System F with Width-subtyping
and Record Updating *

Erik Poll

Computing Laboratory, University of Kent, Canterbury, England

Abstract. It is a well-known problem that F< — the polymorphic lambda
calculus F' extended with subtyping — does not provide so-called polymor-
phic updates, and that the standard PER model for F< does not provide
interpretations for these operations. The polymorphic updates are inter-
esting because they play an important role in some type-theoretic models
of object-oriented languages. We present an extension F™**" of system F
with a restricted form of subtyping — width-subtyping — on record types,
that does provide these operations. The main result is that we show it
is still possible to give a PER model for this system.

1 Introduction

There have been many attempts to model object-oriented languages in typed
lambda calculi (see for instance [CW85], many of the papers in [GM94], [FM94],
or [AC96]). The type systems used for these object models are usually variants
of F<, the extension of the polymorphic lambda calculus — system F — with sub-
typing introduced in [CW85]. Unfortunately, F< has the well-known deficiency
that it does not provide so-called polymorphic record-updates, discussed in more
detail below. These operations play an important role in some object models,
notably in the existential object model introduced in [PT94].

One solution to this problem has been the introduction of richer systems for
record types and operations on records, e.g. [CM91] [Car92] [Zwa95]. But these
systems are very expressive and (hence) rather complicated.

Another approach is taken in [HP96], where subtyping is restricted to so-
called positive subtyping. We go one step further and restrict this notion of pos-
itive subtyping to width-subtyping on record types, resulting in a system Fwidth,
The intended application of F%h like that of [HP96] is the existential
object model of [PT94]. Width-subtyping has several advantages over positive
subtyping, notably the much simpler operational semantics and denotational
PER semantics.

The syntax of F¥i ig given in Section 2. The main challenge is to provide a
semantics for F*#" hecause the standard (PER) model construction for system
F seems to rule out polymorphic record-updates. However, we show that it is

* to appear in: Proceedings of Theoretical Aspects of Computer Software (TACS’97),
Sendai , Japan

possible to extend the standard PER model to interpret F**" in Section 3.
Section 4 gives a comparison with related work. We point out some possible
extensions of the system in Section 5 and conclude in Section 6. The rest of
this section discusses polymorphic record-updates, their relevance for modelling
objects, why they cannot be typed using subtyping, and how they can be typed
using width-subtyping.

Typing Polymorphic Record Updates

Polymorphic Record Updates. Because we are in a functional setting, updating a
record means making a copy of a record with one or more of its fields changed.
An example of a function that updates a record is a function have_birthday
that takes a record of type (age:Nat,name:String) as input and returns the
record with its age-field increased by 1. Similar functions exist of course for all
record types that include such an age-field, and we would like to be able to write
a single generic or polymorphic function have_birthday that can be applied to
any record with an age-field of type Nat. This requires a record-update that
can be applied to records of many different types — viz. all record types with an
age-field of type Nat — which is known as a polymorphic record-update.

Polymorphic Updates and Objects. To understand the use for polymorphic up-
dates for modelling objects, suppose that an object is modelled as a piece of state
— a record of instance-variables — together with a collection of functions — the
methods — that act on this state. For example, objects of a class AGE could have
states of type (age:Nat) and have birthday as one of their methods. Objects
in subclasses will have have richer states, i.e. states with more instance vari-
ables. For example, objects of a subclass PERSON of AGE could have states of type
(name:String, age:Nat). A method of a superclass should be applicable to these
richer states of objects in a subclass, e.g. have_birthday should be applicable
to the states of PERSON’s. This means we want the polymorphic have birthday
discussed above as method of AGE.

The Problem with Subtyping. The subtyping relation of F< captures the notion of
substitutivity: a type o is a subtype of 7 — written ¢ < 7 — if an expression of type
o can be used whenever an expression of type 7 is required, without introducing
type errors. Unfortunately, this notion of subtyping turns out to be too weak
to type polymorphic updates such as the have birthday above. At first sight
one expects that a good type for have_birthday would be Vo < (age:Nat). o — 0.
But this is not the casel The problem is that there may be subtypes o of (age:Nat)

for example (age:Even) for which increasing the age-field of a term of type o
by 1 does not produce a result of type 0. The standard PER model of F< does
provide all subsets of IN as subtypes of Nat, which means that in this model
Vo <(age:Nat). o — o has an identity function as its only element (see [BL90]).

