zero, non-omega guardedness levels i.e. that

f*hax “ g + f# h 0. In the case of the input guardedness level being w then
if z < y and either or both of z and y is w then it must follow that fy = w.
Similarly, for z = w and any y,

fmin(w,y) = fy =min(w, fy) = min(fz, fy)

O

The G operator is used to define the guardedness functions over the syntactic

form of expressions in the source language. In defining this operator, we also

need, in general, a vector of actual parameter functions, h. This reflects the

fact that our function definitions may be higher-order, as is the case with comap

which applies a function to every element of a list. In practice, however, we shall
often omit this vector where it is inessential or empty.

Definition 3.3 (The G operator) Suppose that we have a named entity, f,
which may be either a function or a variable name. We define the G operator,
which produces the guardedness level of f relative to an expression in the source
language, E, and a vector of actual parameter functions, h, in Table 2. The
definition of G involves the auxiliary operators, S, F and P, described below.

3.2.1 Commentary on the G Operator Definition.

Clauses (8) and (9) extend the definitions of Guardedness given by Coquand
and Giménez. (8) permits a function F' (which may possibly be f itself) to be
applied to an expression involving f. Furthermore, the function under analysis
may be called as an actual parameter to itself and still may be guarded. (9)
allows the possibility of corecursion occurring within the switch expression of a
case.

Ensuring Productivity 9

F(f fisah) < min(0, f# bG(f,ai,h) (10)
In the above, b = a[h/xz] (Component by component substitution.)
F(-’L‘j,ﬂ?j,i,d,h) d;f min(O,]—"(mJ‘,hj,z',a,h)) (11)
F(my, my,i,a,h) o min(O,nom# G(my,ai, h)) (12)
F(f, frame,i,a,h) 2 min(S(f, fname,b), N'(f, frame,i,a,k)) (13)
Here, b = alh/z].
F(f,a50a,h) = F(f by, ia,h) (14)
F(f,pesisah) 2 nom™ G(f,ai,h) (15)
F(f,F'bi,ah) < min(g,g") (16)
Here, g’ = F(f, F',i,c,h); ¢' = F(f,F',i+1,¢,h); ¢ = (b,a1...an)

Table 3: Definition of the F operator.

Function applications. In clause (8) F is the guardedness function applica-
tor: it is a function which constructs a guardedness function application from
the corresponding application in the source program. Table 3 gives the definition
of F which produces applications of guardedness functions from applications in
the source syntax.

In the definition, fname € FnNames, the syntactic domain of function
names; z; € ParNames, the syntactic domain of formal parameter variables,
not including pattern matching variables; m; € MatchVar, the syntactic do-
main of pattern matching variables. The S operator, which calculates the guard-
edness level of a function name within the body of another function, is described
below. The auxiliary function, A/, produces the guardedness level of the appli-
cation of a named function:

e .
N(f, fname,i,a, h) £ { fmm;i by ifis ArltY(fmme)
nom# g otherwise

Here, b = a[h/x] and g = G(f,a;, h).

The basic idea is that the ith auxiliary guardedness function is applied to
the guardedness level of the ith actual parameter. To do this it uses the form of
the function being applied, F', together with the index i of the actual parameter,
a;, and a new list of actual parameter functions formed by appending all the
actual parameters of F' to the vector h.

If F' is a variable, for example, an abstraction will be constructed so that
when one of the actual parameter functions, h, is substituted the correct guard-
edness function application will result. Where the ith auxiliary guardedness
function does not exist, due to applications which return a function as their
result, we must instead safely approximate using the nom# function.

It should be noted that f can be applied to a call of itself and still be
guarded, provided that its auxiliary guardedness functions return appropriate
results on the guardedness levels of the actual parameters.

Where we do not know the actual parameter functions that comprise h, an
abstraction will be constructed over h.

10 UKC Computing TR 14-97

Note that lambda lifting upon our definitions is required and that lambda
abstractions should be treated as named functions when they are applied.

The definition gives us the following for named function applications and we
can derive similar results for other applicative forms.

Lemma 3.2
G(f, fname ay ...an, h) = min(S(f, fname, b),Ilnii?l./\f(f,fname, i,a,h))

b = a[h/x] where x consists of the formal parameters.

Proof. By induction on the number of actual parameters. o
Examples of this will be seen in Sect. 4 where the second argument of comap

is applied in the definition of the Hamming function. This method of dealing

with general applications, including higher-order constructs, comes from [12].

The S operator. In the above, S is the substituted guardedness level of
fin F. It is intended to ensure that functions are guarded within mutually

. " d
recursive definitions. If fnamey;...ym) E then

d
S(f, fname,h) < G(f,E.h)
Here the idea is to produce the guardedness level of the function being analysed
relative to its actual occurrences within another function’s definition.

Case expressions. Clause (9) extends the class of definitions that are allowed
in that the recursive call may conceivably occur in the switch, s, of the case
expression. This means that the guardedness of s, relative to the recursive call
is paramount when considering the guardedness of the whole expression: the
case expression cannot be productive if the switch is not productive. This is
why the resulting guardedness level is the minimum of the guardedness level of
the switch together with the guardedness level of the rest of the components of
the case expression. Even if the switch is productive, we have to ensure that
each part of the structure that may be split up by this pattern matching process
is in turn guarded. This is done by defining the pattern guardedness function, P,
for every pattern, expression pair in the case statement. P is defined as follows:

J=N(i) :)
ml? (g(’uzj ; €y h‘) - D(Ug/pl))

Jj=

P(p,,e,)hO déf

Here, D is the level of destruction function of the infinite object, f i.e. the
depth of a pattern matching variable where depth is measured by the number
of constructors. It is defined as follows:

D(w,v) = 0
D(v, x) A
D(vchl qn) d;f 1+r‘?ﬂ:a?(D(qu)
1=

Here, max and — are the dual operations to min and +, respectively. In the
definition of P, above, v! € Var(p;) where Var(p;) is the set of variables in the

Ensuring Productivity 11

pattern, p;. In addition, N (i) o |[Var(p;)|. If analyse over our intermediate
language there is no need for the D function since there the patterns can only
be one-level deep: in order to get to refer to the third element of an infinite
list, say, we would have to apply the unwind function () three times. Thus,
in this case, we may simply subtract one from the guardedness level for each
application of the unwind function.

It may be noted that, in the definition of the JF operator it is possible
that terms in the vector h may contain pattern matching variables. To avoid
pattern-matching variable capture, therefore, it is necessary that a-conversions
are performed. When any pattern-matching variable is applied, however, the
nom# guardedness function will be its abstract interpretation. This reflects
the fact that we cannot determine, in general, the guardedness properties of an
arbitrary function that has been projected from a data structure.

An alternative approach to finding the guardedness level of each pattern
matching variable would be to substitute the projection, m; ; s for each occur-
rence of v/ in e; and then calculate the guardedness level of the function f in
the resulting expression. The projection function®, 7; ;, would be defined thus:

de .
mi it I case s of p; — v! (17)

This would produce fD(vlj,pi) as the result of its auxiliary guardedness
function, where p; is exactly the same pattern as in the original case expression.

4 Examples of Guardedness Analysis

In this section we show how guardedness functions may be used to detect
whether certain streams are well-defined or not. As a substantial example,
we look at the Hamming function which, in the form that we give, cannot be
detected as being guarded by the definitions of Coquand [2] or Giménez [8]. In
another example we show that a form of the list of Fibonacci numbers, which the
type inference method of Hughes et al. [15] will not accept, is guarded according
to our analysis.

In the analyses that follow we shall assume that the guardedness functions
of purely recursive functions such as compare will be the identity guardedness
function. We shall omit the vector of actual parameter functions except where
necessary. We shall also refer to larger expressions by E, E’, E" etc. We shall
also assume that definition via pattern matching is a sugaring of nested case
expressions. The type Colist here consists of the streams of integers.

