University of

"1l Kent Academic Repository

Rodgers, Peter, Gaizauskas, Robert, Humphreys, Kevin and Cunningham,
Hamish (1997) Visual Execution and Data Visualisation in Natural Language
Processing. In: VL'97 IEEE Symposium on Visual Languages. . pp. 342-347.
IEEE ISBN 0-8186-8144-6.

Downloaded from
https://kar.kent.ac.uk/21454/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1109/VL.1997.626602

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21454/
https://doi.org/10.1109/VL.1997.626602
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Visual Execution and Data Visualisation
in Natural Language Processing

Peter Rodgers, Robert Gaizauskas, Kevin Humphreys, Hamish Cunningham
Department of Computer Science, University of Sheffield, UK
{peterr,robertg,kwh,hamigi@dcs.shef.ac.uk

Abstract In GATE, execution of all modules is performed in an
executable graph that is a simple form of data flow diagram
We describe GG, a visual system that allows the userin which the nodes are the modules or functions to be ex-
to execute an automatically generated data flow graph con-ecuted and the arcs represent data flows. We call this graph
taining code modules that perform natural language pro- thesystem graphThe functions that form the nodes have a
cessing tasks. These code modules operate on text docuarge computational granularity and are of comparable com-
ments. GGI has a suite of text visualisation tools that allows putational size to the functions seen in, e.g., ConMan [9].
the user useful views of the annotation data that is produced This graph is less computationally expressive than is typ-
by the modules in the executable graph. GGI forms part of jcally found in visual data flow languages [10, 18], as it con-
the GATE natural language engineering system. tains no looping (iteration) or distributor constructs (by dis-
tributor construct we mean that the result of execution of an
upstream module defines which downstream module is to
1. Introduction be executed). However, this simplicity has benefits for the

The current relationship between visual languages andmodular system development architecture that GATE aims

natural language processing (NLP) is restricted to translat-to supply.. " .
ing graphical languages into natural language [1] or visual In particular, it is possible to autogenerate the data flow
representations of text processing languages [13]. We beProgram (system graph) from the declaratively stated pre-
lieve that there is a great deal of potential for expressing @nd postconditions that each module in the GATE system
the execution of NLP systems visually. One reason for this MUst have. The preconditions define the data that must
is the modular nature of NLP algorithms, which mean that be present before a rr_10du|e can be run; the postconditions
a data flow visual language is a natural way of represent_deflne the data that will bg present aftgr a module. has been
ing NLP programs. There is also a great need for genericUMN- quether these permit the dynamic construction of the
tools that allow the visualisation of data associated with tex- 8X€cution graph’s arcs and mean that no *hard-coding’ of
tual documents after they have been analysed by NLP teCh_modl.JIe coqnect|ons is required. At run time actual_ data
niques. flow is me_dlated by a common database thrpugh which all
This paper concentrates on the visual execution of NLP modules intercommunicate and the execution graph con-
tasks using data flow techniques, and visualising the inform-VeYyS the state of the database to the user through the col-
ation that results. Specifically, the paper describes GG —°uring of modules according to a traffic-light metaphor to
the GATE Graphical Interface. GGl is a tool for visualising ndicate their executability.
the execution and data of programs integrated into GATE ~ The autogeneration procedure means that users do not
[5], a natural language engineering environment which aims need to take directly into account the other modules in the
to support researchers and developers of NLP systems angystem (or unknown modules that might in the future be ad-
applications by supplying facilities for modular reuse of ded to the system) when they integrate a new module into
NLP software, management of large text collections, and GATE. It thus helps to realise GATE's objective of provid-
visualisation of processing results (see Section 2). ing a ‘plug-and-play’ architecture for natural language en-
While GGI provides a full user interface to GATE, in- gineering. The executable graph is described in more detail
cluding, for example, support for file management, there in Section 3.
are two aspects of it that are of interest here. First, The second aspect of the GGl we describe below is the
GGl provides an autogenerating, customisable, graph forset of data visualisation tools it provides. The data produced
controlling the execution of interdependent NLP modules. from the execution of a module can be viewed directly from
Second, GGl provides a class of generic visualisation toolsthe system graph. Clicking on the module brings up the list
for viewing the complex information computed about texts of postcondition data types, i.e., the data that the module
by NLP modules. has created. Selecting one launches an appropriate results