Width-Subtyping. Basically, the problem is that there are too many subtypes.

Subtyping includes not only so-called width-subtyping

m>n
(WIDTH)
(o1, o lmiom) < (Lo, . lgioy
but also depth-subtyping
o, <tiforalli=1...n
(DEPTH)

(li:or, .o lpion) < {imy oo b))

We will solve the problem of typing have _birthday by considering width-subtyping
in isolation. A type o is a width-subtype of 7 written ¢ C 7 if o can be ob-
tained from 7 by adding fields. We write M (l:= N) for the record M with its
l-field changed to N and all its other fields unchanged. The typing rule for this
update operation is

I'rM:0 I'EN:7 oC{l7)

(UPDATE)
I'M{l:=N):o

So, for example, Az:0.z(age:=x.age + 1) : 0 — o for any o C (age:Nat), and
the polymorphic have_birthday is obtained by abstracting over all o C (age:Nat):

have birthday = Ao C (age:Nat). A\z:0. z(age:=z.age + 1)
: Vo C (ageNat).o0 - o .

Polymorphic functions being parametric which roughly means they behave in
the same way at different types we expect this type Vo C (age:Nat). o — o to
be isomorphic to Nat — Nat. This isomorphism does indeed hold in the PER
model given in Sect. 3 (Lemma 34).

2 The System Fwidth

We add 4 new term constructions to system F: records (1 = My, ..., 1, = M,),
field-selections M., record-updates M (l:= N), and width-bounded abstractions
(Aa E 0. M). We add 2 new type constructions: record types (l1:01,...,l:00)
and width-bounded quantifications (Va C o. 7).

Definition 1. The terms M and types o of F""" are given by the grammar

M:i=xz| xio. M| MM | Aa. M | Mo
| (l=M,....l=M) | M| M{l:=M) | A\aCo. M
ou=alo—o|VYa.o|(lo,... lio)|VaCo.o
Here z ranges over term-variables, a over type-variables, and [over a countable

set of labels. Free and bound variables are defined as usual. Terms and types equal
up to the names of bound variables and permutation of fields are identified. We

assume that in (ly:01,...,l,:0,) and (ly = M;,...,l, = M,) no label I; occurs
twice. We write [e/z]e’ for the capture-free substitution of e for z in e'.
The contexts of FYh are given by

I'i=e¢|Nz:o|la: Type| ILaCo

with the restriction that no variable may be declared twice, and that in I',z:0
and I, a C o all free type variables in ¢ must be declared in I.
We write I' F o : Type if all free type variables in ¢ are declared in I

Definition 2. The width-subtype relation I' F o T 7 is the smallest relation
closed under the following rules:

INaCr,I"FaCrT (C-CONTEXT)

m>n ['Fo;: Typeforalli=1...m
't {ly:o1, ... lmiom) C{l1:o1,. .. lnion)

(C-WIDTH)

I'FpC () I'pCo I'FoCrT
———— (C-REFL) (C-TRANS)
I'pCp I'-pCr

Note that width-subtyping is only defined on record types. I' + p C () means
that p is a record type, so the rule (C-REFL) states that C is only reflexive on
the record types.

Definition 3. The typing relation I' - M : o of F™*%*" is the smallest relation
closed under the type inference rules of F

I'z:o0l"Fx:0 (VAR)

Iz:obFM:T I'-M:0—-17 I'FN:o
(—-INTRO) (—-ELIM)

I'tXxo. M :0—>T1 I'EMN : 1

Ioa:Type M : o I'-M:VYa.o TI'Fr7: Type
(V-INTRO) (V-ELIM)
I'Xa. M :Va.o I'Mrt:[t/alo

plus the additional rules

I'-M:0 I'FoCrT
I'-M:T

(C-suB)

I'-M;:00y ... I'FM,:0,
'y =M,... ly=M,):{li:ior,... ln:0n)

(RECORD-INTRO)

't M:(li:or,... lpon) Lie{ly,... In}
'k M.; : o;

(RECORD-ELIM)

I'-M:0 T'EN:7 TI'boLC ()
I'-M(l:=N):o

(UPDATE)

I'aCpkHM:o
I'XaCp. M:YaCp.o

(VC-INTRO)

I'-M:YaCp.o I'FTLCp
I'Mr:[r/alo

(Vc-ELIM)

Definition 4. The S-reduction relation >g on terms is given by the rewrite
rules

(Az:o. M)N >g [N/z]M
(Aa. M)7 > [1/a]M
(A E p. M)T >g [T/a]M
(lh=My,... 1, = M,).l; >5 M,
e [MU

We write >3 for the reflexive and transitive closure of >3, and I'F M >gN : o
as abbreviation for M >g N and I' =M : 0 and I' - N : 0.

