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Abstract—The creation of a 3D animated human model (avatar) to be used in Electromagnetic (EM) simulation software is 

described for low-outage Body Area Network applications such as healthcare.  Scanned surface data of a human model is combined 

with movement data from a Motion Capture system to simulate an on-body channel between two Dual Band Metallic Button Antennas 

(DBMBAs) mounted on the wrist & chest and the wrist & hip during walking. An investigation of how different factors such as human 

geometry parameters, arm swing and wrist twisting can affect the body-centric channel during walking action is presented together 

with the relative significance of each of these factors on predicting body-centric channel gain.  

 
Index Terms—Body area networks; Body centric communications; Motion capture 

 

I. INTRODUCTION 

Body area network (BAN) communication is becoming a popular technology for healthcare monitoring, car-driver 

interfacing, personal training systems, and mobile equipment for military personnel. Critical healthcare and military operation 

require low signal outage, and hence, it is important to identify and understand the factors causing changes in the characteristics 

of a BAN user’s body. This not only prevents signal outage, but also extends battery life.  

This paper presents a study of on-body channels during walking and comparison is made with other investigations, [1-10]. In 

[1-4] BAN studies were based on measurements on humans while [5] relied solely on EM simulations on a phantom. [6-10] 

included both measurement and simulation and [5-8] utilized proprietary numerical human phantoms and the animation package 

‘Poser’ where physical stances were digitally posed and compared to video frames from the measurement. 

However, in [5-8], it was difficult to ensure that the walking movement generated by posed phantoms was sufficiently close 

to that of the human under test. In [6] attempts were made to address this problem by having the human imitate the walking 

stances of the Poser model.   

Also, knowing the exact locations and orientations of antennas in relation to the body surface is important and Motion 

Capture was used in [8] & by the authors in [9] to track the locations and orientations of antennas while [10]  

  
Manuscript received October 25, 2013. This work was supported by ESPRC under Grant EP/G055890/1.  
The authors are with the School of Engineering, University of Kent, Canterbury, Kent, UK (phone: +441227827004; e-mail: ss638@kent.ac.uk, 

s.w.kelly@kent.ac.uk, j.c.batchelor@kent.ac.uk).  
used markers to track arm movement during BAN measurements. 

However, in [8] the antennas were represented as simplified point sources on a ‘Poser’ model. Finally, 60 GHz BANs were 

studied in [11] where the accuracy of the antenna locations and polarizations was critical due to narrow beamwidth, and motion 

capture was essential to locate the antennas.  

The uncertainties of retrospectively matching a virtual phantom to human stances was first considered by the authors in [9] 

by creating an avatar closely representing the human under test and actual antenna positions were obtained by motion capture 

allowing accurate models to be included on the avatar.  

 BAN channel variation during walking has been studied for a single model in [1], [2], [4-8] and for a population of models in 

[3], [9], [10].  While [9] showed that a population with similar height had comparable forward transmission (S21) levels for a 

given walking stance, differences between individuals were not negligible and could be up to 10dB. Consideration of the effect 

of variation in size and curvature of different humans has been shown in [12] and the human dimensional parameters and precise 

antenna placement considerations causing these variations will be expanded on here to inform future BAN channel predictions.  

In section II, we outline the creation of 3D animated human models (avatars) for time domain simulation based on human 

surface scans and motion capture data. Section III demonstrates the advantage of the avatar over the HUGO model for on-body 

channel simulation while in section IV simulated results for the avatar with two body-centric antennas are validated by 

measurement. A study of various body parameters affecting on-body communication are given in Section V and Section VI 

concludes the paper. 

II. HUMAN AVATARS CREATION 

The avatar creation process involves three main steps: 
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Fig. 1. (a) 3D scan and (b) Body surface 
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A. 3D body surface scan of the human under test 

A person in a skin-tight suit was scanned with a 3 column optical laser 3D surface scanner with a density of 7 points/cm
2
 

[13], [14], Fig. 1.  

B. Motion Capture during  radio channel measurement 

An 8 camera Vicon motion capture system tracked a human subject who wore 53 reflective markers. An animated skeleton 

representing the subject’s movement together with the antenna locations was created. 

Measurements were taken in an uncluttered 12m by 10.95m room of height 2.27m, Fig. 2. The room had a concrete floor, a 

metal ceiling and no furniture and the equipment operator was in a separate control room, Fig. 2.  