=] GATE 1.0.2 (November 1996}
File | Yiew | Layout | Options | Create Systeml CUSTOM MODULES Help l
e e —_— Ay
gl "] Tagged [~~~ Ipoce | N
Morph Brill Taggeri— —» 1yl 1 Tookup ;lek Parser,
' W N
/ / E u, 'Y
Tokenizer .| Sentence . SemmlTag__._ Gazetteer ‘!‘ buChart. — Discourse .| MUC-6
7| Sphitter 7| Tagger Looknp | Parser Interpreter | Resuhs
\ \ 4 \
d, /,: N,
NE [T [Name Hhuc-6 NE]
buChart Matcher Results
= =g ¥
Collection: ome/peterrigate B uildfa Document: doc 1 "
[|

Figure 1. The GATE System Graph

viewer. These data visualisation tools range from the simplea TISPTER database. A module is an interface to a resource
highlighting of annotations in the text to graph representa- which may be predominantly algorithmic (e.g. a parser) or
tions of parse trees and conceptual hierarchies representegredominantly data (e.g. a lexicon), or a mixture of both.

as DAGs and are described in more detail in Section 4. Typically, a GATE module will be a wrapper around a pre-
existing NLP module or database (hence, software reuse).
2. Background: GATE and NLP It might seem that pipelining communication of executable

) modules through a database is inefficient. However, such
GATE, and as a consequence GGl, is the result of re-jg the nature of NLP tasks that any module might perform a
cent developments towards code reuse in NLP. In particu-|5rge amount of computation which reduces the significance
lar GATE is based on an underlying database which con- ¢ the database overhead. Further, the objective of GATE
forms to the TIPSTER database standard [8]. This stand-is 1 promote code reuse between research groups and the
ard has been defined by the Architecture Committee of theonstruction of experimental systems for which efficiency is
ARPA-sponsored TIPSTER programme with the intention 4t the prime concern. Finally, the model maps naturally to

of providing a common framework for advanced text pro- cjient-server setup which easily supports distributed access
cessing systems, such as information retrieval and inform-;, algorithmic and data resources.

ation extraction systems. We have adopted this standard
in GATE believing it to have even wider potential util-
ity within natural language engineering, for example for
machine translation, summarisation, and computer-assiste
language learning.

In the TIPSTER model arbitragnnotationsaabout doc-
uments are stored in a database separate from the text. A

The example in Figure 2 also illustrates how modules
operate in GATE. The information shown there has actually
fpeen produced by three modules: a tokeniser module has
produced the token annotations; a sentence-splitter mod-
ule has determined sentence boundaries and added the sen-
fence annotations and their associated constituent attributes;
annotation consists of at least annotation typeand one nd @ part-of-speech tagging module has added the part-of-
or morespans(a pair of numbers that indicate a start point speech attr_lbut_es to the token annotations. These modules
and an end point in the text). Furthattributes (attribute- are shown in Figure 1. For the most part modules are com-

value pairs) can be associated with an annotation, including?®nents for building information extraction systems, sys-
references to other annotations. tems designed to extract prespecified types of information

Figure 2 shows some annotations. It contains two kindsfrom uns_tructured natural language tex’; (such as newswire
of annotation type: sentences and tokens. Tokens are th&8POrtS, journal articles, patents, e-mail, web pages, etc.)
result of tokenization, a process that divides a text up into anfj place it |,nto database-style structured representations,
elements such as punctuation and ‘words’. Associated with©' templates’.
the token annotations are part-of-speech attributes which in- Most of these modules originated in the LaSIE system
dicate the word class of each token. The sentence annotaf6], our entry in the ARPA-sponsored MUC-6 information
tions have references to the tokens that are in them. extraction system evaluation. These modules have been ‘re-

Integration of NLP modules in GATE is achieved by re- used’ in GATE by extracting them from LaSIE and writ-
quiring modules to read and write their final annotations to ing simple wrappers around them to enforce communica-