Theorem 5 (Church-Rosser). If M >gM; and M >gM, then Mits>g N and
Msyr>g N for some term N.

Proof. Standard. O

Lemma 6 (Generation). 1. If '+ (ly = My,...,l, = M,) : o, then
o= (01, U 0m) with {l,....1,} D{,...,1l,} and ' - M; : o} for all
Li=15e{ly,.... 1}

2.If'- M{l:=N):o,then'FM:0,0=(l:01,...,ln:0n), and I' - N : g
ifl=1e{li,....1,}.

Proof. Induction on the derivation (which can only end with (C-suB) or with
(RECORD-INTRO) for 1, and with (C-suB) or (UPDATE) for 2.). O

Lemma 7 (Substitution). Let J be a judgement of the form M:o or o C 7.
Then

1. If Ix:p, I" = J and ' = N : p then I [N/z][" F [N/x]J.
2. If I'a:Type, I'" = J and I' + p : Type then I, [p/a]I" + [p/a]].
. IfIaCr,I"FM:0 and ' pC 1 then I'[p/a]l" + [p/a]J.

Proof. Induction on the derivation of .J. O

Theorem 8 (Subject Reduction). IfI"'+ M : 0 and M>gN thenI'+ N : 0.

Proof. By induction on the derivation of I' = M : o we simultaneously prove

1.I'EM:0 N M>gN = I'EN:o,
2I'+-M:0 NTI'pgl" = I'"+M:o0.

The interesting cases are the cases of 1 where M is the redex. We treat one case
in detail.

— Suppose the last step in the derivation is (RECORD-ELIM). If M >3 N is a
reduction M'.l >3 N'.I with M' >3 N', then the proof is easy. If M itself is
the redex, then there are two possibilities:

e M >g N is the reduction (I; = My,...,l, = M,).l; > M;. Then the
derivation ends with

TH (=M, 0= M) : (Lo, L) D
F"(ll :Ml,,ln:Mn>l7(T7

(RECORD-ELIM)

and by Lemma 6.1 it follows from (i) that I' F M; : o;.
e M >3 N is the reduction M, (l:=Ms).l; > My it L7 1
b TR My il =1,
This case is proved in roughly the same way, now using Lemma 6.2.

For the other 3-reduction rules the substitution lemma (Lemma 7) is needed. O

For records the notion of 5-equality is type-dependent. E.g., M is n-equal to
(I=M.I)it M : (l:0), but not it M : (l:0,1":0'). So we can only talk of Sn-equality
of well-typed terms at a certain type, which is written I' - M =g, N : 0.

Definition 9. We define 8n-equality (at a given type, in a given context) as the
smallest equivalence relation i.e. reflexive, symmetric, and transitive relation
closed under the - and 7-rules

I'FM:0 Mp>gN
I'M =3, N :0
I't (Az:p. M)z : 0z not free in M
' (Azp. M)x =, M : 0
I' (Aa.M)a:o «anot free in M
I'-(Aa.M)a=p, M :0
I'(ACp.M)a:0 a«not freein M
I'XaCpMa=g,M:o
't M:{li:o1,...,l:00)
I't(h=Muh,.. ,ln=Ml,) =g, M :{li:o1,...,1:00)
I'tM(:=Ml):o
I'FM{:=Ml)=3,M:0

the following congruence rule for subsumption
I'M=3,N:0 I'FoLCr

I'tM =g, N:1

and finally congruence rules for each term constructor:

Nw:oFM=g, M 7 I'cM=s, M :0657 I'-N=g,N:0
I'EXz:o. M =g, Ae:o. M' 0 = 1 I'-MN =g, M'N' : 1
Ia:Typet- M =g, M' . 1 I'M=g, M :NYa.T T'Fp: Type
' Xa. M =g, Aa. M' :Va. 1 ' Mp=g,Mp:|p/a]r
NaCob M=, M : 1 ' M=, M :YaCo.r T'FpCo
I'XaCo. M =g, \aCa.M' :YaCo.T I'-Mp=g, Mp:|[p/a]r
T'FM=g, M : {lior,... Lon)

' Ml =g, M'l; : o
My =g, M;y:01 ... T'FM, =g, M), : o0y,

Fl‘(llel,,ln:Mn) =pBn (ll:M{,...,ln:M,’L>Z(llldl,...,ln:0n>
''rM=g,M:0 I'-N=g,N:7 I'oLC{({r)

I'-M{l:=N)=g, M'{(I:=N") : o
FI—M:L;WM’:U I # o FI—N,-:L;WN{:T,- and I't o C (l;:;) for i = 1,2

T M{ly:=N1)(l2:=No) =g, M'(lo:=Ny){li:=N}) : &
Lemma 10. If ' M =N :o0 then ' M :0 and ' F N : 0.

Proof. Induction on the derivation of I' = M =g, N : g, using the subject re-
duction property to deal with the S-rules. O

2.1 Application to the Existential Object Model

In the existential object model of [PT94] classes are polymorphic records of
”pre-methods” that can be used either to create objects or to build sub-classes.
These classes can be written in F¥4% exactly as in [HP96]. All the examples of
class definitions given in [HP96] are immediately typable in F“* g0 we will
just give one of these and refer to [HP96] and [PT94] for more explanation. For
example, a simple class of points with interface

M(a) = (get : @ = Int,set : @ — Int — a,bump: @ — «)
and representation type R = (z : Int) is given by
PointClass = Aa C (z : Int). Aself : M(a).

(get = As:a.s.x

,set = As: q,i: Int. s{x:=1)

,bump = As : a. self.set s((self.get s) + 1))
: Ya C R. M(a) = M(a).

Another use of width-subtyping is to model objects with public instance
variables. In the existential object model the type of objects with interface M
is Object(M) = Ja. (state : a,methods : M ()). Using a width-bounded quan-
tification in this type we can expose some of the representation and make one or
more instance variables public. For example, 3a C (z:Int). (state : o, methods :
M («)) is the type of objects with interface M that have a public instance variable
z of type Int.

3 PER Semantics

The PER model for F*"¥" given below extends the standard PER model for
system F'. Types are interpreted as partial equivalence relation (pers) on IN, and
terms as (indices of) partial recursive functions. If the per R is the interpretation
of type o, then interpretations of terms of type o are equal if they are related
by R.

The difficulty in modelling F™**" is finding a suitable relation on pers to
interpret width-subtyping. Width-subtyping is a ”structural” subtype relation:
the width-subtype of a record type is a record type. On the other hand, the
interpretation of subtyping in the PER model for F< [BL90] is the ”unstruc-
tured” subset relation on pers, which as explained in the introduction is
precisely why it does not provide polymorphic updates. The interpretation of
width-subtyping in the PER model is made possible by the fact that we can tell
which pers are interpretations of record types.

Definition 11. A partial equivalence relation (per) is a relation that is symmet-
ric and transitive. PER is the collection of partial equivalence relations over IN.
We write domp for {n € IN | (n,n) € R} and @ for the empty relation.

Definition 12. We assume some enumeration of the partial recursive functions,
and write n-m for the application of the n* partial recursive function to m.
Application associates to the left. We write n-m 1 for "n-m is undefined”, and
n-m } for "n-m is defined”. Whenever we write (E,E') € R or E € dompg for
certain expressions F and E’, it is implicit that these expressions are defined.

3.1 The Interpretation of Terms

The interpretation of terms is a simple extension of the interpretation of terms
in the standard PER model. Records are interpreted as in [BL90], i.e. as (indices
of) partial recursive mappings from labels to values. Record updating is then
easy to interpret, namely as the change of such a mapping for one of its inputs.

To reduce notational clutter, we assume that the set of labels is IN. A model
could be given based on an arbitrary enumeration of the labels, but having
natural numbers as labels saves us some irrelevant and confusing indexing of
labels.