 

Dual band Metalic Button Antennas (DBMBAs, [15]) were used for all measurements. These are top loaded monopoles on small 

ground planes with the appearance of denim jeans buttons and radiate at 2.45 and 5 - 6 GHz.  While the scanned avatar model (a 

168cm tall male) performed each posture, S21 and body movement data were captured by the network analyzer and the motion 

capture system. In order to capture the antenna positions and orientations they were mounted on plastic frames each with 5 

reflective markers, Fig. 3. There was a 2 mm gap between the antennas and the skin and the antennas were connected via flexible 

cables to a Rohde & Schwarz FSH8 vector network analyzer with the settings in Table I. 

 

The scanned body surface was imported into Autodesk Maya
TM

 and mapped to an articulated skeleton model. Captured 

movement data in the form of an animated skeleton was combined with the articulated skeleton and finally, the surface was 

converted to a solid using ‘Mesh2Solid’ software [16]. Further information on 3D character animation using motion capture can 

be found in [17]. 

 

 

 

 

 

 



 4 

Fig. 3. A DBMBA mounted on a frame with 5 markers

(a) 

Avatar Model top view Hugo Model top view 

(c) (d) 

Fig. 4. (a) test model wearing chest antennas, (b) top view of antennas 

orientations relative to the avatar and HUGO model surface, (c) top view 

of avatar antenna positions and (d) top view of HUGO antennas 

z 

x 
y 

(b) 

TABLE I 

EXPERIMENT AND SIMULATION SETTINGS 

VNA settings XFdtd simulation settings 

Frequency 1-6 GHz Frequency 1-6 GHz 
Output power 0 dBm Mesh size  0.7-4 mm 

VNA sweep time 625 ms Absorbing 

boundaries 

Perfectly 

matched 
layer 

IF Bandwidth 10 kHz Concrete floor 

dimension 

0.25 x 18.43 

x 0.008 m3 
Number of samples 631   

    

C. Avatar Tissue Material 

Following the work of [6], [7], [18], an homogeneous tissue value of 2/3 that of muscle ( r = 35 and σ = 1.16 S/m) was used 

for the avatar and validated by S21 measurement at 2.45 GHz. The simulation used the parameters in Table I where the inclusion 

of a concrete floor was found to be necessary when antennas were mounted below the waist. 

III. AVATAR COMPARISON WITH THE VISIBLE HUMAN PROJECT SIMULATED MALE (HUGO) 

The detailed multi-tissue HUGO model [19] was compared with the avatar to establish the importance of accurate antenna 

positioning and body dimensions compared to detailed internal structure modeling. 

Modeled antennas were placed on the right and left chest and Fig. 4 (a) shows the subject during measurement, while (b) 

depicts the avatar and HUGO models with chest antennas. Fig. 4 (c) and (d) show top views of the two cases and it is clear that 

the different body shapes significantly affect the antenna positions.  

A set of 5 body mounted antenna pairs were measured as follows: right-left shoulders, right shoulder-left chest, right-left 

chest, right chest-right waist and left chest-right waist. Each measurement was repeated 5 times and the average result calculated. 

REMCOM XFdtd
TM

 was used and Table II contains the simulated and the measured data at 2.45GHz. The error between 

measurement and simulation was less than 2.5dB for the avatar and up to 24dB for the HUGO model. The inaccuracy of the 

HUGO results is attributed to the difference between the actual and simulated antenna positions. In the case of the chest mounted 

antennas there is a 50 error between the HUGO antenna orientation and that of the avatar and inaccuracies were compounded 

due to signal reflection from HUGO’s chin causing erroneous fading. 

Additionally, when an antenna was mounted on the hip, error was introduced by the HUGO arm positions which did not 

correspond to the measurement subject,  Fig. 5, and  though the antenna orientations were close to measurement, arm blockage 

resulted in an error of greater than 12dB. 
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Therefore an avatar with body parameters and positions corresponding closely to measurement is significantly more accurate 

in terms of BAN channel simulation than an unrelated human with different dimensions.  

IV. WALKING AVATAR ON-BODY CHANNEL SIMULATION  

Having established the accuracy of the avatar in a standing pose, the avatar was validated for walking positions.  Two 

situations were considered where a DBMBA was placed on the right wrist for transmission to an identical antenna on (1) the left 

chest and (2) the right hip. These positions were chosen to represent communication from a wrist mounted sensor to a BAN hub 

gateway device mounted on the torso. The wrist–chest channel represents a challenging case, and the wrist to adjacent hip is a 

more favorable link condition. The wrist position is dynamic during walking and [3], [6], [8], [10] confirm that during walking 

wrist channels vary by 10dB or more due to depolarization and body shadowing.  In [8] and [10] either the antenna or the arm 

position was tracked but neither study could track wrist twist since full motion capture was not used.  However, the wrist angle is 

expected to be important for wrist mounted antennas and to assess this, a wrist channel was investigated for a walking cycle 

comprising 5 static steps as shown in Fig. 6. These steps are referred to as Positions 1 – 5.  

