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Summary 

Reaction of 1,2-dichloroethane with PhP(CH2CH2SH)2 and caesium carbonate affords 1,10-

diphenyl-1,10-diphospha-4,7,13,16-tetrathiacyclooctadecane (18P2S4) in high yield (ca. 

90%). 18P2S4 slowly decomposes in solution to afford insoluble 

PhP(S)(CH2CH2SCH2CH2SCH2CH2)2P(S)Ph which was characterised by single crystal X-ray 

diffraction. Reaction of 18P2S4 with [Ni(H2O)6](BF4)2 or Fe(BF4)2 affords 

[M(18P2S4)](BF4)2 (M = Ni or Fe). The structure of [Ni(18P2S4)]2+ is a tetragonally distorted 

octahedron in which there are two short Ni-S bonds [2.2152(6)Å] and two long Ni-S bonds 

[2.9268(6)Å)]. For comparison the structure of [Ni(9PS2)]2+ was determined and found to a 

have a similar, but less marked distortion, in which the difference between the long and short 

bonds is ca. 0.5 Å. In contrast the structure of [Fe(18P2S4)]2+ is octahedral with 

approximately equal Fe-S bonds. The electrospray mass spectra of the cations 

[M(9PS2)]2+and [M(18P2S4)]2+ (M= Ni or Fe) all display ethene loss from the ligands as has 

been previously observed with trithiacyclononane complexes. The results of P-C and C-S 

bond rupture were also observed in the reaction of ruthenium(III) triflate with 9PS2 which 

unexpectedly afforded crystals containing [Ru2(S)2(18P2S4)2], in which the two ruthenium 

centres are bridged by two sulfides and the two 18P2S4 ligands coordinated only through the 

phosphine centres. Also present in the crystals was one equivalent of tetrathiacycloundecane 

(12S4). 

 

Introduction 
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In recent years there has been considerable interest in macrocyclic systems containing soft 

donors. We have studied this class of compound as potential ligands for use in radiopharmacy 

since they bind strongly to soft metals such as Cu(I), Re(II), Hg(II) which have useful 

radioisotopes.1 Macrocyclic thioethers have been the focus of much attention,2 but the 

stronger binding properties of phosphines has encouraged the study of all phosphine 

containing systems3 as well as a variety of mixed phosphine-thioether systems.4 We have 

previously investigated the synthesis and coordination chemistry of 1-phenyl-1-phospha-4,7-

dithiacyclononane (9PS2).5-8 In this paper we report a new synthesis and coordination 

chemistry of 1,10-diphenyl-1,10-diphospha-4,7,13,16-tetrathiacyclooctadecane (18P2S4).  

 

Experimental Section 
All reactions were carried out under an atmosphere of dinitrogen using standard Schlenk tube 

and vacuum line techniques, and all solvents were freshly distilled under a dinitrogen 

atmosphere and over an appropriate drying agent. The compounds PhP(CH2CH2SH)2
9, 9PS27 

and [Fe(9PS2)2][BF4]2
7

 were prepared by literature methods. Electrospray mass spectra were 

recorded on a Finnigan MAT LCQ ion trap mass spectrometer (University of Kent 

Department of Biosciences, Wellcome Trust Protein Science Facility). Samples were prepared 

by dissolution of ~1mg of sample in 1ml acetonitrile, this solution was further diluted by a 

factor of 10 and 20µl injected directly into the ionisation chamber. A range of cone voltages 

were applied from 15 � 60 V. Ion detection was in positive mode only. IR spectra were 

recorded as KBr pellets using a Biorad FTS175C FTIR spectrometer and UV-visible spectra 

were recorded using a Unicam UV 500 spectrophotometer. 

 

Synthesis of 1,10-diphenyl-1,10-diphospha-4,7,13,16-tetrathia-cyclooctadecane 

PhP(CH2CH2SH)2 (4 ml, 5.105 g, 0.022 moles) was dissolved in anhydrous DMF (150 ml) 

with caesium carbonate (7.164 g, 0.022 moles). The resulting suspension was heated to 70 oC 

with stirring. Dichloroethane (1.7 ml, 0.022 moles) was mixed with DMF (100 ml) and this 

solution was added dropwise to the reaction mixture via a peristaltic pump, over 10 �12 

hours. The DMF was removed in vacuo and the residue extracted with dichloromethane (100 

ml), washed with 1M sodium hydroxide (2 x 50 ml) and water (2 x 50 ml). The resulting 

solution was dried over NaSO3 and filtered. The dichloromethane was removed in vacuo 

leaving a sticky white/cream residue of 18P2S4. Purification by redissolving in a small 

volume of dichloromethane and filtering through silica followed by evaporation in vacuo 
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afforded an oil. Yield 5.523g, 90%. Microanalysis: Found C 55.4, H 6.7; C24H34P2S4 requires 

C 56.2, H 6.7%; 31P NMR  (CD2Cl2) -24.7. 1H NMR (CD2Cl2) 7.7-7.1 (m, 10 H, Ph), 2.9-1.9 

(m, 24H, CH2). IR spectrum (KBr disk) 2914 s, 1673 m, 1433 s, 1264 m, 1191 m, 741 s, 484 

w cm-1. Upon standing in CH2Cl2 insoluble crystals of 18P2S4S2 are formed. IR spectrum 

(KBr disk) 2920 s, 1653 w, 1436 s, 1287 m, 1188 s, 1120 m, 995 w, 899 w, 804 m, 746 s, 700 

m, 593 m, 524 m cm-1. 