4.1 Detecting Non-Productive Definitions
Consider the definition:
ones 1< (cotl ones)

where cotl gives the tail of an infinite list:

cotl (hopt) 2 ¢

57ri,j is not total over the type of ¢t but it is total in the context that it is used within the
case expression. That is, we are assured that ¢ is of the subtype of terms that begin with the
constructor C;. This form of subtyping is used in [19].

12 UKC Computing TR 14-97

ham :: Colist

ham < 1 (comerge (comap (x2) ham) (comap (x3) ham))

comap :: (Int — Int) — Colist — Colist

comap f (a$y) = (fa)O(comap fy)

comerge :: Colist — Colist — Colist

comerge 1Q(az) mQ(bOy) =

case compare ab of
LT — ad(comerge x m)
EQ — ad(comerge T y)
GT — b (comerge Ly)

Figure 1: Definition of the Hamming function.

The definition of ones is obviously non-productive since its tail consists of an
irresolvable circularity. This is detected as follows:

ones? 0 = G(ones, 1 cotl(ones))
1+ G(ones, cotl(ones))
= 1+ cotl? G(ones, ones)
= 1+ cotlf& 0

Now,
cotl¥ 0 = G(I, case lof (ht) — t)
= P ((rO1),1) G(L.1)
= mln(g(haf) - 17g(flf) - 1)
= min(w—1,0—-1)
-1
Hence,

G(ones, 1$cotl(ones)) = 0

Thus the definition of ones is not guarded.

4.2 The Hamming Function

The Hamming function, ham is defined as the list of positive integers that have
only 2 and 3 as their prime factors further details on such a function can be
found in [6]. It and functions used in its definition are given in a Haskell-like
syntax in Figure 1.

In the analyses that follow we shall assume that the guardedness functions
of purely recursive functions such as compare will be the identity guardedness
function. We shall omit the vector of actual parameter functions except where
necessary and refer to larger expressions by E, E', E" etc. We shall also assume
that definition via pattern matching is a sugaring of nested case statements.

Ensuring Productivity

13

4.2.1 Analysis of Guardedness of the comap and comerge Functions.

comerge# 0 =

G(comerge, case | of (ax) — E')
G(comerge, E')

G(comerge, case m of (b{y) — E')
G(comerge, B")

G(comerge, case compare ab of E'")
G(comerge, E"")

min(G(comerge, al)(comerge x m))

3

)
G(comerge, ad>(comerge T y))
G(comerge, b (comerge ly)))

)

min(1 + G(comerge, comerge . m),
1+ G(comerge, comerge x y),
1+ G(comerge, comerge ly))
min(1,1,1) =1

Therefore, comerge is guarded.

cnmap# 0

G(comap, (fa)&(comap fy))

= 1+ G(comap, comap fy)
= 140=1

Therefore, comap is guarded.

4.2.2 Analysis of Auxiliary Guardedness Functions of comap and

comerge.

In order to analyse the ham function we shall need to know the level of guard-
edness of the second argument of comap and of both of the two arguments of

comerge.

comap¥ (h)0 =

G(l, E', (h))
P (a0, ') ()0 =
Gla, ', (b)) =

Gy, E',(h) =
It follows that,

comap¥ (h)0 =

G(l,casel of (ady) — E')

min(G (1, E', (h)), P (ady, E") (h)0,0)
G(l, (fa)O(comap fy), (h)) = w
min(G(a, B, () — 1,G(y, B, (b)) — 1)
1+ F(a, f,1,(a), (h))

1+h¥0

1+ comap? (h)0

min(h¥ 0, comap¥ (h) 0,0)

Note that comap;# depends upon the form of the actual parameter, h. Typ-
ically, the stream consists of data elements and so the function being applied

14 UKC Computing TR 14-97

by comap will have a guardedness function equivalent to the identity. However,
it is possible that a corecursive function may be applied in the case where the
stream consists of a list of codata. In such a case, the application of the guard-
edness function, h, will ensure that the stream itself is productive only if each
of its tributaries, so to speak, is productive.

The analysis of the auxiliary functions of comerge proceeds as follows.

comerge? 0 = G(l,casel of (ax) — E')
= min(G(l, E"),P (az, E") 0,0)
G(L,E") = 1+ comerge? 0
P (adz,E')0 = min(G(a,E') —1,G(z,E') — 1)
G(a,E'"Y = G(a,case m of (b{y) — E")

= G(a,case compare abof E")
= min(1 + G(a,a),1 + G(a,a),w) =1
G(z,E') = min(1+ comerge? 0,1 + comerge? 0,w)
Thus,
comerge® 0 = min(1 — 1, min(1 + comerge? 0,1+ comerge 0,w) — 1,0)

= min(0, comerge 0,0)

The greatest fixpoint of the functional corresponding to this equation is 0.
Likewise, comergef 0=min(G(b, E") — 1,G(y, E") — 1,0), and the solution
to this is also 0.

4.2.3 Analysis of the Main Function, ham.

ham# 0 = 1+ G(ham, comerge (comap (x2) ham) (comap (x3) ham))
= 1+ min(S(ham, comerge),
(comerge? G(ham, (comap (x2) ham))),

(comerge? G(ham, (comap (x3) ham))))
= 14 min(w, G(ham, comap (x2) ham), G(ham, comap (x3) ham))

3

(The above follows since comergei‘7£ and comerge2# both give 0 when applied to 0
and ham does not occur within the definition of comerge or any functions called
through comerge.)

G(ham, comap (x2) ham) = comap? ((x2)) 0 = GFP F#
where F# = Af.(min((x2)¥ 0, £,0)). Now, GFP F# =0, since (x2)¥0 =0,
and so G(ham, comap (x2) ham) = 0. Similarly, G(ham, comap (x3) ham) = 0,
and thus we obtain,

ham{ 0 =1 + min(w,0,0) = 1

Therefore, ham is guarded.

Ensuring Productivity 15

fib 2 Colust

fib def 0 (1 (cosuml fib (cotl fib)))

cosuml :: Colist — Colist — Colist

cosuml Ty o zipWith (+) zy

zip With :: (Int — Int) — Colist — Colist — Colist

zipWith f (adz) (by) 2 (f ab)O(zipWith fzy)

Figure 2: Definition of the Fibonacci list function.

4.3 The Fibonacci List

In this section we analyse a function that produces the list of Fibonacci num-
bers. The function fib, given in Figure 2, calculates this list and is productive.
However, the type inference method of Hughes, Pareto and Sabry will not accept
this algorithm since:

...the system cannot prove that the application (cotl fib) will suc-
ceed. This is because the structure of the definition does not match
the structure of the termination proof for fib.

(Section 7.1 of [15])

(We have altered their notation slightly so that it is consistent with ours.) How-
ever, we shall show that our analysis detects fib as being guarded and therefore
acceptable.

4.3.1 Analysis of fib.

To analyse fib, we first produce expressions for the auxiliary guardedness func-
tions of cosuml and zip With. We take the guardedness functions of + to be the
identity.

ZipWith? ((+)) 0
ZipWith? (+))0 = min((+)¥ 0, zipWith¥ ((+)) 0)
= min(0, zipWith¥ ((+)) 0)

cosumlf& 0

The greatest fixed point solution to the above is 0. Similarly, cosule# 0=0.
It then follows that:

ﬁb# 0 = 2+ min(cosuml? 0, cosuml? (cotl? 0))
= 2+ min(0,—1+ 0)
1

Consequently, fib is guarded.