To interpret terms we first, erase all their type information:

Definition 13. The type erasure Erase(M) of a term M is defined by

Erase(xz) = x
Erase(Ax:0. M) = Az. Erase(M)
Erase(M N) = Erase(M)FErase(N)
Erase(Aa. M) = Erase(M)

Erase(Aa C . M) = Erase(M)

Erase(Mo) = Erase(M)
Erase({ly = M,,...,l, = M,)) = (I = Erase(M,),...,l,, = Erase(M,))

Erase(M.l) = Erase(M).l

Erase(M(l:=N)) = Erase(M)(l:= Erase(N))

Definition 14. 1. If E(x) is a partial recursive description of a natural number
depending on some input z, we write Ax. E(z) for the index of the partial
recursive function for which Az. E(x)-n = E(n) .

2. If {li » my,...,l, » my,} is a partial recursive mapping on natural num-
bers, we write (I1 = m1,...,l, = my)) for the index of a partial recursive
function for which (I3 = mq,... I, = mu)-l; =m; for all l; € {l;...,1,}.

3. For m,n,l € IN we write m({l — n)) for the index of the partial recursive
function such that

= (L

The constructions above are used to interpret lambda-abstractions, records, and
record-updates:

Definition 15. Let 1y be a term environment, i.e. a mapping from term variables
to IN. The (possibly undefined) interpretation [M], € IN of an erased term M
in n is given by:

2], = ()
Ao, M], = An. [M],, .
[MN], = [M],[N],
(v =M, ... dn = My)], = (I = [Mi], .. Do = [My],)
[M-l]n = [M]n'l
[M(1:=N)], = [M], (I = [N],)

The (possibly undefined) interpretation [M], € IN of a typed term M in n is
now defined by [M], = [Erase(M)],.

Before it can be proved that [M], is defined for well-typed terms M, we first
have to define the interpretation of types.

10

3.2 The Interpretation of Types

Function types are interpreted as usual, and record types as in [BL90]:
Definition 16. Let R, S € PER. Then R — S € PER is defined by
R—»S={(ff)|Vrr. (r,r'YeR= (f-r,f'r") € S}

Definition 17. Let L C IN and R; € PER for every [€ L. Then ({ — R, |l €
L) € PER is defined by

(=R |lel)={(x,y)|Vie L (xl,yl) € R}.

We write ({1 = Ri,...,ln = Ry) for {I; = R; | l; € {l1,...,l,}). Note that
{1 = Ry,...,ln = R,) =0 as soon as one of the R; is 0.

To define the interpretation of types we need a suitable relation C on PER to
interpret width-subtyping. For this we use the following operations:

Definition 18. Let R € PER and [€ IN. Then

1. R has an l-field — written R — iff Vo € dompg.x-1] .
2. R-lis the relation {(z-l,z'-1) | (z,2') € R}.

N.B. note that R-I is not necessarily a per!

Lemma 19. Let R= (Il — R; |1 € L) # 0 with L a decidable set (i.e. L has a
partial recursive characteristic function). Then

1. Rll<= 1€ L,
2. Rl=R; forallle L.

Proof. 1. («<): Let I € L. It follows from (r,r) € R = {l — R, | | € L)) that
(r-l,7-1) € Ry, and hence r}l. So r]l for all r € dompg, i.e. R}l .
(=): R# 0, so we can assume an r such that r € domg.
Suppose towards a contradiction that R |1 and I € L. Now let r’ be the
index of the partial recursive function with

R itigL,
"7 undefined otherwise.

Here the restriction to decidable sets L is needed, namely to guarantee that
such an index r' exists: for decidable L the definition of 7' above is partial
recursive. Now r’' € dompg and r'-1 1, which contradicts R 1.
2. Let | € L. To prove: R-1 = R,.

(C): Suppose (n,n') € R-1. Then there is an (r,r') € R such that r-l = n
and r'-l =n'. Since R= ({1 = Ry,...,In — R,)) it follows from (r,r') € R
that (r-l,r'-1) € R, i.e. (n,n') € Ry.