= Text of doc.1

Richard C. was named to the newly created I
ositicon of wvice chairman of Mary Kay Corp.. a privately held

| doc.l Annotation Viewer for Text Selection

File WViewr Help I
I TYFPE START END ATTRIBUTES
613 sent ence 0 134 {constituents:451 452 453 454 455 456 457 458 459 460 461 S
614 sent ence 136 268 {constituents: 478 47% 480 481 482 483 484 485 486 487 488
G615 sent ence 285 M (censtituents: 501 502 303 304 505 504) J
451 token 3 10 (pos :HHF)
452 token 11 12 (pos :HHF)
453 token 12 13 (pos :PERIGD)

455 token 23 286 ipos : VEDI

456 token 27 32 (pos VBN

he
£
niss
457 token 23 35 (pos: To)

Figure 2. Some Annotations

tion through the GATE database. MJC- 6 NE Resul t s, so either of these must produce an

GATE is a fully implemented system and is currently in end result. However, because results from modules in the
use in a number of NLP research groups around the world.middle of the graph may be of interest to a NLP researcher,
The GGl code is implemented in Tcl/Tk. GATE is imple- any module can be chosen as the final one that will be ex-
mented in G+, however the modules may be writtenin any ecuted.

language. There are currently Perl, Prolog, Tcl, C,*C At any point in time, the state of execution of the sys-

flex, and Common Lisp modules integrated into GATE. tem, or, more accurately, the availability of data from vari-
ous modules, is depicted through colour-coding of the mod-

3. Executable Graphs ule boxes. Figure 1 shows a system window. Light grey

A main purpose of the GGl is to allow execution of the modules (gregn, _in the real display) can be executed. Mod-
modules within GATE. Section 3.1 describes the meaning U€S that require input from others not yet executed, and so
of the primitives in the graph and how it is executed, Section cannot be executed yet, are shown with a white background
3.2 describes the method used to autogenerate the grap|{amber, in reality). The modules that have already been ex-

and Section 3.3 discusses the method of creating manage€cuted are shown in dark grey (red).

able subgraphs. The system graph can either be run in batch mode or in
an interactive manner. To run in batch mode, the user selects
3.1. Graph Syntax and Semantics a path though the graph and clicks on the final module. The

An example of a system graph is shown in Figure 1. A current state of the graph, and the document (or collection of
system graph is an executable graph, and is a simple datglocuments) currently undergoing execution is shqwn. '_I'he
flow program. Modules are shown as nodes in the graph,SyStem ensures that the path chosen by the user is valid by

with the data flow indicated by the arcs. Each incoming only allowing a module to be selected if all its inputs have
arc to a module indicates a dependency on results of pre_already been selected. Selected modules are executed in a

vious processing. All modules at the source of arcs con- data driven manner, with modules being executed as soon

necting to a dependent module must be run before the de2S their input data is available.

pendent module is executed, except where the incoming The interactive mode is designed for module developers.
arcs are connected by lines, in which case the module re-The modules under development can be executed as with
quires the execution of only one of the modules at the otherthe batch mode then the module or modules to be retried
end of the arc (these arcs are then terroedrcs). Thus, (after the underlying code or resources have been changed)
in the example graph of Figure 1, theiChart Par ser can be reset by a mouse click. This clears the database of
module may only be run if the results of t@azet t eer the postcondition annotations and allows the modules to be
Lookup module and either th€agged Mor ph module rerun.

or the Mor ph module are available. They in turn have The nature of the database (where each module produces
earlier dependencies. TA@keni zer module has no de- a specific set of annotation types) means that it is possible
pendencies and so begins execution. There are two modto view partial results of execution without recourse to buf-
ules with no downstream childreMJC- 6 Resul t s and fering intermediate data [19].

3.2. Autogeneration

The graph shown in Figure 1 is in fact thestom graph
This is the system graph that shows all the modules in
the particular GATE environment. The custom window is
automatically generated from the configuration information
that is associated with each module, e.g., fordb€har t
module:

set creol e_config(buchart) {
title {buChart Parser}
pre_conditions {
docunent _attributes {language_engli sh}
annot ati ons {token sentence norph | ookup}

post _condi tions {
docunent _attributes {language_engli sh}
annot ati ons {nane syntax semantics}
}
viewers {
{nane singl e_span}
{syntax tree}
{semantics raw}

The autogeneration algorithm creates data flow arcs from

modules that have an annotation type in their postconditions

to the other modules that have the same annotation type in,

their precondition. For exampl&azett eer Lookup
has the annotation tygeookup in its postconditions, so
an arc connects it witbbuChart Par ser, which has
that annotation type in its preconditions. Arcs are not cre-
ated between modules that operate on different language
however in Figure 1, all the modules operate on English

kind of module, termed #lter, cannot be automatically po-
sitioned in the diagram, instead the user selects the position
of filters from the arcs on which they may appear (arcs from
modules that produce the annotation type the filter operates
on). During execution filters are treated as normal modules.