16 UKC Computing TR 14-97

5 Proof of Soundness

It is necessary to show that any function that is detected as being guarded by
our abstract interpretation will indeed be productive in the sense that it will
be possible to obtain the normal form of any element of the structure within a
finite time the intuitive meaning of Definition 2.1.

Precisely, we are claiming that the following class of functions, those that
are entirely guarded, are productive.

Definition 5.1 If a (defining) expression, e, is guarded wrt a function name,
f, of type A, and e contains only reducible constants apart from f then the ex-
pression e and its function f are called entirely guarded, written EG(e, f, A).

The following result does indeed show that our analysis is sound.

Theorem 5.1 (Due to Coquand, 1993) If we assume that all data terms
are reducible then a codata function, f, will be productive for any set of inputs
if it is entirely guarded.

Structure of the Proof. Our proof of Theorem 5.1 proceeds as follows. We
need to translate our source language into the formal language in which suspen-
sions (using a Fix constructor) and unwinds are used to introduce and eliminate
codata, respectively. This enables us to relate our formal definition of produc-
tivity (Definition 2.1) to the abstract interpretation that we have described.
We then give a result (Lemma 5.2) which establishes the guardedness level that
results from a substitution. As in the typed lambda calculus (see, for example,
[10] for a proof by Girard of strong normalization which formed the model of our
proof?), we need to prove productivity by induction over types by establishing
a stronger criterion of stability (see Definition 5.3) for all guarded definitions.
We also introduce the idea of neutral terms (as proposed by Girard) in order to
simplify the structure of our proof. We show in Lemma 5.3 that all stable codata
expressions are productive. We show in Lemmas 5.5, 5.6 and 5.7 stability results
for products, abstractions and case expressions, respectively. In Lemma 5.9 we
show that all substitution instances (see Definition 5.5) of entirely guarded def-
initions are stable. This then leads to Lemma 5.10 which states that all entirely
guarded expressions are stable. This then allows us to prove Theorem 5.1.

Note that although our proof of correctness is on the assumption that we
have a monomorphic language, we believe that our analysis is also applicable to
systems with shallow polymorphism (i.e. the polymorphism of Hindley-Milner
type inference). This belief is based on the fact that the analysis simply relies
upon the program being well-typed rather than monomorphically typed.

5.1 Translation of the Source Language

The translation that we shall make is to treat suspension and its associated
unwinding as a monad. We need to make a translation which, effectively, treats
data in a call-by-value way and codata in a call-by-name way. The background
to such a monadic translation has been given by Wadler in [32].

6Tt should be noted, however, that Girard’s use of the term reducibility differs from ours.
His idea of reducibility corresponds to our one of stability (which is also used in [26]). Our
definition of reducibility comes from that of Coquand [2].

Ensuring Productivity 17

mapS :: (t —u) — 1Tt —1Tu

mapS f1 Y Fixi (As = Ag— (f(d 9)))
apBindS :: (t — Tu) — 1Tt —1Tu

apBindS 1 2 Fixl(As = Ag =1 (f(I 9)))
compBindS ::t (t — u) — Tt — T u
compBindS f1 2 Fixl(As = Ag = (L £)({ 9))
compMapS : 1 (t — u) —t —Tu

compMapS f1 Y Fixi (As = xg = (1 f)s)

Figure 3: The Suspend & Unwind Monadic Combinators.

1. f F* = T — U then

(a) If a* is not suspended then (Fa)* = F*a*

(b) If a” is suspended then (Fa)* = mapS F a*
2. f F*:: T — 1 U then

(a) If @™ is not suspended then (Fa)* = F~a”

(b) If @™ is suspended then (Fa)* = apBindS F*a"
3. If F* =t (T — U) then

(a) If a” is not suspended then (Fa)* = compMapS F*a"
(b) If a™ is suspended then (Fa)* = compBindS F*a*

Figure 4: The Translation of Source Applications, Fa.

Definition 5.2 We make the following translation from ESFP, our source level
programming language, to ESFPYC, in which codata is formalised by suspensions
and unwinds.

Types. Suppose that we have codata type definitions of the form:-

def

codataT'ty...1, LT

(Here t ...ty are type variables.) Then each occurrence of T on the right-
hand side of the type definition should be replaced by T T. If T occurs as
the result type of a function then that result type becomes T T.

Expressions. The change to expressions relates purely to applications. All
applications in expressions and sub-expressions are translated using the
monadic combinators in Fig. 3. The translation algorithm, to produce
the translation of an application, Fa which we denote (Fa)* is given in
Fig. 4. If the result of this translation has a suspended type but the original
application did not have a suspended type as its result and the original
application was not an argument to another application then we unwind
the translated application i.e. we get | (Fa)*.

As should be expected, we have the following result.

18 UKC Computing TR 14-97

Lemma 5.1 The guardedness levels of corresponding functions and parameters
are preserved by the translation described in Definition 5.2.

Proof. By structural induction on the expressions of the language: the basic
structure of functions has not changed in that we have only added monadic
combinators in the place of simple application. O
For the sake of brevity, in the sequel we shall take the reduction of codata
expressions to mean the unwinding of the corresponding monadic applications.

5.2 Guardedness Levels of Substitutions

We now show how the guardedness levels of substitutions relate to those of
applications.

de L
Lemma 5.2 If fname z, ...z, “ g and we have the application, fname a1 .. .ay,
where elements from a vector s of free variables may occur in the a; then, if h
is the vector of actual parameters to be substituted for s,

G(f,Ela/z],h) > min(S(f,fname,b),rii%fname? bg:)

Here, g; = G(f,a;, h) and b = a[h/s].

Equivalently, we have:
G(f, Ela/a] k) > min(G(f, B, h),min g; + G(w;, B, h))

Proof. The proof is by structural induction over the forms of defining expres-
sions: defining expressions must all be of finite length and have only a finite
number of forms. For the sake of brevity, we shall use E' to denote E[a/x] and,
similarly, @' to denote (ai[a/x]...ap[a/x]).

Base cases

1. For recursive occurrences, where no application is involved, both sides are
equal to 0 unless g is —w in which case the inequality holds.

2. For constants, the LHS is w, as is the RHS unless g is —w in which case
the inequality holds.

3. If the variable is z; then E[a/z;] = a;. In addition,
G(zi, i, h) =0

and so the RHS becomes,

i=

min(G(f, i, h), G(f, ai, b)) = G(f, a;, h)

i=1

and thus the LHS equals the RHS.

Ensuring Productivity 19

Inductive cases

1. Abstractions. This case follows immediately by induction from the def-
inition of the G operator.

2. Constructor expressions. We have:

9(f, Ela/x], h) =
G(f,Cela/x]...e,la/x], h)

= G e/l)

> {By the induction hypothesis.}

= min(1+ rynzlrlrllg(f7 e;,b), 1+ Ilrflrflg(ﬁ a;, h) + g%g($i=€_77b))
J= i= j=
= min(G(f,Ce .. .en,b),@%g(f, ai,h) + G(x;,Ce...eq b))

3. case expressions. For the sake of brevity, we shall denote the original
and substituted expressions as follows:

cE

CE' ™ case §' of (p1,€e}), ... (pn,en)

case Sof (p1,e1),...(Pn,€n)

Now,
G(f, CE', h) = min(min min(G(f, ¢}, h), P (pj, ¢}) o g'), g)

Jj=1
Here, ¢' = G(f,S’, h) and we have that,

k=N (3)
P (pj.€j) h0 = min (G(v], e}, h) = D(v],p;))

Now, D(vf,pj) is the same for both e; and e}. Moreover, since 1)? does
not occur in ayg, it follows that,

P (pj,e;)h0="P (pj,e;) R0
By the induction hypothesis, we have,
g(f/egah) 2 mln(g(flej,b),I}l;l{lg(fl(],“h)+g('177l€],b))

!