Preparation of [Ni(9PS2)2][BF4]2 

A solution of Ni(BF4)2.6H2O (0.184g, 0.6 mmol) in acetonitrile (5cm3) was added to a 

vigorously stirred solution of 9PS2 (0.358g, 1.4 mmol) in acetonitrile (4 cm3) under a 

dinitrogen atmosphere. The solution turned dark green in colour instantly and was left stirring 

for 15 minutes. An olive green precipitate was formed upon addition of dry diethyl ether (10 

cm3). The precipitate was filtered and washed with diethyl ether (2 x 10 cm3). Yield: 0.3g 

(29%). Microanalysis: Found C 38.4, H 4.6; C24H34B2F8NiP2S4 requires C 38.7, H 4.6%; UV-

VIS (MeCN) λmax nm, (ε/M-1 cm-1) 316(17653), 674(94).  

Preparation of [Ni(18P2S4)][BF4]2 

A solution of Ni(BF4)2.6H2O (0.42 g, 1.23 mmol) in acetonitrile (20 cm3) was added 

dropwise to a stirred solution of 18P2S4 (0.93 g, 1.82 mmol) in dichloromethane (20 cm3). 

Stirring was continued for 1 hour and then the crude product was precipitated by addition of 

diethylether which was then recrystallised as a green powder from acetonitrile. Yield: 0.64 g 

(70 %). Microanalysis Found C 39.0, H 4.8, C24H34B2F8NiP2S4 requires C 38.7, H 4.6%. UV-

VIS (MeCN) λmax  nm, (ε/M-1 cm-1) 318 (16555) 615 (104). 

Preparation of [Fe(18P2S4)][BF4]2 

 A solution of Fe(BF4)2.6H2O (0.53 g, 1.57 mmol) in acetonitrile (20 cm3) was added 

dropwise to a stirred solution of 18P2S4 (0.98 g, 1.92 mmol) in dichloromethane (20 cm3). 

Stirring was continued for 1 hour and then the crude product was precipitated by addition of 

diethylether which was then recrystallised as a red powder from acetonitrile. Yield: 0.93 g (80 

%). Microanalysis Found C 39.1, H 4.7, C24H34B2F8FeP2S4 requires C 38.8, H 4.6%. 

Preparation of [Ru2(S)2(18P2S4)2] 

Ruthenium trichloride (0.20 g, 0.97 mmol) was refluxed in MeOH (10 cm3) with silver triflate 

(0.74 g, 2.9 mmol) for 1 h to give a dark brown solution. The filtered solution was added to 

9PS2 (0.51 g, 2.0 mmol) dissolved in MeCN (10 cm3) and the mixture was refluxed 18 h. 

Upon cooling pale yellow crystals of [Ru2(S)2(18P2S4)2].12S4 formed. 

 

Crystal Structure Determination of [Ni(18P2S4)][BF4]2 
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A single crystal of the complex grown by slow evaporation of MeCN was mounted on a glass 
fibre using Apiezon vacuum grease.  X-ray measurements were made using a Bruker SMART 
CCD area-detector diffractometer with Mo-Kα radiation (λ = 0.71073 Å).10 Intensities were 
integrated11 from several series of exposures, each exposure covering 0.3° in ω, and the total 
data set being a hemisphere.  Absorption corrections were applied, based on multiple and 
symmetry-equivalent measurements.12 The structure was solved by direct methods and refined 
by least squares on weighted F2 values for all reflections.13 All non-hydrogen atoms were 
assigned anisotropic displacement parameters and refined without positional constraints. 
Hydrogen atoms were constrained to ideal geometries and refined with fixed isotropic 
displacement parameters. The structure of the dicationic metal complex has 
crystallographically imposed inversion symmetry. Thus the asymmetric unit contains half a 
molecule of the Ni cation, a single BF4 anion. One of the CH2CH2 residues is disordered over 
two sites (65:35) and this was well modelled. Complex neutral-atom scattering factors were 
used.14 

 

Crystal Structure Determinations of 18P2S4S2, [Ni(9PS2)2](BF4)2, [Fe(18P2S4)](BF4)2 

and [Ru2(S)2(18P2S4)2].12S4 

The data was collected using the microcrystal diffraction facility on station 9.8 of the 

Synchrotron Radiation Source, CLRC Daresbury Laboratory.15,16 The data was collected on a 

Bruker AXS SMART CCD area-detector diffractometer. The crystals, which had been grown 

by slow evaporation of MeCN, were mounted on the end of a two-stage glass fibre with 

perfluoropolyether oil, and cooled by a nitrogen-gas stream.17 The wavelength was calibrated 

by measurement of the unit cell parameters of a standard crystal of known structure. Data 

collection nominally covered a sphere of reciprocal space by three series of ω-rotation 

exposure frames with different crystal orientation φ angles. Reflection intensities were 

integrated using standard procedures,18 allowing for the plane-polarised nature of the primary 

synchrotron beam. Corrections were applied semiempirically for absorption and incident 

beam decay.19 Unit cell parameters were refined from the observed ω angles of all strong 

reflections in the complete data sets.20 The structure was solved by routine automatic direct 

methods and refined by least-squares refinement of all unique measured F2 values.21 
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Table 1. Details of X-ray Analyses of 18P2S4S2, [Ni(18P2S4)](BF4)2, [Ni(9PS2)2](BF4)2, [Fe(18P2S4)](BF4)2 and [Ru2(S)2(18P2S4)2].14S4 
 