(2): Suppose (n,n’) € R;. To prove that (n,n') € R-l we have to prove there
exist some (s,s') € R such that s-l = n and s'-1 = n'. Such s and s’ are
easy to construct: R #), so there exists some (r,r') € R, and we can take
s=r{l—n) and s’ =7'{l —» n'). O

11
We define a collection RPER C PER of "record pers”:

Definition 20. R € RPERiff R € PER, R = {l — Rl | R|l)), and R-l € PER
for all R}I.

Recall that R-[is not necessarily a per for R € PER. For R € RPER it is,
provided RJI. All record types are interpreted as record pers:

Lemma 21. Suppose R = (I — R; | Il € L)) with all Ry € PER and L a
decidable set. Then R € RPER.

Proof. We distinguish two cases. If R # (§, then by Lemma 19 R|l <= [€ L
and Rl = R, for alll € L, and so Rl € PER for all R}l and (({ = R-l| R]1)) =
{(l—= R |leL)=RIR=0then R]Il and R-l = { for all [€ IN; clearly
f € PER, and (I — 0 |l € N)) = 0. O

The restriction to decidable sets L in the lemma above is of course no problem,
as any record type in F#" will have a decidable set of labels. There is a relation
on pers that corresponds to width-subtyping:

Definition 22. The relation C on PER is defined by
RCS < R,SERPER A (R=0 V VS|L.LRJIANR-1=S]).
Some simple properties of C:

Lemma 23. 1. RCS=RCS.

2. C is transitive.

3. Suppose R=({l—» R;|le L) and S={l— R/ |l € L"), with L' CL, and
L and L' decidable sets. Then RC S.

The relation C on PER is used to interpret width-bounded quantification in
types :

Definition 24. Let £ be a type environment, i.e. a mapping from type variables
to PER. The interpretation [[LT]]5 € PER of a type o in £ is given by

[o]; = £(0)
[o = 7l =[o] — [7];
[(hor,. . lnion)]e = (b= [on]e ol = [on]e))
[Vo. o], = ﬂ reper 19]¢jom Ry
[Va C p. (7]]E = ﬂRE[[P]]e [[(T]]E[ab—)R]

12

3.3 Soundness

We now prove that the interpretation of types is sound with respect to C, and
that the interpretation of terms is sound with respect to typing, reduction, and
equality.

Definition 25. Let £ be a type environment and 7 a term environment. Then
¢ satisfies I' written £ = I’ iff {(a) C [[(7]]5 for all @ C ¢ in I'. The pair (7, £)
satisfies I' — written (n,§) = I —iff £ = I' and n(z) € dom[[(,]]6 for all z : ¢ in
I

Theorem 26 (Soundness of Width-subtyping).
If I't p T o then [p]; C o], for all{ =T

Proof. Easy induction on the derivation of I' + p C o. For (C-CONTEXT) we
use the definition of ¢ |= I', for (C-TRANS) Lemma 23.2, and for (C-WIDTH)
Lemma 23.3. O

Theorem 27 (Soundness of Typing).
If I't M :o then ([M], . [M],) € [o] for all (n.&) = 1I.

Proof. By induction on the derivation of I'+ M : o we prove

1. there is a partial recursive f : IN* — IN such that f(n(z1),...,n(xz)) =
[[M]]77 for all (n,&) = I', where z1,...,x are the term variables declared in
r,

2. ([M],,[M1,,) € [o]; for all ¢ = I" and (n,1) € [

where [[F]]E is the partial equivalence relation on term environments defined by

(m,n') € [T < V(z:0) € I (n(x), 7' (z)) € [o] -

(So, if £ = I" and (n,n') € [I']; then (n,&) = 1)

Compared with the proof for system F' there are 6 additional cases, one for
each new inference rule. For the rule (C-suB) the property RC S = RC S
(Lemma 23.1) is needed. We only treat the most interesting case:

Suppose the last step in the derivation of I' - M : o is

'-M':0 I'N:17 I'koC (1)
I'-M'(I:=N):0o

(UPDATE)

So M = M'(l:=N).

1. Follows directly from the induction hypothesis.

2. Suppose (n,n') € [['];. Define m = [M], . m' = [M],,, S = [o]., n=[N],,
n' = [N],,, and T = [r],. By the induction hypothesis (m,m') € S and
(n,n') € T. By Theorem 26 it follows from o C (l:7) that S C (I — T,
so S € RPER and S:1 =T. To prove: (m{{l — n)),m'{I — n')) € S. Since
S € RPER this is equivalent to VS|i. (m{l — n)-i,m'{l = n')-i) € S-i.
Suppose S |i. We distinguish two cases:

13

— 1 #1. Then m{{l = n)-i =m-i and m'{{ = n')-i =m’'-i, and
(m-i,m'-i) € S-i since (m,m') € S.