9

v

min(G(, 5.b), min G(/, as, h) + G, 5.b)

By using the associativity and commutativity of min and that + dis-
tributes over min, we have,

G(f,CE' h) >
j=n

mln(ml?(mln(mln(g(fa €5, b)7 P (pj/ e]) b g(f/ S: b)):

Jj=

it G(f, i,) + min (G, 1.5). P (p),¢;) b4z, . b)),)

20

UKC Computing TR 14-97

We can apply the associativity, commutativity and distributivity proper-
ties again to obtain the required result. That is,

G(f. CE',h) > min(G(f. CB.b). min G(f. ;. h) + Gz, CE.b))

. Applications. To prove the statement for applications we shall also use

induction on the number of applications in the expression.

Firstly, we make the following definitions, where ¢ is the actual parameter
list in the application in the expression E:

¢ = cla/x]

d = Cc'[h/s]=cla/x][h/s] = c|b/x]

The following are our base cases in our induction over the number of
applications:

(a)
F(f. f.5.¢ h) =

min(0, /1" dG(f,¢}. b))

> {By the structural IH for ¢.}
i=n

min(0, min(f* d min(G(f,¢;,b), minG(f, a;, h) + G(z1.¢;.b)))
= {By continuity.}

min(0, min(f dG(f.¢;,b), /¥ d min(G(f, ai, h) + G(ri,¢;,)))
= {By associativity of min and continuity.}

i=

min(min(0, /7 dG(f. ¢;. b)), min(G(f,ai, h) + 1} dG(wi,c;,b))))
= win(F(f. f.j.e.b), min(G(f.az. h) + Flz. f.j,e.b)))

Consequently, we have that:

j= i=n

Ijn;gl f(f/ f:j:cl7 h‘) 2 mln(g(f/Eab)/Illil{l(g(fa aj, h‘) + g(Tl/Eab)))

f(xlzml:j7clzh) :min(():]:(xl:al:j7clzh))

Since no free variables may occur in a;, the result will follow by
induction if and only if it holds for all other expressions that may
replace a;.

Flmy,my, j,¢' h) = min(O,nom# G(mgy,c',h))

This case follows similarly to that for (4a) above: we use the con-
tinuity of the guardedness function nom# in conjunction with the
associativity of min.

Ensuring Productivity 21

(d) For F(f,fn,j,c',h),if j > Arity(fn) then the result holds trivially
since by definition the guardedness level must be —w. If j < Arity(fn)
then
f(f}fn7j7 cl7h) =

min(S(f, fn,d), N'(f, fn, j, ', h))
— ; #
= min(S(f, fn,d), fn] dG(f,c},h))
{By the structural IH.}

min(S(f, n,b). fu d min(G(f. ¢;.b). min(G(/. ai, h) + Gz c;,b))))

{By continuity and the associativity of min.}

min(min(S(f, fn,b), N(f, fn,j,¢c,b)),
1

min(G(f,ai, h) + N (i, fn, j. ¢, b))

v

Thus we have that,

Jj=p

min F (/. ., €) 2 min(G(f, B, b), min(G(f, ai,) + G, B,)

(Note that the above argument is valid also for recursive calls of
fname.)

(e) F(f.zj,i,¢' h) =F(f, hj,i,c',h) and so the result follows by induc-
tion if we assume that it is true for h;.

(f) F(f,mu,i,c' h) = nom# G(f,c,,h) and so the result follows as in
(4c) above.

The inductive case, for more than one application, is as follows.
f(.f7 FI bl7j7 cl7 h) = min(gl7 g”)

Here, g = F(f,F',j,c¢',h) and ¢" = F(f,F',j + 1,¢',h) where, if ¢’ =

(¢} ...ch,), then e = (b, ¢} ...c.).

Since both ¢’ and ¢" operate over F', the induction hypothesis applies
in both cases as the number of applications in the expression has been
reduced by one. We thus have:

g = win(F(f.F.j,e.b),minG(f,ai, h) + F(ri, F,j.c.b))
g" = min(F(f,Fi+1,eb),minG(f,a,h)+ Flzi, Fj+1,¢,b))
1=

It follows from the associativity of min and the distributivity of + over
min that,

f(fiF’ b’}j7clih) Z
min(min(f(f7 F7 j7 C7 b)7 f(f) F7 j +]‘7 c) b))7

IlITl’;Ill(g(fa ai7h‘) +mln(f(q:l/Fljacab)af(Tl/F/] + 1767 b))))
1=

= win(F(f. Fb.j.e.b),min(G(/. ai, h) + Fley, Fb. j..b)))

22 UKC Computing TR 14-97

5.3 Stability

We now introduce the idea of stability (using the terminology of [26] for the
typed lambda calculus). Our base types for our system include the integers,
Int, and all finite types including the booleans, Bool, and characters, Char.

Definition 5.3 An expression e of type A is stable, written St(e, A)

e If e is of base type and e is reducible (see Definition 2.2) then St(e, A).
(Note that this means in the case of base types that the expression must
be strongly normalising.)

e Ife is a sum of products type i.e. A= szn(i=n A; ;) then St(e, A) if

Jj=1
and only if 3i .Vj.St(m; j e, A) where m, ; is the relevant projection func-
tion.
e Ife is of a functional type i.e. A= B — C then St(e, A) iff Vb.St(b, B) =
St(eb, C).

In order to make the structure of the proof clearer, we introduce the idea of
neutrality.

Definition 5.4 An expression, e, is neutral if and only if it is a variable, a
pre-defined constant or an application i.e. it is neither a constructor expression
(i.e. e is of the form Ce; ...ey) nor is it an abstraction (i.e. e is of the form
Az.E) and nor is it a case expression.

We now show that stable codata expressions are productive.
Lemma 5.3 Where A is a codata type we have:
1. If St(a, A) then Pr(a)
2. If St(a, A) and a - o' then St(a', A)
3. If Ne(a) and if Vt;.(a — t;) ASt(t;, T) = St(¢;,T) then St(a,T)
Proof. The proof for all clauses is by simultaneous induction over the type A.

Base Types. We do not have to examine base types since they are all in the
data class and we assume that all data is strongly normalising.

Sum of Products. 1. Suppose that a is stable of type szn(;ZL A;).
Then, for some i and any j, m; ja is stable (by definition) and by
the induction hypothesis (IH) for A;; is reducible. Now, m; ;a —»
m;,;a' — e; j where e; ; is reducible and a’ is of the form, Cie; 1 ... €; .
Consequently, a is reducible.

2. If @ — o' then for some i and any j, m; ja — m; ja’. a is stable and
so is each 7; ja' by definition. Thus, by the IH for A4, ;, m; ja’ is

stable and, consequently, a’ is stable.

3. Suppose that a is neutral and that St(a’, A) where a — a'. By the
assumption of neutrality, (i.e. @ is not of the form, C;e;1...€;)

!
Tij @ = TijQ
for some i. Now, by definition, since a' is stable so is m; ja’. In

addition, m; j a is neutral and so, by the IH, m; ; a is stable. Thus a
is stable.

Ensuring Productivity 23

Function Spaces. 1. If St(a, B — (), let & be a variable of type B. By
the TH, part 3, for A, x is stable. Hence, ax is stable by definition.
Now, the TH, part 1, for C guarantees that az is productive. However,
ax is n-equivalent to a when abstracting over z and thus a must be
productive.

2. If a » o' and St(a’, B — (), take b such that St(b, B). Then ab
is stable and ab —» a'b. By the TH for C, a'b is stable and thus a' is
stable.