 

A. Walking avatar channel simulation 

A set of five measurements for each step position were taken and the average calculated to reduce multipath fading. The 

person performed a complete round of five steps, before starting the next set. Consistency in step size was assured by tape 

markers on the floor. A comparison of simulated and measured S21 for positions 1 - 5 at 2.45 and 5.50GHz were presented in [9].  

In this paper, simulated S21 values are interpolated between the 5 steps to describe the effect of walking on the channel more 

fully.  This was achieved by animating the avatar with motion capture data at intermediate positions between the 5 measured 

static positions.  
 
 

 

TABLE II  
S21 AT 2.45GHZ IN STANDING POSITION FOR MEASUREMENT AND SIMULATION OF 5 DIFFERENT BAN CHANNELS

 

In total 12 intermediate points were captured and the simulated S21 is indicated by ‘’ symbols in Fig. 7. The extrapolated 

avatar results compare well with measurement at the 5 key walking positions indicated by ‘◊’ symbols.  

In Fig. 7 (a), (right wrist–left chest) S21 starts to fall when the person begins to move into ‘Position 2’ (right leg forward) and 

increases again when ‘Position 3’ (left leg forward) is approached. When in position 2, the right wrist was behind the body 

 Measure-

ment & 
Avatar 

Hugo Measure-

ment & 
Avatar 

Hugo Measure

-ment 

Avatar Hugo 

Body mounted antenna 

positions 

Actual 

antenna 

separation 
(cm) 

Antenna 

separation 

error (cm) 

Actual 

antenna tilt 

from (x, y z) 
axes 

Antenna axis 

tilt error        

(x, y, z) 

S21 (dB) Simulated S21 

minus 

measurement 
(dB) 

Simulated S21 

minus 

measurement 
(dB) 

Right – Left Shoulder 30 6 57°, 3°, 3° -26°, 5°, -3° -44.8 -1.9 -4.7 

Right Shoulder – Left Chest 32 8 77°,  27°, 61° 11°, -27°, 18° -38.5 -2.4 -15.8 

Right – Left Chest 19 9 2°, 50°, 4° -2°, -50°, -3° -25.0 -2.3 -24.8 

Right Chest – Right Waist 32 8 2°, 77°, 1° 0°, 6°, 9° -39.5 2.3 -9.3 

Left Chest – Right Waist 44 9 2°, 114°, 4° 6°, 38°, 4° -50.6 -0.8 -12.8 

Fig. 5. Comparison of antennas positions on the avatar and 

the HUGO model for left chest–right waist case [20] 
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causing torso blockage.  For position 3 the model’s right wrist was in front of the body so a line of sight (LOS) path existed at 

some arm swing angles.  

In Fig. 7 (b), (right wrist–right hip) S21 starts to rise when Positions 2 and 4 (right leg forward) are approached, and falls just 

before Positions 3 and 5 (left leg forward).  

When in Position 2, the right wrist was behind the body and a LOS path existed, while in Position 3 the right wrist was 

forward and the path was shadowed by the arm. Measurement and simulation agree well with a difference of just 1.1 - 3.8dB for 

the wrist–chest link and 0.3 - 3.4dB for the wrist–hip and the overall average error is 2dB. This difference is partially due to the 

absence of a ceiling in the simulation. However, agreement is generally better than obtained in [6], [8] where 3dB and 5dB 

average differences were reported for studies in anechoic conditions.  Therefore the accurate capture of antenna positions and 

body shape was observed to be more important than the detailed modeling of the surrounding environment. 

B. Validation of walking avatar  

To validate the simulated S21 data, the avatar results were compared with those taken independently by Rosini and D'Errico 

[3] where a similar movement regime, antenna type and locations on the body were used. Measured S21 was taken in [3] on a 

person walking 3m with two Top Loaded Monopoles (TLM) on (1) the left hand and chest and (2) the left hand and left hip. 

Fig. 7 (a) includes a comparison of simulated S21 from our avatar and measurement from [3] for the wrist-chest channel and a 

good agreement is observed.  A difference of up to 10dB exists in the positions between steps because the person in [3] had 

antennas on the left hand and left chest while the avatar had antennas on the right hand and left chest, therefore, body blockage 

was more significant for the avatar.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

(a)    (b)  

Fig. 6. (a) S21 measurement of static walking postures for 
reference model with DBMBAs on right wrist and left chest 
(b) 3D animated avatar snapshot for 5 static walking stances 

1 2 3 1 2 3 4 5 

Fig. 7. Comparison of measured S21 (◊),simulated avatar S21 () 
and measured from Rosini and D'Errico, [3], (o) for walking 

Positions 1 to 5 at 2.45 GHz. Antennas attached to (a) wrist  and 
chest (b) wrist and hip  

 

(a) 

(b) 
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Fig. 7 (b) compares measurement from [3] with avatar simulation for the wrist–hip channel. Both show a similar trend when 

the wrist antenna is behind the body (Positions 2 and 4) and S21 increases due to forward radiation from the wrist antenna. 