 
 18P2S4S2 [Ni(18P2S4)](BF4)2 [Ni(9PS2)2](BF4)2 [Fe(18P2S4)](BF4)2 [Ru2(S)2(18P2S4)2].12S4 
formula C24H34P2S6 C24H34B2F8NiP2S4 C24H34B2F8NiP2S4 C24H34B2F8FeP2S4 C56H84P4Ru2S14 
fw 576.81 745.02 745.02 742.16 1532.09 
λ (Å) 0.6872 0.71073 0.6948 0.6900 0.6948 
space group P21/n P21/n 

P
−
1 P

−
1 

P21/n 

temp (K) 150(2) 173(2) 150(2) 150(2) 150(2) 
cell constants      
a (Å) 10.7703(15) 10.3392(14) 9.8902(5) 10.0486(3) 15.0803(7) 
b (Å) 10.5334(14) 13.703(2) 10.2918(5) 11.5779(3) 12.6682(6) 
c (Å) 12.0899(16) 11.3041(13) 15.2327(7) 14.0704(4) 18.8409(8) 
α (deg)   91.971(2) 75.330(2)  
β (deg) 93.343(3) 111.288(10) 93.796(2) 88.262(2) 111.229(2) 
γ (deg)   107.470(2) 65.870(2)  
V (Å3) 1369.2(3) 1492.3(4) 1473.34(12) 1440.26(7) 3355.1(3) 
Z 2 2 2 2 2 
Dc (g cm-1) 1.399 1.658 1.679 1.711 1.517 
µ (mm-1) 0.629 1.104 1.119 0.994 1.017 
Reflections measured 13395 9375 13596 14818 7948 
Independent 
reflections 

3877 3402 7382 7794 5290 

Rint 0.0292 0.0208 0.0188 0.0272 0.0421 
R1 (all data) 0.0802 0.0449 0.0445 0.0370 0.0528 
wR2 (all data) 0.2164 0.0842 0.0930 0.0888 0.1271 
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Results and Discussion 

Ligand Synthesis 

The reported high dilution synthesis of 9PS2 (scheme 1) via the reaction of PhP(CH2CH2SH)2 

with 1,2-dichloroethane and Cs2CO3 often produces a mixture of products that are difficult to 

separate even by HPLC.7 The mixture is most easily characterised by 31P NMR spectroscopy. 

The desired product, 9PS2, has a resonance at -16.0 ppm, but sometimes a peak is observed at 

+47.5 ppm characteristic of PhPS(CH2CH2S)2CH2CH2 (9PS2S)5 and also a peak at -24.7 ppm 

attributable to the 2+2 product 18P2S4, which has been previously prepared in 10% yield by 

the reaction of dilithiophenylphosphide with the mustard 1,2-bis-(2-chloroethylthio)ethane.22 

Only one 31P NMR resonance was reported22 for 18P2S4 at -24.6 ppm, which is presumably 

due to one of the two possible isomers, resulting from cis or trans disposition of the phenyl 

groups, or alternatively both isomers fortuitously have the same 31P NMR chemical shift. We 

occasionally observe further weak peaks in the region -24 to -26 ppm which could be assigned 

to the second isomer or higher oligomers. 
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Scheme 1 

 

Typically isomers in this class of compound can be separated and have similar, but distinct 

chemical shifts. For example, PhP(CH2CH2SCH2CH2CH2)2SO has two isomers with 31P 

NMR shifts of -25.4 and -27.3 ppm.4a Also cis-PhP(CH2CH2SCH2CH2CH2)2PPh (-25.0, -
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27.51 ppm) and trans-PhP(CH2CH2SCH2CH2CH2)2PPh (-24.43, -26.66 ppm) have been 

characterised.4b All five of the possible isomers of 4,7,13,16-tetraphenyl-1,10-dithia-

4,7,13,16-tetraphosphacyclooctadecane have been isolated,4c while only one isomer of 8,12-

diphenyl-1,5-dithia-8,12-diphosphacyclotetradecane (Ph2[14]aneP2S2) has been isolated.4d 

 

Once the presence of 18P2S4 in the reaction mixture had been established the method was 

modified to optimise its yield to ca. 90% by slow addition of 1,2-dichloroethane to a mixture 

of PhP(CH2CH2SH)2 and caesium carbonate. 

Leaving dichloromethane solutions of 18P2S4 in air for several days results in formation of 

crystals of PhP(S)(CH2CH2SCH2CH2SCH2CH2)2P(S)Ph (18P2S4S2) which were found to be 

insoluble in CH2Cl2, DMSO, THF, acetone, toluene and MeCN. The presence of the sulfide is 

indicated by the appearance of a P=S bond stretch in the infra-red spectrum at 593cm-1. 

Similar acyclic compounds have absorptions in range 610-600 cm-1.23 The synthesis of 9PS2S 

has been previously reported by treatment of Mo(CO)3(9PS2) with sulfur,5 but it is also 

observed to form if 9PS2 is left to stand in solution. As insolubility precluded characterisation 

by solution spectroscopic techniques the structure of 18P2S4S2 was established by a single 

crystal X-ray diffraction study. The molecular structure is shown in Figure 1 and selected 

bond lengths and angles are given in Table 2. The isomer present in the crystal has a trans 

disposition of the phenyl groups and has crystallographically imposed inversion symmetry. 