3. Suppose that a of type B — C' is neutral and that if a — a’ then o’
is stable. Let b be a stable expression of type B. By the IH, part 1,
for B, b is reducible. We now argue by induction on the size of the
reduction path of b that the neutral expression ab reduces in one step
into stable terms only.

In one step, ab converts to one of the following. (There are no other
possibilities since a is assumed to be neutral.)

e a'b with a’ one step from a. As a’ is stable and b is, a'b is stable.

e ab’ with b’ one step from b. b’ is stable by TH, part 2, for B.
Since the reduction path for b' is of smaller size (and we can
only have a finite number of unwindings) than that of b, we have
by induction that ab’ is stable.

Thus the TH, part 3, allows us to conclude that ab is stable and so a
is stable.

O
The following can be proved by induction on the number of reduction steps.

Lemma 5.4 Suppose that e is neutral and that e — €' and €' is stable. If every
intermediate expression (i.e. those apart from e and €') on any reduction path
from e to €' is neutral then e is stable.

We now show in the following three lemmas how stability is propagated
through non-neutral terms.

Lemma 5.5 If,
3i.Vj.St(e; j, Aij)

then
7. St(CZ €i1---€im, A)

Proof. Since for some i and any j, St(e; ;, A; ;), €;,; is reducible by Lemma 5.3,
part 1, we can argue by induction on the sum of the sizes of the reduction paths of
the e; ; that m; ; (Cieiq ... e;y) is stable. This converts to one of the following:-

e ¢e;; which is stable.

o ;i (Ciein.. e, L k---€in) — heree; ;. 1s one step from e; ;. By Lemma 5.3,
part 2, 61 PRt stable and as e, & has a shorter reduction path than e; , it
followq by induction that the reml‘rlng expression is also stable.

Thus 7; ; a converts in one step to stable terms only and so by Lemma 5.3,
part 3, it is stable. Hence a is stable. O

24 UKC Computing TR 14-97

Lemma 5.6 If for all stable b of type B, c[b/x] is stable then so is Az.c.

Proof. We need to show that (Az.c)b is reducible for all reducible b. We reason
by induction on the sum of the sizes of the reduction paths of ¢ and b.
(Az.c)b converts in one step to one of the following

e ¢[b/xz] which is stable by assumption.

e (Ax.c')bwith ¢’ one step from ¢. Thus ¢’ is stable by Lemma 5.3, part 2, as ¢
itself must be stable by the assumption (which includes null substitutions).
Thus by induction on the size of the reduction paths, (Az.c')b must also
be reducible.

e (Az.c)b' with b’ one step from b. This follows similarly to the above case.

So (Az.c)b (which is neutral) converts in one step to a stable expression and so
(Az.c)b and thus (Az.c) are stable by Lemma 5.3, part 3. O

Lemma 5.7 If S is stable and each e;[m; ; S/v!] is stable then
case S of (p1,e1)...(p1,€n)
is stable.

Proof. We reason by induction on the sum of the sizes of the reduction paths
of S and all the e;. The expression

case S of (p1,e1)...(p1,€n)

converts in one step to one of the following.

case S' of (p1,e1) ... (p1,€n)

with S’ one step from S. By Lemma 5.3, part 2, S’ is stable and, as the
sum of the sizes of the reduction paths has decreased we have by the IH
that the whole expression is stable.

eilmi; S/vl]

This is stable by assumption.

We then have the following one-step conversion lemma.

Lemma 5.8 If e[h/s] — €'[h/s] where none of the s; is bound in e, each h; is
stable and e'[h/s] must be stable then e[h/s] is stable.

Proof. We give a sketch of the proof which is very similar to those of Lem-
mas 5.5, 5.6 and 5.7. Lemma 5.3, part 3 means that we only have to deal, by
structural induction, with the cases of non-neutral terms.

Ensuring Productivity 25

e e is Az.E. Then the relevant case is where
e'lh/s] = \x.E'[h/s]
Now, for any stable term a of the correct type,
E'[h/s)la/x]
is stable. In addition,
(Mx.E[h/s])a = Ela/z,h/[s]

We can then argue, as in Lemma 5.6, by induction on the sum of the sizes
of the reduction paths of E and a to show that E[a/x,h/s] is stable. It
then follows from Lemma 5.6 that e is stable.

o eis Cje; 1 ...€;p. The argument is similar to that of Lemma 5.5.

e ¢ is a case expression. The argument is similar to that of Lemma 5.7.

5.4 Stability of Entirely Guarded Expressions

We have the following definition that names the possible expressions that may
arise by substitution of stable expressions for variables.

Definition 5.5 An s-instance e’ of an expression e is a substitution instance,

where each g; is stable.
The crucial lemma is then as follows:

Lemma 5.9 If e is an entirely guarded (for some function f) expression then
all s-instances, e’, of expression, e, are stable.

Proof. The proof is by structural induction over the forms of defining expres-
sions: defining expressions must all be of finite length and have only a finite
number of forms. We label the vector of substituting expressions h and the
vector of parameters that they are replacing, s.

Base cases

1. Constants. No substitutions are possible within a constant ¢ and ¢ must
be guarded. Now c is neutral and, by assumption, productive and therefore
by Lemma 5.3, part 3 it is stable.

2. Variables. By assumption, each input, h; that will replace the variable
is stable and so the result follows.

3. Single Recursive Occurrences. By the assumption of guardedness,
these cannot occur at the top level of the entirely guarded expression.

26 UKC Computing TR 14-97

Inductive cases

1. Abstractions. A lambda abstraction, of the form Ay.E, of type A — B
is guarded iff E is guarded. By the induction hypothesis (IH), therefore,
E[h/s] is stable for any stable a of type A. It follows by Lemma 5.6 that
Ay.E[h/s] is stable.

2. Constructor expressions.
(06‘1 ep)[h/s] = Cb1 bp

Where b; = e;[h/s].

If ff h0 > 2 then G(f,e;, h) > 1 for each i and therefore the result follows
immediately by induction and Lemma 5.5.

Suppose then that ff h0 = 1. By the definition of unwinding, each
occurrence of f in F' is replaced by f" in the reduct where

ff=xsCei...ep

Then we can observe that the guardedness level of f within Cby[f*/f]...by[f"/ f]
must be 2 since each occurrence of f is guarded by an additional construc-
tor. (This comes from Lemma 5.2.) In addition, the guardedness level of f
within each b;[f*/f] must be at least 1. Hence, each b;[f*/f] is stable by
the TH. Now, since we do not have any substitutions for bound variables
in b; or b;[f*/f] and

bi — bi[f"/ f]

it follows from Lemma 5.8 that each b; is stable. Consequently, it follows
by Lemma 5.5 that C b; ...b, must be a stable expression.

3. Function applications. First we observe that, due to the definition of
guardedness, corecursive applications of the form,

fa]...an

where n > 0 cannot occur at the top level in our definitions. Such terms
can only be detected as being guarded if they occur within a constructor
expression, as covered in case (2) above.

We argue over the remainder of the possible forms by induction on the
number of applications involved.

Named function application. Here we examine the case of the appli-
cation of a named function. We assume that we have an application
of the form:

fname ay ...a,

de .
where fname 1 ...z, “/ B, In what follows, b = a[h/s] where a is
the vector of actual parameters to fname.