Conversely, S21 reduces when the wrist is in front of the body (Positions 3 and 5) as rear radiation is required and arm blockage 

also occurs. The difference of up to 15dB between the avatar simulation and the measurement of [3] is primarily due to 

differences in degree of arm swing and wrist twist. 

Although the walking avatar generally predicts on-body channel S21 for wrist to chest antennas within a few dB of 

measurement, a larger discrepancy was found in the wrist to hip case. For this channel the value of arm swing and wrist twist 

angles were more important with simulation confirming a 90 difference in wrist twist causes 14dB variation.  

 

V. BAN SENSITIVITY TO BODY PARAMETERS 

In this section, an arm swing of 0° corresponds to arms hanging vertically while positive angles indicate the arm swings 

forward.  A wrist twist of 0° means the wrist antenna faces front, 90° faces out from the side of the body and 180° faces to the 

rear. 

A. The effect of torso dimensions on BANs 

The effect on simulated S21 is shown in Fig. 8 for a wrist-to-chest and wrist-to-hip channels when a standing avatar torso was 
scaled independently in width and depth. The wrist antenna was facing forwards in all cases.  Fig. 8 (a) shows the right wrist to left 
chest channel is quite stable with torso girth at both bands, though the channel gain decreases as the torso gets larger.  

 

 

  

 

  
 

 
 

 

Fig. 8 (b) illustrates the right wrist to right hip case.  The channel is quite stable with torso depth (fat/thin) but a bigger 

influence occurs when the torso is narrow or wide as this alters the distance between the antennas.  At 2.45GHz, channel gain 

increases for width scaling between 0.7 and 0.9 as constructive and destructive E-field interference occurs. Transmission starts to 

drop for scaled widths of 0.95 or more because the hip antenna moves into the area shadowed for the forward facing wrist 
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Fig. 8. Comparison of simulated S21 results for scaled avatar torso in 

width () and depth () for 2.45 GHz (solid lines) and 5.5 GHz (dashed 
line) in standing still position. Antennas locations: (a) wrist  and chest (b) 

wrist and hip  
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antenna. A similar trend occurs at the 5.50GHz band except that a sharp drop in S21 occurs for a 0.8 width scaling factor. This is 

due to the more closely spaced interference nulls at the higher band. The torso cannot be scaled wider than 1.01 as the hip 

antenna begins to embed into the avatar wrist. 

The variation in S21 with torso dimensions was not as large for the wrist to chest path as for the wrist to hip case because the 

former was always obscured by the body while the later was consistently Line of Sight. 

B. The effect of wrist orientation and antenna positioning accuracy 

Table III contains simulated data illustrating the S21 sensitivity to antenna separation from the skin of the wrist, the position of 

antenna across the wrist and the angle of wrist twist. The avatar was in a standing stance (Position 1, Fig. 6) with the wrist facing 

forwards (0). Varying the antenna-skin separation between 0.1 and 10mm caused less than 1dB signal change meaning neither 

the wrist-hip nor the wrist-chest channels are particularly sensitive to antenna-skin separation due to the antenna rear ground 

plane.  

There is some sensitivity in the wrist channels to antenna position with 10mm change across the wrist (keeping 0.1mm 

separation to the skin) leading to less than 2dB change. This indicates wrist mounted DBMBAs are not highly sensitive to 

separation and lateral position on a wrist. The wrist-hip channel is more strongly influenced by wrist twist than the wrist-chest 

channel, in the wrist-hip case 0 to 10 and 10 to 90 changes in wrist twist lead to 3dB and 14dB changes in S21 respectively at 

2.45GHz.  The wrist-chest channel is less sensitive to wrist twisting because the channel is partially obscured and depolarized by 

the torso which reduces the significance of antenna orientation.  
 