—i=1.Then m{l — n)-i=n and m'{{ » n'))-i =n', and (n,n') € T =
S-. O

Lemma 28. If [M], .. . nj | and [[N/z]M], are defined, then they are equal.

Proof. Induction on the structure of M. O
Lemma 29. If M >g M' and [[M]]77 and [[M’]]77 are defined, then they are equal.

Proof. Induction on the generation of M >gM'. Apart from the congruence rules,
for which the proof is trivial, there are 5 reduction rules to consider. The cases
(Aa. M)t > M and (Aa C p. M)T>g[7/a]M are trivial, as Erase((Aa. M)1) =
Erase(M) = Erase((Aa C p. M)1) = Erase([t/a]M). The case (Az:0. M)N >g
[N/z]M follows from the substitution lemma (Lemma 28) as usual. The two
remaining cases are very simple: it follows directly from the definition of [] that

[(lh = My,....1 My).1i], = [Mi],

[

Soundness of reduction easily follows from the lemma above:

Theorem 30 (Soundness of S-Reduction).
Suppose I' = M >3 M" : 0. Then ([M],,[M'],) € [o]; for all (n,&) E "

Proof. By soundness of typing (Theorem 27) [M], and [M'], are defined and
in domp,], . So by Lemma 29 [M], = [M'],, and ([M],, [[M’]Tn) € [o]; follows
from the fact that [o], is reflexive on dom,), . O

Theorem 31 (Soundness of fn-Equality).
Suppose I' = M =g, M' : 0. Then ([M], ,[M'],) € [o]; for all (n,§) = T'

Proof. Induction on the derivation of I' v M =g, M' : 0. For the case that
M >3 M' we use soundness of reduction (Theorem 30). We treat just one of the
more interesting cases:

'-M{:=Ml):0 (i)
I M{l:=Ml)y=5,M:0
To prove: ([M], ,[M(l:=M.l)],) € [o];. By Lemma 6.2 it follows from (i) that
o ={(l:01,...,lp:0p) and that I' - M : o (ii). Now

(IM], . [M(1:=MD)],) € (Lo, ..., lnow)];

Suppose the last step in the derivation is

— W e{ly,... n? (IM, i, [M (1= M.DY], -1:) € [by def. [],
= Ve (. L) (IM], 1, [M,) € ol by def. [],
= (IM],,[M],) € [{lior.. ... Luow)le by def. [1,

and this follows from (ii) by soundness of typing (Theorem 27). O

14

In the remainder of this section we show that the model provides exactly the
polymorphic update operations one expects. First we show that a polymorphic
update g : (Va C (l:0). @ = «a) can only change the [-field of its input, and leaves
any other fields unchanged.

Lemma 32. Let (g,9) € ﬂXE<<lHS>>X — X and (m,m) € X C (I —» S)) for
some per S. Then g-m-i = m-i for all i # 1 such that X |i.
Proof. X C (Il — S),s0 X = (X-i|ie€ X i) and X]I with X-1=S.

. N IS ifi=1I,
Define Y = (i — Y; | X |i)) with V; = {{(m?m?)} i1
Informally, Y is the record per X with all fields except [restricted to a one-point
per. Clearly, (m,m) € Y. Also, Y C (I = S)), and hence (g,9) € Y — Y and

(g-m,g-m) € Y. But by the definition of Y this means that (g-m-i,g-m-i) € Y;
for all i € I, and so (g-m-i,g-m-i) € {(m-i,m-i)} for all i # [such that X |i. O

An immediate consequence of this lemma:

Corollary 33. IfI'tg: (VaC (lo).a > a)and '+ M : 7 with '+ 7 C (l:0),
then [(grM).1;], = [M.L;], for all I't M.l; : 7; with l; # 1 and n |=T".