Since the application is guarded, then in the case where n < Arity (fname)

0 < G(f,fnamea,...a,, h)
= {By Lemma 3.2.}

Ensuring Productivity 27

min(S(f. frame.b), min N'(f, fname. . a. b))
< {By Lemma 5.2.}
g(f:E[al/ml . an/Tn]/h)

Now, suppose that we replace the original application, fnamea; .. .ay,,
with fname’s; ...s, where s; ...s, are the bound variables of F' and

d
fname' s1...5, tef Elay/x1 ...an/zy]
Then, since f does not occur in any s;,

G(f,fname' s1...sp,h) = G(f, Elar/z1...an/7y], h)

Therefore, by the IH over fname', fname' is stable. In addition,
each s; is stable and thus by definition, fname’ s;...s, is stable.
Furthermore,

(fname' s1...sp)[h/s] - Ela1/x1 ... an/zn][h/8)]
and so Elay/x1 ...an/zy][h/s] is stable by Lemma 5.3. In addition,
(fname ay ...an)[R/s] — Elai/x1 ... an/z,)[h/s]

and any reduction path involves only neutral expressions. It then fol-
lows by Lemma 5.4 that any s-instance of the application fname a; . ..a,
must, be stable.

Now, if n > m, where m = Arity(fname), then, since the application
is guarded, for all 1 <14 <n —m,

nom# G(f, amss,h) = w
. de
Thus, G(f, amri, k) = w and it follows that for any G, where Gz &)
(fname by ... by bt - - - bimyi) T, with b as above, G# must, produce
w on this input too. It then follows from Lemma 5.2 and induction
that G ay,4; is stable and so frname a; ...a, is stable.

Variable applications. In addition, in the case of the application of
ordinary variables, the application is stable iff guardedness implies
stability in all other cases. This is due to the fact that a component
of the vector, h, is substituted for the variable. Furthermore, no such
variables may occur within h as h may only be constructed by an
application of the S operator. In that case, the vector used, b, makes
substitutions for each variable in the argument vector, a. (In other
words, variable applications will reduce to one of the other cases.)

Pattern matching variable application. The definition of guarded-
ness means that applications involving pattern matching variables
cannot be detected as being guarded, where the guardedness level of
the parameter is not w, since the resulting guardedness level is —w.
The case where the guardedness level of the parameter is w is similar
to that for named function applications where the number of actual

28 UKC Computing TR 14-97

parameters is greater than the arity of the named function. Here,
since for any i, nom# G(f,a;, h) = w then for any function f,, that
it is matched with the variable, m, the application f,, a1 ...a must
be stable since the guardedness functions in each case must return
w. Moreover, f, must exist since for the application of a pattern
matching variable to be guarded it must be enclosed within a case
expression which itself must be guarded. This in turn ensures that
the switch of the case must be guarded and so the switch expression
must be stable and therefore reducible. The typing constraints (as
we have assumed that we are working within a Hindley-Milner type
system) then ensure that the pattern must be matched.

4. Case expressions. We assume here, without loss of generality, that
each case expression only contains one level of destruction: to obtain sub-
structures requires applications of case expressions upon pattern-matching
variables.

It follows directly from the assumption of guardedness that the switch S
must be guarded for f (with respect to h), where S is the switch expression
in

case S of (p1,e1) ... (Pn,€n)

and, therefore, by the induction hypothesis, S[h/s] must be stable and
therefore reducible and so that it should reduce to some pattern p;.

It therefore only remains to show that each e;[m; ; S/v7] is guarded for f
with h as inputs since it will then follow from our inductive assumption
that each e;[m; ; S/v]] is stable. Let us substitute m; ; Sfor v in e;, Then,
by Lemma 5.2 we get,
J=N(i) ;

min G(f.eilmi; S/vil,h) >
j=N() j

I;ﬂ_l? mln(g(fz €i; h) g(f 4,5 S: h) + g(vy s €4, h))
Here, N (i) is the number of variables in the pattern p;. Now, the aux-

iliary guardedness function of m; ; produces —1 on an input of 0 and so
G(f,m; S,h) is equal to G(f,S,h) — 1. Then,

G(f.m; S, h) + Gl ei.h) = G(£.S,h)+G(v] e, h) =1

= P(pj,ei) hG(f, S h)

> 0
(The last inequality follows by the assumption of guardedness.) Since
G(f,ei, h) must also be greater than 0 it follows that f must be guarded in
each e;[m; ; S/v]]. It follows that each e;[m; ; S/v]] is stable and therefore
the entire case expression is stable by Lemma 5.7.

O

5.5 Proofs of the Main Results

The above result allows us a straightforward proof of the following.

Ensuring Productivity 29

Lemma 5.10 All entirely guarded expressions, defining some function f, are
stable.

Proof. Each expression, e, of type A, is the trivial s-instance of itself and so
by Lemma 5.9, EG(e, f, A) = St(e, A). |

Thus we are able to prove our main theorem of soundness, Theorem 5.1.
Proof. By Lemma 5.10 all entirely guarded defining expressions are stable and
by Lemma 5.3 all stable codata expressions are productive. O

Theorem 5.1 is a safety criterion for our abstraction interpretation. This
means that a function can be seen to have a guardedness level greater than or
equal to that given by the analysis. To formalise this we make a mapping from
expressions into A as follows:

Definition 5.6
def w if f is productive
abs (far...an) = { 0 otherwise

We consequently have the following corollary to Theorem 5.1.

Corollary 5.1 The following holds for any function, f, for arbitrary well-
formed and well-typed, reducible actual parameters, a. We assume that all data
terms are normalizable:

abs (fai...ap) >a f#a(]

6 Properties of Guardedness Analysis

6.1 Completeness of the Analysis

We can formalise Coquand’s definition of guardedness [2] over our abstract
domain, A, and this gives the G¢ operator shown in Table 6.1. The S¢ operator
is the counterpart to the S operator and is defined in a parallel way. Note that
it is implicit in Coquand’s definition of guardedness that a function is guarded
iff it is guarded across all function definitions. (This is the check made in the
Coq system [1, 9].)

Our system for detecting productivity is stronger than Coquand’s, due to
the Hamming function example and the following completeness result.

Theorem 6.1 (Completeness) For corresponding expressions in ESFP and
Coquand’s type theory [2],

G°(f,E) <G(f,E,h)

where h is any set of well-formed expressions not containing free variables and
where each h; will have the same type as the corresponding free variable x; in
E.

Proof. Our proof is by structural induction over expressions.

Base cases

gc(f=f): 0 g
G°(f,x)= w =G(f,z,h)
G“(fe)= w =6

30 UKC Computing TR 14-97

¢“(.5) <o (18)
G°(f.0) Y w (19)
G°(fa) 4w (20)
G°(f.3.B) 2 G°(f,B) (21)
G°(£.Car..an) L 1 4 min GO(f.a1) (22)

GO (f. (case s of {p1,er) .. (pu,e))) L min(min GO (f,e:),nom* G°(£,5)) (23)

i=n

G(f.f ar-..a) < min(0, min nom® G (f,a:)) (24)
GO (f, fname a1 ... an) o min(S9(f, fname), ;ril?l nom™ G (f, a:)) (25)
G (foiara) Dmin(_ min(SC(f,F)),min (S,) (26)
G°(f,pias.a) < min nom* G (f,a) 1)

Table 4: Definition of the G€ operator.

Inductive cases

1. Using the induction hypothesis we have that:

GE(f, \e.E) =GC(f,E) < G(f,E,h) = G(f,\¢.E, h)

G°(f.Car...ay) = 1+min G (f.a)

{By the induction hypothesis.}

IN

g(.f7cal---(1n,h)

GE(f. f ar . az) = min(0, min nom* G (f,a;))

If GY(f,a;) = w for each i then
GO(f, far...an) =0=G(f fai...an,h)

since, for each 1, fz-# aw=w. If GY(f,a;) # w then —w results and so the
inequality must be satisfied.

GY(f, fname ay . .. a,) = min(SY (f, fname), Illilrfl nom® G (f, a;))

Ensuring Productivity 31

If, for any i, GY(f,a;) # w then the result is —w and so the inequality
holds.