The S-C-C-E units adopt typical anti conformations and the thioether groups are hence 

exodentate in contrast to the gauche conformation in the smaller 9PS2S.5 The phosphorus-

sulfur double bond length [1.8979(15)Å] is significantly shorter than in 9PS2S [1.963(3)Å], 

and is short compared with other terminal phosphine-sulfide bond lengths in the Cambridge 

Crystallographic Database (average 1.965 Å range 1.905-2.072 Å).24  
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Table 2.   Selected Bond lengths (Å) and angles (°) for 18P2S4S2. 
 
S(2)�C(5)  1.811(3) S(2)�C(4)  1.814(3) 
S(1)�C(2)  1.814(3) S(1)�C(3)  1.814(3) 
P(1)�C(1)  1.816(3) P(1)�C(6)  1.819(3) 
P(1)�C(7)  1.808(3) P(1)�S(3)  1.8979(15) 
C(1)�C(2)  1.531(4) C(5)�C(6)  1.532(4) 
C(4)�C(3)  1.527(4)  
 
C(5)�S(2)�C(4) 101.67(14) C(2)�S(1)�C(3) 102.35(14) 
C(1)�P(1)�C(6) 106.20(13) C(1)�P(1)�C(7) 105.88(13) 
C(1)�P(1)�S(3) 114.28(11) C(6)�P(1)�C(7) 105.20(14) 
C(6)�P(1)�S(3) 111.81(11) C(7)�P(1)�S(3) 112.79(11) 
 

a Estimated standard deviations are given in parentheses. 

 

Fig 1 Molecular structure of 18P2S4S2 showing the atom labelling system. Atoms are 

represented as 50% probability ellipsoids. 

 

Coordination Chemistry 

No coordination chemistry of 18P2S4 has been previously reported and we wished to 

compare its performance as a ligand with 9PS2 as well as the related thiamacrocycles 9S3 and 
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18S6. Reaction of 18P2S4 with [Ni(H2O)6](BF4)2 affords [Ni(18P2S4)](BF4)2 in ca. 70% 

yield. [Ni(18P2S4)](BF4)2 crystallises in the monoclinic space group P21/n. The structure of 

the centrosymmetric pseudo octahedral cation is shown in Figure 2 and selected bond lengths 

and angles are given in Table 3. The Ni-P(1) distance is 2.2004(6)Å. The Ni-S(1) distance 

[2.2152(6)Å] is considerably shorter than Ni-S(2) [2.9268(6)Å]. The Ni-S bond lengths in 

[Ni(18S6)](pic)2 are more even, 2.389(1), 2.397(1), 2.377(1)Å.25 The short Ni-S(1) bond 

length is typical of four coordinated square planar nickel thioether complexes.26 The overall 

geometry is similar to [M(18S6)](BPh4)2 (M= Pd or Pt) which have weak axial interactions of 

3.2330(17) and 3.380(3)Å.27 Presumably the stronger field 18P2S4 ligand (∆o = 16260 versus 

12290 cm-1) is increasing the preference for nickel to be square planar. The geometry appears 

to be metal driven as the ligand can form more symmetric octahedral complexes (vide infra). 

We have noted previously that C-S bonds can be lengthened in 9S3 complexes due to π-

acceptance into the C-S σ* orbitals.28 The C-S bond lengthening is greater if the C-S bond lies 

in the plane of the metal t2g orbitals as would be expected on the basis that overlap between 

metal t2g and C-S σ* orbitals is better if the C-S bonds and the t2g orbitals are coplanar. The 

same effect is observed in [Ni(18P2S4)]2+ with in-plane S(1)-C(2) 1.839(2) Å being longer 

than out-of-plane S(1)-C(3) 1.818(3) Å, although the effect is not observed in [Ni(18S6)]2+.25 

The bond lengthening caused by coordination can be gauged by comparison with the C-S 

bonds in 9S3 [1.820(5) and 1.823(5)Å]29 and in 9PS2S [range 1.792(9) to 1.815(9)Å (average 

1.804Å)].5 These bonds are significantly longer than in the larger fourteen-membered trans-

1,8-diphenyl-1,8-diphospha-4,12-dithia-cyclotetradecane (trans-14P2S2) [1.733(7) and 

1.759(8) Å] possibly reflecting the strain in the smaller nine-membered rings.4b 

 
Table 3. Selected Bond Lengths (Å) and Bond Angles (º)a for [Ni(18P2S4)][BF4]2 
 

Ni - P(1)  2.2004(6)  Ni - S(1)        2.2152(6) 
Ni - S(2)  2.9268(6)  P(1) - C(6a)     1.790(4) 
P(1) - C(6b)     1.943(7)  P(1) - C(11)     1.808(2) 
P(1) - C(1)  1.822(2)  S(1) - C(3)  1.818(3) 
S(1) - C(2)        1.839(2)  S(2) - C(4)        1.798(2) 
S(2)- C(5a)  1.848(4)  S(2)- C(5b)  1.808(7) 
C(1) - C(2)  1.531(3)  C(3) - C(4)       1.520(3) 
C(5a) - C(6a)   1.513(9)  C(5B) - C(6b)   1.529(14) 
 