3.3. Customising Graphs

The system graphs are displayed with the DAWG tool
[14]. This is also used in the tree based visualisation tools
described in Section 4. DAWG allows commands to be
associated with nodes, hence it can be used for data flow
graphs. It has a layout algorithm based on the method used
by daVinci [4] to minimise arc crossing.

GGl suffers from the scaling problem [2], as the size of
the custom graph quickly becomes unmanageable. This can
be alleviated by creating new system graphs from specified
subgraphs of the custom graph.

It is possible to group these derived system graphs to-
gether so that the user may chose from a selection of tasks
at the top level of the GGI (not shown here for space reas-
ons). Having chosen a task (e.g. parsing), an intermediate
level display appears, presenting the user with a selection
f icons, one for each of the one or more specific systems
capable of performing the selected task (e.g. the buChart
parser or the Plink parser). Once a particular system is se-
lected, a final window appears displaying the appropriate
system graph.

S,

language documents. When more than one module has thé-. Visualisation of NL P Data

same annotation type in its postcondition then it is assumed
that either module may produce the required result, and so

the two arcs ar@r-arcs and are connected by a line (both
Mor ph andTagged Mor ph produce the same annotation
and so haver-arcs intobuChart Par ser).

The most computationally expensive part of autogen-
eration goes into discarding redundant arcs. Redundan
arcs are those that connect an upstream module to a dow

NLP data is wide ranging in scope but has specific char-
acteristics that mean the problems with visualising large
amounts of data [2] are less significant. This is because
either the information is visualised as coloured markup
on the text (meaning that the text can be displayed using
traditional textual techniques [12]), or the information is

n‘grouped over small segments of text, such as paragraphs

or sentences.

stream module where it can be deduced that the precon-

ditions of modules between the two given modules cover

the annotation types that the arc represents. For example,

the Tokeni zer produces annotation types required by
buChart Parser, but there is no need for a data flow

arc between these modules as modules between them also

require these annotation types.
The autogeneration facility allows easy integration of
new modules into the GGI. Most NLP tasks can be ex-

pressed in the simple data flow techniques of this system,

but it is currently not possible to integrate NLP tasks that
require iteration.

Some modules have the same annotation type in both

pre- and postconditions. These modify the result of previ-

ous computation and pass the data flow down stream. This

GATE Viewer — doc.1 — Coreferences

ER=r e OP=F IS N-ad was named to the newly created
position of vice chairman of Mary Kay Corp.. a privately held
cosmetics camany.

(=l

was previously president and chief operating officer
of Mary Kay Cosmetics Inc.. the campany’s operating subsidiary.
Those positions won't be filled. Instead. Larry E. Harley.
previcusly executive vice president of U.5. cperaticns for the
cosmetics unit. was named to the newly created post of president of
U.5. operations. and aleng with the head of internaticnal
operaticns, will report directly to John P. Rochen. chief executive
officer of the parent campany.

A spokesman for the campany said GIPERSEISSNCEd = pramcticn
reflects the current amchasis at Mary Kay on internaticnal

expansion. LISNRSEISSNEEd will be invelved in developing the
internaticnal expansicn strategy. E said.

Colour key: Co-raterred items Selected chain Redisplay
Dismiss

Figure 3. Multiple Span Viewer

7= Parse Tree for doc.1, sentence 162

n

L 4 L 4

| es

r
Fichard
C.