In the case that w results then, by the induction hypothesis, G(f, a;,h) = w
and so w will result from the application of any guardedness function, in
particular fname??E for any i and also for nom#. In addition, it also follows
from the induction hypothesis that S (f, fname) < S(f, fname, b). Tt thus
follows that the required inequality holds.

5. Consider the application,
Ty ay...a4n

and suppose that for each i, G(f, a;) = w (since otherwise the inequality
will hold trivially). Now, if

(SC(f,F)) # —w

mi
FeFnNames\{f}

then it must be the case, due to the definition of G, that f does not occur
as the actual parameter to any function. In particular, for any application
of the form

fa1...an

in any function F', then f does not occur in any a;. Moreover, if a formal
parameter, z;, of F' occurs in a; then z; cannot be replaced by any ex-
pression containing f since otherwise there would be an application of F'
with f in one of the actual parameters. It follows that any term hj that
would replace z; when evaluating F must have either a named function
or a pattern matching variable at its head. In the case of the former,

Fanl\rgi[ges\{f}(Sc(ﬁ F)) < 8C(f, fname) < S(f, fname, h)

with the second inequality being the induction hypothesis. Then, by as-
suming the induction hypothesis on each actual parameter, the overall
result holds.

In the case of a pattern matching variable being the head function, the
result holds due to the induction hypothesis on each actual parameter.

6. The case for the application of pattern matching variables follows imme-
diately from the induction hypothesis for each actual parameter, a;.

6.2 Comparison with Hughes, Pareto and Sabry Type In-
ference

Hughes, Pareto and Sabry have developed a type inference system for deducing
the correctness of reactive systems, where the latter are modelled as functional
programs upon streams [15]. Their approach consists of developing a system of
sized types. Sized types consist of standard types tagged with either an integer
or w. This ordinal tag, 7, is meant to indicate that the stream has at least
1 elements. Unification of types and terms then includes a constraint-solving
phase in which a system of inequalities over ordinal variables is solved.

We do not know precisely how our analysis relates to the type inference
system of [15], despite the fact that any type inference system can be viewed as

32 UKC Computing TR 14-97

an abstract interpretation [3]. However, we have shown in Section 4.3 that our
analysis allows a productive definition of the list of Fibonacci numbers which
is not accepted by their system. Moreover, we believe that our system is less
complicated than theirs in that it requires only one phase, the calculation of
guardedness functions, after Hindley-Milner type inference. The Hughes, Pareto
and Sabry system, on the other hand, requires that a constraint solving system
is used to ensure that the sized types (that have been inferred in a sequel to
standard type inference) are consistent.

Their system, as it has been implemented, is also only semi-automatic, unlike
ours: in order not to compromise the strength of the resulting constraint lan-
guage they have actually produced a type checker which “requires all let-bound
variables of a program to be annotated with sized type signatures, but infers the
types for all other expressions”. Their decision to use type checking rather than
inference was also influenced by the complexity of solving letrec-expressions. By
contrast, our system is completely automatic and does not require any prelimi-
naries aside from standard Hindley-Milner type inference. Furthermore, we do
not have to concern ourselves with the power of the available constraint solving
systems: the only limitations (as discussed in Section 6.3 below) are built into
the guardedness analysis system itself.

6.3 Limitations of the Analysis

We now look briefly at the ways in which the analysis is limited in that there are
certain productive functions which will not be detected as being guarded. The
limitations arise from two directions. Firstly, our abstract interpretation has
been chosen to be easily implementable and of practical complexity. However,
more sophisticated analyses may be able to detect a wider class of functions as
being guarded. Secondly, the basic idea of a definition being guarded, being
taken from process algebras, would also appear to impose a constraint on the
class of definitions that can be admitted.

In either case we believe that such restrictions can be justified in a teaching
context and can be summarised by some intuitive rules for the construction of
corecursive definitions.

6.3.1 Limitations due to the Abstract Interpretation.

The main limitations on the class of corecursive algorithms admitted is due to
the fact that our analysis is really just “first order and a little bit” as Hughes
phrased it [12]. The analysis cannot, for instance, detect guardedness when a
pattern matching variable is applied to a recursive call since we do not have
any way of knowing the auxiliary guardedness functions of any term that will
be matched by the variable. The same problem applies when a function is
returned as a result by an expression and this resulting function then applied
to a recursive call. This is why the nom# guardedness function, which returns
—w on all results apart from w, is used in the definition of our analysis. For
example, the following function is productive but will not be detected as being

guarded:
def

= 1$(fst cofnpair f)

Here, cofnpair o/ (coid, coid) where coid is the identity function over codata.

Ensuring Productivity 33

It is unclear how this restriction could be overcome without greatly increas-
ing the complexity of the analysis, as is the case with Hughes’s truly higher-order
analysis in [12].

This restriction could probably be justified to students by using the above
argument, (that we do not know what the function that is extracted will do to
the codata being corecursively defined) and we may summarise the restriction
by saying that “No indirect applications to corecursive calls are allowed”.

6.3.2 Limitations due to Guardedness.

The origin of the idea of guardedness in process algebra provides a more subtle
restriction on the algorithms that will be allowed. This is due to the fact that a
guarded process, as defined in [22], for example, involves sequential composition
so that the process X defined by a -t can only be guarded if X does not occur
in a. That is, forward references may not be made to parts of the tail of the
process, t.

This means that, similarly, corecursive calls may not occur in the head of a
colist, say. For example, the following is productive according to our unwinding
rules but it is not guarded:

def

f = cohd(cotl f)O(10f)

In general, we cannot have functions of the form:

f def (cohd cly)els

Here, cl; and cl, are some functions involving f.

It is unclear whether this would be a significant restriction to the program-
mer. Moreover, disallowing such occurrences of f is in keeping with our intuition
that certain infinite structures represent sequences of values where each value
may depend upon previous values in the sequence but not latter ones. It should
be straightforward, therefore, to justify this restriction pedagogically e.g. “we
cannot refer back to the whole structure until some elements have been defined”.

6.4 Complexity of the Analysis

Here we describe the computational complexity of the analysis that we have
given. This is naturally of concern to use since we seek to produce a useful func-
tional programming system in which definitions may be checked for reducibility
without imposing an intolerable burden on the compilation process.

It is straightforward to see from the definition of G that the guardedness anal-
ysis of an expression in the language will have linear complexity with respect
to the size of the expression, if we assume that the primitive abstract domain
functions, min, and 4+ A have linear complexity. In addition, as discussed in [5],
where the analysis does not depend on any actual parameters (i.e. the func-
tion definition does not include any applications of the formal parameters), the
principal guardedness function will be completely determined by, at worst, n|A|
combinations of argument values, where n is the number of arguments to the
function. This is so since there are |A| possibilities in determining the fixpoint
of each auxiliary guardedness function. It is important to realise that whilst
|A| is Ng, we only use a small subset, {—w,—2,—1,0,1,2,w} in practice. We

34 UKC Computing TR 14-97

also emphasise the fact that this is the worst case complexity: we will only have
to compute the auxiliary guardedness functions for those parameters which will
correspond to a recursive call. This is unlike strictness analysis, for example,
where we wish to determine whether each and every parameter is strict.

Complexity increases, however, in the higher-order case where the guarded-
ness functions depend upon actual parameters. Here the principal guardedness
function will be completely determined by, at worst, |A|™ combinations of ar-
gument values, since the guardedness of each parameter may depend on that of
all the others.

This potentially exponential worst-case complexity is mitigated by the fol-
lowing factors:-

e The number of actual parameters in corecursive function definitions which
are applied to corecursive calls of the function is typically two at the most.

e The size of the abstract domain that is used in practice has less than ten
values. It should also be noted that we are using a simple extension of the
integers and so the domain operations should be efficient. Moreover, we
are not having to deal with a structured abstract domain where we seek
to determine the abstract properties of the tail of a list, for example.

e Hindley-Milner type inference itself has potentially exponential worst-case
complexity see [17].