P(1) - Ni - P(1)' 180.0 P(1) - Ni - S(1) 86.47(2) 
P(1) - Ni - S(1)' 93.53(2) S(1) - Ni - S(1)' 180.0 
P(1) - Ni - S(2)       98.47(2) P(1) - Ni - S(2)' 81.53(2) 
S(1) - Ni - S(2) 82.52(2) S(1) - Ni - S(2)' 97.48(2) 
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S(2) - Ni - S(2)' 180.0 C(6a) - P(1) - C(11) 115.3(3) 
C(6b) - P(1) - C(11) 95.4(4) C(6a) - P(1) - C(1) 98.1(2) 
C(6b) - P(1) - C(1) 115.0(3) C(6a) - P(1) - Ni 108.81(16) 
C(6b) - P(1) - Ni 114.5(2) C(11) - P(1) - C(1) 107.31(10) 
C(11) - P(1) - Ni 118.95(7) C(1) - P(1) - Ni 105.70(8) 
C(3) - S(1) - C(2) 100.47(13) C(3) - S(1) - Ni 108.48(8) 
C(2) - S(1) - Ni 108.10(8) C(4) - S(2) - C(5a) 94.0(3) 
C(4) - S(2) - C(5b) 117.0(4)  
 
a Estimated standard deviations are given in parentheses. 

 
Fig 2 Molecular structure of [Ni(18P2S4)]2+ showing the atom labelling system. Atoms are 

represented as 50% probability ellipsoids. Broken lines indicate the disordered part of the 

molecule. 

 

For comparison the crystal structure of  [Ni(9PS2)2](BF4)2 was determined.7 The compound 

crystallises in the P
−
1 space group with two molecules in the unit cell. Both molecules have 

crystallographically imposed centres of symmetry. The two molecules have some 

crystallographically significant differences, but similar geometries and further discussion will 

be limited to molecule 1 shown in Figure 3 (selected bond lengths and angles for both 

molecules are presented in Table 4). The nickel atom has tetragonally distorted octahedral 

geometry but the distortion is less marked than in [Ni(18P2S4)]2+, possibly due to the more 

rigid nature of the nine-membered ring. The two short bonds [Ni(1)-S(5) 2.2263(5) and Ni(1)-
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P(2) 2.2095(5) Å] are approximately 0.5 Å shorter than those in the elongated S-Ni-S axis 

[Ni(1)-S(8) 2.7812(6) Å]. Previous EXAFS studies of this complex were unable to resolve the 

two lengths.7 Crystal structures of [Ni(9S3)2]2+ again reveal a higher degree of octahedral 

symmetry [Ni(9S3)2](BF4)2  [Ni-S 2.377(1)- 2.400(1) Å30] and  [Ni(9S3)2](Br)2.4(H2O) [Ni-S 

2.3749(16) - 2.4077(15) Å31] while palladium and platinum analogues are pseudo square 

planar.32-34 

Table 4. Selected Bond Lengths (Å) and Bond Angles (º)a for [Ni(9PS2)2][BF4]2 
 

Molecule 1     Molecule 2 
 
Ni(1) - P(2) 2.2095(5)   Ni(17) - P(18)  2.1930(5)  
Ni(1) - S(5) 2.2263(5)   Ni(17) - S(21)  2.2115(4) 
Ni(1) - S(8) 2.7812(6)   Ni(17) - S(24)  2.7919(5) 
P(2) - C(11) 1.8086(19)    P(18) - C(27)  1.8018(19)  
P(2) - C(3) 1.8208(19)   P(18) - C(26)  1.819(2)  
P(2) - C(10) 1.8295(19)    P(18) - C(19)  1.833(2)  
C(3) - C(4) 1.519(3)    C(19) - C(20)  1.522(3)  
C(4) - S(5) 1.834(2)    C(20) - S(21)  1.821(2)  
S(5) - C(6) 1.8094(19)    S(21) - C(22)  1.832(2)  
C(6) - C(7) 1.521(3)    C(22) - C(23)  1.513(7)  
C(7) - S(8) 1.813(2)   C(23) - S(24)  1.807(2) 
S(8) - C(9) 1.816(2)    S(24) - C(25)  1.827(2) 
C(9) - C(10) 1.523(3)    C(25) - C(26)  1.532(3) 
 
Molecule 1     Molecule 2 

P(2) - Ni(1) - P(2)' 180.0 P(18) - Ni(17) - P(18)' 180.0 
P(2) - Ni(1) - S(5)' 92.515(17) P(18) - Ni(17) - S(21)' 91.618(17) 
P(2) - Ni(1) - S(5) 87.485(17) P(18) - Ni(17) - S(21) 88.382(17) 
S(5) - Ni(1) - S(5)' 180.0  S(21) - Ni(17) - S(21)' 180.0 
P(2) - Ni(1) - S(8)'     94.557(16) P(18) - Ni(17) - S(24)' 97.657(16) 
P(2) - Ni(1) - S(8)       85.443(16) P(18) - Ni(17) - S(24) 82.343(16) 
S(5) - Ni(1) - S(8)'     94.536(16) S(21) - Ni(17) - S(24)' 94.148(16) 
S(5) - Ni(1) - S(8)       85.464(16) S(21) - Ni(17) - S(24) 85.852(16) 
C(11) - P(2) - C(3) 104.76(9) C(27) - P(18) - C(26) 106.00(18)  
C(11) - P(2) - C(10) 106.97(9) C(27) - P(18) - C(19) 107.86(9) 
C(3) - P(2) - C(10) 106.58(9)  C(26) - P(18) - C(19) 107.43(10) 
C(11) - P(2) - Ni(1) 121.53(6)  C(27) - P(18) - Ni(17) 116.10(6) 
C(3) - P(2) - Ni(1) 105.55(6)  C(26) - P(18) - Ni(17) 110.63(7)  
C(10) - P(2) - Ni(1) 110.43(7)  C(19) - P(18) - Ni(17) 108.50(6) 
C(6) - S(5) - C(4) 100.05(9) C(20) - S(21) - C(22) 100.48(10) 
C(6) - S(5) - Ni(1) 106.84(7) C(20) - S(21) - Ni(17) 102.09(6) 
C(4) - S(5) - Ni(1) 107.91(6) C(22) - S(21) - Ni(17) 109.42(7) 
C(9) - S(8) - C(7) 103.05(10) C(23) - S(24) - C(25) 101.96(10) 
 
a Estimated standard deviations are given in parentheses. 