¥ ¥
vice H o ||Mary Kay

chairman Corp cosmetics

k. k.
|pr iwate ly| | held

I I

I Richard C. Bartlett was named to the newly created position of vice chairman of Mary Kay Corp.. a privately held cosmetics campany
Dismiss |

Figure 4. Tree Viewer

— comgany |

wae || mamea || ey S

=

GGl has several viewers for the display of annotations. duced by thebuChart Par ser) is shown in Figure 4.
The viewer for each postcondition annotation is specified The parse trees currently integrated into GATE span at most
by the module configuration file, an example of which is a sentence, so that the tree size is always manageable.
given in Section 3.2. The viewers can be classified into The viewers are activated by first clicking with the
those which display the text and overlay the annotationsmouse on the module in the system graph which reveals a
as colours or shades (‘single span’, ‘multiple span’, ‘text- menu of annotations, choosing an annotation brings up the
attribute’); and those that visualise a more complex relation- appropriate viewer.
ship between annotationsin an acyclic graph format (‘tree’). There is a certain amount of connectivity between these
Where no viewer is specified, a default annotation dump is viewers, as it is possible to click on a node in the parse
displayed (similar to that of Figure 2). The configuration tree and have the area of text highlighted in a text display
file for thebuChart Par ser module in Section 3.2 spe- window, or it is possible to highlight areas of text and dis-
cifies that the ‘name’ annotation type is assigned the ‘single play the raw annotations that are contained within the high-
span’ viewer, ‘syntax’ the ‘tree’ viewer, and ‘semantics’ the lighted span.

‘raw’ or annotation dump viewer. New viewers can be writ-
ten where the default ones are not appropriate for new an-g. Concluding Remarks
notation types.

We have described a tool called GGI that supports the
visual execution of NLP systems that consist of multiple in-
terdependent modules. The execution graphs in GGI are
autogenerated from declaratively stated input and output
tions specified by annotation references. The user chooses speC|f|gat|ons of.the component modules, a feature which

: akes it easy to integrate new modules. The graphs are also

highlighted part of the text, and all the other highlights that . o : :
are part of the same chain are displayed. Figure 3 shows thiscustomlsable, permitting a user to define straightforwardly a

viewer displaying the results of a coreference task. Corefer hew subgraph of interest. GGl also includes a range of tools
ence iden?ifieys eglements of the text that are intef reted asfor visualising the complex annotations that NLP modules
: . P may produce as a result of analysing texts.
referring to the same real world entity. For example, a per- . : : :
: : . GGl is proving to be an invaluable tool for the rapid de-
son and a pronoun might be coreferential. In Figure 3 the

user has chosen one of the highlights referring to ‘Richard velopm?nt a}nd Integcrjztlorll ?f new NLP rfn(;dules mtor::l Iar-
Bartlett’ ger application. Feedback from users of the system has in-

dicated that the graph-based execution model is appealing
The ‘tree’ viewer containing ‘syntax’ annotations (pro- and that the visualisation tools are a great aid to research-

The ‘single span’ and ‘text-attribute’ viewers are fairly
simple, assigning different colours to each annotation.
‘multiple span’ is more complex, as it is designed to view
annotation chains. An annotation chain is a list of annota-

ers.

Further work will be driven by user feedback. Increas-
ing the visual content of the system graph is a possibility.
The discrete nature of the tasks would make iconic nodes a
potentially useful addition because icons could ne used to
group nodes that perform particular tasks, such as parsing
or tagging. The labelling of arcs with the annotations that
flow along them is also a possible future feature.

The data flow execution method presented here covers
many NLP applications and allows the modules that form
the nodes of the graph to be placed automatically. However,
there are tasks that require more expressivity. The field
of multilinguistic text analysis involves deciding what lan-
guage a given document is written in. Allowing this sort
of module would require the addition of distributor primit-
ives. The current batch mode of execution might have to be
modified because it may not be practical to choose a path
through a graph when the path may branch.

Allowing iteration within the system graph would enable
the NLP modules to be finer grained, and could allow NLP
algorithms to be encoded with the data flow model. This
would have a profound effect on the GGI model as presen-

ted here, complicating considerably the autogeneration pro- [10]

cess. The problems of procedural abstraction and the visual
display of large graphs [7] would also have to be considered.
Finally, it is worth mentioning that there are other po-
tential applications of visual languages to NLP. In particu-
lar, a visual approach to parsing seems promising as both
the connection between parsing and graph grammars [11],

and between graph grammars and visual languages [15, 16]12]

has already been made. Another application area concerns

graph-based semantic network representations which arel13]

widely used for knowledge representation by NLP systems
[17]. Visual languages that examine the structure of graphs
[3] could be used when manipulating such data.