TABLE III 
SIMULATED S21 DEPENDENCE ON ANTENNA WRIST PLACEMENT AND WRIST ORIENTATION  

  
Parameter 

Right wrist-

left chest      

Right wrist-

right hip          

 

Study Range 
S21 change 
(dB) 

S21 change (dB) 

2
.4

5
 G

H
z 

 Wrist-

antenna 

separation 

0.1 to 10 
mm 

0.4 -0.7 

Antenna 
position 

across wrist 

0 to 10 

mm 
-0.9 -1.5 

wrist twist 0 to 10 0.1 2.7 

wrist twist 0 to 90 -0.6 -14.3 

5
.5

 G
H

z 

Wrist-antenna 
separation 

0.1 to 10 
mm 

0.6 0.6 

Antenna 

position 
across wrist 

0 to 10 

mm 
1.2 -1.7 

wrist twist 0 to 10 -0.6 0.8 

wrist twist 0 to 90 1 -11.4 

 

C. Walking group study  

A population of 18 people with heights ranging from 153 to 184cm was recruited.  The S21 results measured at 2.45GHz for 

the 18 individuals were plotted as scatter diagrams against various body parameters and a trend line found for each case.  The 

trend line gradient was used as an indicator of parameter influence on the channel.  For the right wrist to left chest case, Fig.9(a), 

the parameters associated with body dimensions (height, torso girth and arm length) are found to be relatively insignificant, 

while arm swing has a comparatively strong effect, both while standing and in step 1 (position 2).  There is a certain amount of 

body blockage in both these instances which is significantly altered by arm swing angle.  The extent of arm swing is less 

important for step 2 (position 3) as the antenna bearing arm is forward of the torso (line of sight) and the radiation pattern is 

broad.  Wrist twist does not appear to influence the wrist-chest channel in any stance, presumably as the antenna pattern beam is 

broad in the plane of twist with the monopole null facing out from the side or the front of the body. 

There is no body shadowing for the right wrist to right hip channel, Fig.10(a), and this case is strongly affected by the relative 

positions of the wrist and arm, therefore arm length, arm swing and wrist twist dominate, especially in step 2 (position 3).  Arm 

swing is important in all 3 stances, while wrist twist only matters in step 2 (position 3).  Arm length is more important in this 

channel than for wrist-to-chest due to standing wave interference between the arm and the torso so that relatively small antenna 

positional changes in the line of sight path lead to comparatively large changes in S21. 

The standard deviations for each parameter normalised by the parameter mean are presented, Figs. 9(b) and 10(b).   As might 

be expected, for both channels, the largest spreads occur for the parameters of posture (arm swing and wrist twist) rather than 
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physical dimensions (height, girth and arm length).  It is encouraging to note in these two channels that within the ranges 

considered, physical body dimensions do not appear to affect the channel significantly, but, although a range of people of 

different heights was considered, the population did not include any obese individuals where the situation may have been 

different.    

When comparing the avatar S21 of the previous section with the average measured S21 from the 18 person population, 

differences of just 1 – 2dB are found in the wrist–chest channel. For the wrist–hip case, bigger differences up to 7dB were 

observed meaning the avatar offered a better agreement in the NLOS wrist-chest case than the LOS wrist-hip.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Measured right wrist to left chest channel.  Parameter 1 height, 2 torso girth, 3 arm length, 4 arm swing and 5 wrist twist 
respectively (a)  parameter/S21 trend gradients plotted against parameters (b) parameter standard deviations normalised by parameter 

mean. 
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Fig. 10. Measured right wrist to right hip channel.  Parameter 1 height, 2 torso girth, 3  arm length, 4 arm swing and 5 wrist twist respectively (a)  
parameter/S21 trend gradients plotted against parameters (b) parameter standard deviations normalised by parameter mean. 
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VI. CONCLUSIONS 

A motion captured avatar based on actual test subjects has been shown to produce simulated BAN channel results ranging 

between 1 to 7dB from measurement.  This data has been compared with that taken independently in [3] and good agreement 

was observed.  A study of BAN channels on 18 people of various heights enabled various parameters to be separated and 

indicating that arm swing and to some extent wrist twist dominate physical body dimensions while walking.  Instances where the 

body starts to block the channel path make the wrist mounted antenna position particularly important. While shadowing 

dominates S21 in the NLOS channel, the angle between antennas due to wrist twisting is a more significant factor in LOS 

channels and should be considered for wrist mounted body centric channel prediction. Above other differences in body 

geometry, the received signal most strongly depends on the co-polarization of the antennas.   

 Overall, with the use of motion capture and avatars, it has been possible to show the wrist-chest channel is more stable than 

the wrist-hip channel since significant body shadowing dominates the effect of smaller depolarisation losses due arm swing, 

wrist twisting and torso girth. The improved channel modelling arising from the avatar phantom developed in this paper has 

application in various BAN systems including healthcare, gaming and entertainment.  
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