 

 13

The phenyl group is approximately coplanar with the nine-membered ring as has been 

observed in [Mo(CO)2Br2(9PS2)],5 [Cu(η1-9PS2)(η3-9PS2)]+,7 and [Hg(9PS2)2]2+.7 A 

contrasting perpendicular orientation of the phenyl ring has been observed in  

[Mo(CO)3(9PS2)].5 

 
 

Fig 3  Molecular structure of [Ni(9PS2)2]2+ showing the atom labelling system. Atoms are 

represented as 50% probability ellipsoids. 

 

 

The expected correlation is observed for in plane and out of plane C-S bonds [in plane S(5)-

C(4) 1.834(5), out of plane S(5)-C(6) 1.8094(19) Å]. Not surprisingly there is no significant 

variation for the more remote thioether. A much smaller increase is observed for the in plane 

P(2)-C(10) 1.8295(19) compared with the out of plane P(2)-C(3) 1.8208(19) Å. Comparisons 

for these P-C bond lengths with those expected in an uncoordinated nine-membered ring are 

difficult to establish. To date crystalline 9PS2 has not been obtained. 9PS2S containing a 
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pentavalent phosphorus has P-C bond lengths of 1.831(7) and 1.828(9)Å.3 The less strained 

trans-14P2S2 has comparatively long P-C bonds 1.854(7) and 1.837(7) Å.4b In the eleven-

membered rings 2,6,10-triphenyl-2,6,10-triphosphabicyclo(9.4.0)pentadeca-11(1),12,14-triene 

and 6-phenyl-6-phospha-2,10-dithiabicyclo(9.4.0)pentadeca-11(1),12,14-triene35 the P-C bonds 

lengths are in range 1.834(8) - 1.862(8) and in the twelve-membered 1,5,9-triphospha-1,5,9-

tris(2-propyl)cyclododecane the range is 1.831(5) to 1.862(5) Å.36 As has been observed 

previously the P-C bonds do not appear to be significantly lengthened by coordination.8 

 

The electrospray mass spectra of  [Ni(9PS2)2](BF4)2 and [Ni(18P2S4)](BF4)2 are similar at 

cone voltages of 15 and 45V. The major peaks in the 15V spectra are presented in Table 5. 

The base peaks are those for [Ni(9PS2)2]2+ and [Ni(18P2S4)]2+ and as has been observed 

previously in this class of compound peaks are observed due to ethene loss.8 

 
Table 5. 15V Electrospray Mass spectrometry Data for [M(9PS2)2](BF4)2 and [M(18P2S4)](BF4)2  
(M = Fe and Ni) 
 
Species Metal M/z Relative Intensity 
    
[M(9PS2)2(BF4)]+ Fe 654.9 7 
 Ni 656.7 10 
[M(18P2S4)(BF4)]+ Fe 654.9 5 
 Ni 656.7 4 
[M(9PS2)2F]+ Ni 589.0 17 
[M(18P2S4)F]+ Fe 587.0 28 
 Ni 589.0 14 
[M(9PS2)2 - H]+ Fe 566.9 26 
[M(18PS2)2]2+ Fe 284.0 100 
 Ni 285.1 100 
[M(18P2S4)]2+ Fe 284.1 100 
 Ni 285.0 100 
[M(9PS2)2 - C2H4]2+ Fe 270.0 33 
 Ni 271.0 4 
[M(18P2S4) - C2H4]2+ Fe 270.0 12 
 Ni 271.0 19 
[M(9PS2)2 - 2(C2H4)]2+ Fe 256.0 13 
 Ni 257.1 2 
[M(18P2S4) - 2(C2H4)]2+ Fe 256.0 9 
 Ni 257.1 9 
[M(9PS2)2 - 3(C2H4)]2+ Fe 242.0 7 
 Ni 242.3 33 
[M(18P2S4) - 3(C2H4)]2+ Fe 242.0 * 
 Ni 242.3 29 
[M(18P2S4) - 4(C2H4)]2+ Fe 228.0 6 
 
* Peak obscured. 
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Reaction of 18P2S4 with Fe(BF4)2 affords [Fe(18P2S4)](BF4)2, the structure of which was 

determined by single crystal X-ray crystallography. The compound crystallises in the P
−
1 

space group with two molecules in the unit cell. The structure of molecule 1 is shown in 

Figure 4 and selected bond and angles for both molecules are given in Table 6. Both cations 

are pseudo octahedral and have crystallographically imposed centres of symmetry. Although 

both cations adopt similar geometries there are significant differences, perhaps the most 

noticeable being the Fe-P bond distances, 2.2477(4) Å in molecule 1 and 2.2296(4) Å in 

molecule 2. The longer Fe-P bond length in molecule 1 is accompanied by shorter Fe-S 

distances. The Fe-P distance in the previously determined structure of [Fe(9PS2)2][BF4]2  is 

[2.2244(7)Å].8 The Fe-S bond lengths [Molecule 1 2.2412(4) and 2.2439(4) Å, Molecule 2 

2.2565(4) and 2.2503(4) Å] are similar to those found in [Fe(9PS2)2][BF4]2 [2.2445(7) and 

2.2516(7)Å]. The variation of C-S bond lengths is less marked than that observed in 

[Fe(9PS2)2][BF4]2, however electrospray mass spectroscopy (Table 5) shows that both 

complexes lose ethene in a similar manner.8 

Table 6.   Selected Bond lengths (Å) and angles (°)a for [Fe(18P2S4)](BF4)2. 
 