Acknowledgements

The research reported here has been supported by a gran[tls]

from the U.K. Engineering and Physical Science Research
Council (Grant # GR/K25267).

References

[1] G. Bono and P. Ficorilli. Natural Language Restatement [17]

of Queries Expressed in a Graphical Language ERi92-
11th International Conference on the Entity-Relational Ap

proach. LNCS 645ages 357-274. Springer-Verlag, 1992.
M. Burnett, M. Baker, C. Bohus, P. Carlson, S. Yang, and
van Zee P. Scaling Up Visual LanguagéSEEE Computer
28(3):45-54, 1987.

I. Cruz, A. Mendelzon, and P. Wood. G+: Recursive Quer-
ies without Recursion. IfProceedings of the 2nd Expert
Database Systems Conferenpages 645-666. Benjamin-
Cummings, 1989.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

[11]

[14]

[16]

[18]

[19]

M. Frohlich and M. Werner. Demonstration of the Graph
Visualization System daVinci. |Rroceedings of DIMACS
Workshop on Graph Drawing ‘94, LNCS 898&pringer-
Verlag, 1995.

R. Gaizauskas, H. Cunningham, Y. Wilks, P. Rodgers, and
K. Humphreys. GATE — an Environment to Support Re-
search and Development in Natural Language Engineering.
In Proceedings of the 8th IEEE International Conference
on Tools with Artificial Intelligence (ICTAI-96)Toulouse,
France, Oct. 1996.

R. Gaizauskas, T. Wakao, K. Humphreys, H. Cunningham,
and Y. Wilks. Description of the LaSIE system as used for
MUC-6. In Proceedings of the Sixth Message Understand-
ing Conference (MUC-6Morgan Kaufmann, 1995.

M. Gorlick and A. Quilici. Visual Programming-in-the-
Large versus Visual Programming-in-the-SmallPioceed-
ings VL'94 Tenth Annual IEEE Conference on Visual Lan-
guages, St.LouidEEE Computer Society Press, 1994.

R. Grishman. TIPSTER Architecture Design Document Ver-
sion 2.2. Technical report, DARPA, 1996. Available at
http://ww. tipster.org/.

P. Haeberli. ConMan: A Visual Programming Language for
Interactive GraphicsACM Computer Graphic22(4):103—
111, 1988. ACM SIGGRAPH '88.

D. Hils. Visual Languages and Computing Survey: Data
Flow Visual Programming LanguagesJournal of Visual
Languages and Computingages 69-101, 1992.

E. Hyvdnen. Graph Grammar Approach to Natural Lan-
guage Parsing and Understanding. Rroceedings of the
Eighth International Joint Conference on Artificial Intel-
ligence (IJCAI'83) volume 2, pages 671-674. Morgan
Kaufmann, 1983.

D. Jonassen, editorThe Technology of TextEducational
Technology Publications, 1982.

J. Landauer and M. Hirakawa. Visual AWK: A Model for
Text Processing by Demonstration. Broceedings VL'95
11th International IEEE Symposium on Visual Languages,
Darmstadt IEEE Computer Society Press, 1995.

P. Rodgers. DAWG (Displaying Annotations With Graphs)
Developers Guide. Technical report, Department of Com-
puter Science, University of Sheffield, 1997.

P. Rodgers and P. King. A Graph Rewriting Visual Lan-
guage for Database Programming.he Journal of Visual
Languages and Computintn press.

A. Schiirr, A. Winter, and A. Ziindorf. Visual Progranmg
with Graph Rewriting Systems. IRroceedings VL'95 11th
International IEEE Symposium on Visual Languages, Darm-
stadt IEEE Computer Society Press, 1995.

J. Sowa, editor. Principles of Semantic Networks: Ex-
plorations in the Representation of KnowledgéMorgan
Kaufmann, San Mateo, CA, 1991.

S. Steinman and K. CarveYisual Programming With Pro-
graph CPX Manning Publication, 1996.

A. Woodruff and M. Stonebreaker. Buffering of Interme-
diate Results in Dataflow Diagrams. Rroceedings VL'95
11th International IEEE Symposium on Visual Languages,
Darmstadt IEEE Computer Society Press, 1995.