Since we have an infinite domain, we have to guard against the possibility
of an infinitely descending fixpoint computation as in the following example:

gsldéf

if s then
cotl
else
g s (cotll)

This requires the solution of Af. min(—1, f — 1). However, we can easily detect
such computations and make the result —w. The detection can be done by
seeing whether a pre-fixpoint has a lower value than that with 0 substituted for

I

7 Conclusions and Future Work

We have demonstrated that a form of abstract interpretation, which may be
shown to be sound, can be used to extend the notion of guardedness for infinite
data structures. Such a method can be incorporated within a compiler for an
elementary strong functional programming language to detect whether infinite
objects are productive or not. We have suggested that the overhead of perform-
ing this analysis should be polynomial in practice and so should not impact
badly upon any future compiler for an elementary strong functional language.

We would expect to be able to perform a similar analysis for data i.e. the
least fixed points of inductive type definitions. This would naturally follow
since Giménez [8] defined the dual notion of guarded by destructors for recursive
function definitions over data. Consequently, we would expect to be performing

Ensuring Productivity 35

the dual analysis (with least fixed points rather than greatest fixed points)
over the same abstract domain, A. It would also be worth comparing such an
approach to that of Walther recursion where a decidable test for a broader class
of definitions than primitive recursion has been established [19]. Similarly, it
would appear worthwhile to investigate the link to work by Giesl on automated
termination proofs for nested and mutually recursive functional programs [7].

Another avenue for future research would be to investigate the meta-theoretic
properties of this analysis. We have employed a backwards analysis in the style
of Hughes [12] and it is unclear whether a forwards analysis would be sufficient
to obtain the same results. A reason why forwards analysis may be inadequate
for guardedness detection is that, for certain definitions, we have to determine
whether the head of a Colist is guarded. It is known that, using a standard
forward analysis, it is not possible to detect head-strictness of lists [16].

We conclude that a syntactic check for productivity in a simply-typed yet
expressive functional language is made feasible by the work presented.

36 UKC Computing TR 14-97
References
[1] The Coq project. World Wide Web page by INRIA and CNRS, France, 1996.

2]

3]

(4]

[5]

[10]
[11]

[12]

[13]
[14]

[15]

[16]
[17]

18]

[19]

URL: http://pauillac.inria.fr/~coq/coq-eng.html.

T. Coquand. Infinite objects in type theory. In H. Barendregt and T. Nipkow,
editors, Types for Proofs and Programs (TYPES ’93), volume 806 of Lecture Notes
in Computer Science, pages 62-78. Springer-Verlag, 1993.

P. Cousot. Types as abstract interpretations. In 24th ACM Symposium on Prin-
ciples of Programming Languages, pages 316 331, Paris, France, January 1997.
ACM Press.

P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpre-
tation. In Proceedings of the 19th ACM Symposium on Principles of Programming
Languages, pages 83 94. ACM press, 1992.

K. Davis and P. Wadler. Strictness analysis in 4D. In S. L. Peyton Jones et al.,
editors, Functional Programming, Glasgow 1990, pages 23-43. Springer-Verlag,
1991.

E.W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

J. Giesl. Termination of nested and mutually recursive algorithms. Journal of
Automated Reasoning, 19:1 29, August 1997.

E. Giménez. Codifying guarded definitions with recursive schemes. In P. Dybjer,
B. Nordstrém, and J. Smith, editors, Types for Proofs and Programs (TYPES
’94), volume 996 of Lecture Notes in Computer Science, pages 39 59. Springer-
Verlag, 1995. International workshop, TYPES 94 held in June 1994.

E. Giménez. Guardedness algorithm for co-inductive types. Coq club mailing list
(cog-club@pauillac.inria.fr) correspondence, April 1997.

J-Y. Girard, P. Taylor, and Y. Lafont. Proofs and Types. Cambridge University
Press, 1989.

J.R. Hindley. The principal type scheme of an object in combinatory logic. Trans-
actions of the American Mathematical Society, 146:29-60, 1969.

R.J.M. Hughes. Backwards analysis of functional programs. In D. Bjgrner, A.P.
Ershov, and N.D. Jones, editors, Partial Evaluation and Mized Computation,
pages 187 208. Elsevier Science Publishers B.V. (North-Holland), 1988.

R.J.M. Hughes. Compile-time analysis of functional programs. In Turner [29],
pages 117-155.

R.J.M. Hughes. Why functional programming matters. In Turner [29], pages
17-42.

R.J.M. Hughes, L. Pareto, and A. Sabry. Proving the correctness of reactive
systems using sized types. In 28rd ACM Symposium on Principles of Programming
Languages, St Petersburg, Florida, January 1996. ACM Press.

S. Kamin. Head-strictness is not a monotonic abstract property. Information
Processing Letters, 41(4):195-198, 1992.

H. Mairson. Deciding ML typability is complete for deterministic exponential
time. In POPL ’90, pages 382 401. ACM Press, January 1990.

P. Martin-Lof. An intuitionistic theory of types: predicative part. In H.E. Rose
and J.C. Shepherdson, editors, Proceedings of the Logic Colloguium, Bristol, July
1973. North Holland, 1975.

D. McAllester and K. Arkoudas. Walther recursion. In M.A. Robbie and J.K.
Slaney, editors, 13th Conference on Automated Deduction (CADE 13), volume
1104 of Lecture Notes in Computer Science, pages 643—657. Springer-Verlag, 1996.

Ensuring Productivity 37

[20]

21]
[22]
[23]

[24]

[25]
[26]
[27]

[28]

[29]
30]

31]

32]

P.F. Mendler, P. Panangaden, and R.L. Constable. Infinite objects in type the-
ory. Technical Report TR, 86-743, Department of Computer Science, Cornell
University, Ithaca, NY 14853, 1987.

A.J.R.G. Milner. Theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17(3):348 375, 1978.

A.JR.G. Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer-Verlag, 1980.

L.C. Paulson. ML for the Working Programmer. Cambridge University Press,
second edition, July 1996.

J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Technical Report
CS-R9652, CWI, Netherlands, CWI, PO Box 94079, 1090 GB Amsterdam, The
Netherlands, 1996.

B.A. Sijtsma. On the productivity of recursive list definitions. ACM Transactions
on Programming Languages and Systems, 11(4):633-649, October 1989.

S.J. Thompson. Type Theory and Functional Programming. Addison-Wesley,
1991.

S.J. Thompson. Haskell: The Craft of Functional Programming. Addison-Wesley,
1996.

D.A. Turner. Miranda: A non-strict functional language with polymorphic types.
In J.P. Jouannaud, editor, Proceedings IFIP International Conference on Func-
tional Programming Languages and Computer Architecture, volume 201 of Lecture
Notes in Computer Science. Springer-Verlag, September 1985.

D.A. Turner, editor. Research Topics in Functional Programming, University of
Texas at Austin Year of Programming Series. Addison-Wesley, 1990.

D.A. Turner. Codata. Unpublished technical note (longer article in preparation),
February 1995.

D.A. Turner. Elementary strong functional programming. In P. Hartel and
R. Plasmeijer, editors, FPLE 95, volume 1022 of Lecture Notes in Computer
Science. Springer-Verlag, 1995. 1st International Symposium on Functional Pro-
gramming Languages in Education. Nijmegen, Netherlands, December 4-6, 1995.

P. Wadler. Comprehending monads. Mathematical Structures in Computer Sci-
ence, 2:461-493, 1992. Special issue of selected papers from 6’th Conference on
Lisp and Functional Programming.