Molecule 1  Molecule 2 
Fe(1)�P(1)  2.2477(4) Fe(1')�P(1')  2.2296(4) 
Fe(1)�S(1)  2.2412(4) Fe(1')�S(1')  2.2565(4) 
Fe(1)�S(2)  2.2439(4) Fe(1')�S(2')  2.2503(4) 
P(1)�C(1)  1.8348(16) P(1')�C(1')  1.8349(17) 
P(1)�C(6)  1.8389(16) P(1')�C(6')  1.8391(16) 
P(1)�C(11)  1.8173(16) P(1')�C(11')  1.8161(16) 
S(1)�C(2)  1.8392(16)  S(1')�C(2')  1.8319(17) 
S(1)�C(3)  1.8178(19) S(1')�C(3')  1.8242(17) 
S(2)�C(4)  1.826(2)  S(2')�C(4')  1.8178(17) 
S(2)�C(5)  1.8281(17)  S(2')�C(5')  1.8358(16) 
C(1)�C(2)  1.525(2)  C(1')�C(2')  1.523(2) 
C(3)�C(4)  1.506(3)  C(3')�C(4')  1.512(2) 
C(5)�C(6)  1.515(2)  C(5')�C(6')  1.523(2) 
  
 
P(1)�Fe(1)�P(1A) 180.0  P(1')�Fe(1')�P(1'B) 180.0 
P(1)�Fe(1)�S(1) 87.761(14)  P(1')�Fe(1')�S(1') 87.835(14)
  
P(1A)�Fe(1)�S(1) 92.239(14)  P(1'B)�Fe(1')�S(1') 92.165(14)
  
P(1)�Fe(1)�S(2) 92.386(14)  P(1')�Fe(1')�S(2') 92.099(14) 
P(1A)�Fe(1)�S(2) 87.614(14)  P(1')�Fe(1')�S(2'B) 87.901(14) 
S(1)�Fe(1)�S(1A) 180.0  S(1')�Fe(1')�S(1'B) 180.0 
S(1)�Fe(1)�S(2) 90.042(16)  S(1')�Fe(1')�S(2') 90.494(14) 
S(1)�Fe(1)�S(2A) 89.958(16)  S(1')�Fe(1')�S(2'B) 89.506(14) 
S(2)�Fe(1)�S(2A) 180.0 S(2')�Fe(1')�S(2'B) 180.0 
Fe(1)�P(1)�C(1) 106.62(5)  Fe(1')�P(1')�C(1') 108.94(6) 
Fe(1)�P(1)�C(6A) 108.83(5) Fe(1')�P(1')�C(6'B) 108.45(5) 
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Fe(1)�P(1)�C(11) 125.47(5) Fe(1')�P(1')�C(11') 122.39(5) 
C(1)�P(1)�C(6A) 105.50(8) C(1')�P(1')�C(6'B) 104.27(8) 
C(1)�P(1)�C(11) 103.45(7)  C(1')�P(1')�C(11') 105.74(7) 
Fe(1)�S(1)�C(2) 107.98(5) Fe(1')�S(1')�C(2') 106.51(6) 
Fe(1)�S(1)�C(3) 104.20(6) Fe(1')�S(1')�C(3') 104.85(6) 
C(2)�S(1)�C(3) 101.88(8)  C(2')�S(1')�C(3') 102.10(8) 
Fe(1)�S(2)�C(4) 105.48(7)  Fe(1')�S(2')�C(4') 104.66(5) 
Fe(1)�S(2)�C(5) 106.38(6)  Fe(1')�S(2')�C(5') 107.59(5)
  
C(4)�S(2)�C(5) 102.38(8)  C(4')�S(2')�C(5') 101.74(8) 
  
a Estimated standard deviations are given in parentheses. 

 

 
Fig 4  Molecular structure of [Fe(18P2S4)]2+ showing the atom labelling system. Atoms are 

represented as 50% probability ellipsoids. 

 

 A final 18P2S4 compound was prepared unexpectedly by the reaction of ruthenium 

triflate with 9PS2 in MeCN. The bulk of the material obtained from the reaction was 

[Ru(MeCN)6](CF3SO3)2, but two other products were identified from a crystal obtained from 

the reaction mixture. The X-ray crystal structure revealed the presence of [Ru2(S)2(18P2S4)2] 

(Figure 5) and tetrathiacycloundecane (Figure 6) in the unit cell. Both compounds result from 

either extensive rearrangement of 9PS2, indicating C-S and P-C rupture and formation, or 

from trace impurities in the 9PS2. The [Ru2(S)2(18P2S4)2] molecule has a crystallographic 

inversion centre and contains two ruthenium centres bridged by two sulfides and two 18P2S4 
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ligands coordinated through the phosphine centres [Ru-P 2.4245(13) and 2.4256(14) Å]. The 

ruthenium centres have no metal-metal bond [Ru-Ru 3.839 Å] and can be considered to have 

very distorted tetrahedral geometries [S-Ru-S 89.45(3), P-Ru-P 139.30(4)°]. The 18P2S4 

ligands have their phenyl groups in a cis configuration and the S-C-C-X linkages are anti. As 

expected the S-C bond distances are relatively uniform and short in the range 1.818-1.808 Å 

since there is no thioether coordination. The diruthenium disulfide core appears not to have 

been previously characterised by X-ray crystallography. 

 
Table 7. Selected Bond Lengths (Å) and Bond Angles (º)a for [Ru2(S)2(18P2S4)2] 
 

 

Ru(1) - P(3)  2.4245(13)  Ru(1) - P(18)     2.4256(14) 
Ru(1) - S(2')  2.6256(12)  Ru(1) - S(2)     2.7751(9) 
P(3) - C(12)     1.809(5)  P(3) - C(8)     1.829(5) 
P(3) - C(4)  1.831(4)  P(18) - C(27)  1.831(5) 
P(18) - C(23)  1.838(4)  P(18) - C(19)  1.842(5) 
C(4) - C(5)  1.527(7)  C(5) - S(6)        1.817(4) 
S(6) - C(7)        1.818(5)  C(7)- C(22)  1.548(9) 
C(8)- C(9)  1.528(5)  C(9) - S(10)  1.810(5) 
S(10) - C(11)   1.811(5)  C(11) - C(26)   1.512(7) 
C(19)- C(20)  1.520(6)  C(20) - S(21)  1.808(4) 
S(21) - C(22)   1.799(5)  C(22) - C(7)   1.548(9) 
C(23)- C(24)  1.523(6)  C(24) - S(25)  1.809(4) 
S(25) - C(26)  1.818(5)  C(26) - C(11)  1.512(7) 
 

P(3) - Ru(1) - P(18) 139.30(4) P(3) - Ru(1) - S(2') 108.97(4) 
P(18) - Ru(1) - S(2)' 106.20(4) P(3) - Ru(1) - S(2) 102.47(3) 
P(18) - Ru(1) - S(2)       97.67(4) S(2)' - Ru(1) - S(2') 89.45(3) 
Ru(1') - S(2) - Ru(1) 90.55(3) 
  
 
a Estimated standard deviations are given in parentheses. 
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Fig 5 Molecular structure of [Ru2(S)2(18P2S4)] showing the atom labelling system. Atoms 

are represented as 50% probability ellipsoids. 

 

 

The second compound present in the unit cell is surprisingly tetrathiacycloundecane (12S4). 

The molecule is disordered but has essentially the same geometry as a previous reported 

structure.37 

 
Table 8. Selected Bond Lengths (Å) and Bond Angles (º)a for 12S4 
 

 

S(51) - C(56B') 1.795(15)  S(51) - C(52A)     1.797(19) 
S(51) - C(56A') 1.808(10)  S(51) - C(52B) 1.819(18) 
C(52A) - C(53A)    1.56(3)   C(53A) - S(54) 1.773(17) 
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C(52B) - C(53B) 1.47(3)   C(53B) - S(54) 1.87(2)  
S(54) - C(55A) 1.814(10)  S(54) - C(55B) 1.823(15) 
C(55A) - C(56A)  1.513(18)  C(55B) - C(56B) 1.530(14) 
 
 

C(52A) - S(51) - C(52A') 90.3(5) C(56B) - S(51) - C(56B') 98.8(6) 
C(53A) - S(54) - C(55A) 102.7(5) C(55B) - S(54) - C(53B)101.4(6) 
  
 
a Estimated standard deviations are given in parentheses. 

 

 
Fig 6 Molecular structure of 12S4 showing the atom labelling system. Atoms are 

represented as 50% probability ellipsoids. Broken lines indicate the disordered part of the 

molecule. 

 

It is difficult to fully rationalise the formation of these two products although C-S and P-C 

bond rupture are well established in the coordination chemistry of 9S3 and 9PS2.8 Previously 

reported trends suggest that 9PS2 would be more prone to C-S or P-C rupture when 

coordinated to ruthenium rather than iron.28 It is perhaps worth mentioning that in preliminary 

experiments using 1-cyclohexyl-1-phospha-4,7-dithiacyclononane reaction with Fe(BF4)2 
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afforded [Fe(9S3)2][BF4]2 in which again P-C bond rupture and C-S bond formation had 

occurred. 

 

Conclusions 
18P2S4 can be prepared conveniently in high yield without the use of mustard compounds 

and is a stronger field ligand than 18S6 due to the presence of the phosphine groups. 18P2S4 

and 9PS2 display similar coordination chemistries with greater flexibility of geometry 

observed for the larger ring. The crystal structures of [Ni(9PS2)2]2+ and [Fe(18P2S4)]2+ both 

contain two independent cations with significant different M-S and M-P bond lengths 

indicating that the M-C and M-S bonds are soft and easily distorted. Lengthening of C-P and 

C-S bonds is observed upon coordination of 18P2S4 due to the population of C-P and C-S σ* 

orbitals which results in the observation of ethene loss by electrospray mass spectrometry. 

This lability of the C-P and C-S bonds is also observed in the formation of 

[Ru2(S)2(18P2S4)2] and 18S4 and unfortunately limits the applicability of 9PS2 and 18P2S4 

for the development of new radiopharmaceuticals which require chemically stable complexes. 
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