The type (Vo C (l:0). @ =) contains at least one member for every function
[(l:o) = (l:o), namely Aa C (l:0). Az:a. 2{l:=(fz).l). In fact, it is difficult to
imagine functions of this type that are not of this form. The mapping from
(l.o) = (l:o) to (Va C (l:o). a = «) given above is indeed an isomorphism in
the PER model® :

Lemma 34. IN/ [Va C (lo). « = o], and IN/[(l:0) — (lo)], are isomorphic
forall £ =T.

Proof. Let p = (Va C (l:0).a = a), S = [(lo)],, and R = [p],. The isomor-
phism between IN/R and IN/(S —» S) is given by the interpretations of

¢ = Ag € p.g{l:o) i p— (lio) = (lio)
=M € (lio) = (lo). \a C 0. Az 2(l:=(fz).l) : ((l:o) = (L:o)) = p

ie. by [¢] = Az.z and [¢/] = AfAzAi. {;;I iiz i ;

Let # € N/R - IN/(S — S) and ¥ € IN/(S — S) — IN/R be the functions
on equivalence classes induced by [¢] and [¢]. So ®([9]r) = [[¢] - 9]s—s and
U([fls—s) = [[¥]-f]r, where [n] x denotes the X-equivalence class containing n.
It follows from soundness of typing (Theorem 27) that ¢ and ¥ are well-defined
functions on equivalence classes. That they are each other’s inverses follows from
the properties

! Note that interpretations of types are isomorphic if there is an isomorphism between
their equivalence classes, as [[(7]]5 gives the notion of equality for interpretations of
terms of type o, and so the number of different interpretations of terms of type o is
the number of [o],-equivalence classes.

15
L(f,fleS—=S = (flo]-[¥] f)eS—S5,
2. (9,9) € R = (9,[¥]-[4]-9) € R,

which are proved below. Note that [¢] is simply the identity, so [¢]-[¢]-f = [¢]-f
and [¢]-[¢]-g = [¥]-g.

1. (f,f)eS—S

<~ VY(z,2') e S.(fx f2')eS by def. —»

< V(z,2') € S.(fx-l, f-a"1) € [o], since S = (I = [o]))
= V(z,2') € S.(f-=l,[¢]-f-a"1) € [o] since f-2"-I =[] f-2"-1
= V(r,2') e S.(f-x,[¥]-f-2')eS since S = (I = [o]))
= (f,[¥]-fleS—>»S by def. —»

2. Suppose (g,9) € R. To prove: (g, [¢]-g) € R. Since R =) y-¢ X — X, this
is equivalent to VX C S.V(z,2') € X. (g-z,[¢]-g-2') € X.
Let X € S and (z,z') € X. So X # (§ and it follows by the definition of C
that X = (i = X-i | X i) with X |l and Xl = S-I = [o],. To prove:
(9-z,[¢]-g-2") € X, which is equivalent to VX |i. (g-z-i, [¢]-g-2'-i) € X -i.
Suppose X |i. We distinguish two cases:
— ¢ =1. Then [¢]-g-z'-i = g-2'-l, so to prove: (g-z-l,g-x'-1) € X-I.
From (g9,9) € R 2 X —» X and (z,2') € X it follows that (g, g2') € X,
and so (g-z-1,g-x'"-1) € X 1.
— i #1. Then [¢]-g-z'-i = x’-i, so to prove: (g-x-i,2'i) € X -i.
It follows from (z,z') € X and X |4 that (z-i,2'-i) € X -i. So it suffices
to prove g-x-i = z-i, which follows from Lemma 32. O

4 Related Work

[Oho95] also describes an extension of system F with width-bounded quantifi-
cation and a primitive for record updating, but without subsumption. His main
interest however is the predicative part of this system, in particular an ML-style
(i.e. implicitly typed) type system that corresponds to this predicative part, and
the problem of its compilation.

Several other extensions of F' that provide polymorphic record updates have
been proposed [CM91][Car92][Zwa95][HP96]. The system F®¥h i simpler than
all of these. It is also less expressive, but it does provide all the record operations
needed for the existential object model in [PT94].

Instead of updating, the systems in [CM91] and [Car92] provide operations
for removing and adding fields to records as primitives. This has several conse-
quences. Firstly, in order to type these primitives we need operations for remov-
ing and adding fields to record types, whereas in F***" no new operations on
types are needed. Secondly, to safely add fields to records we need types that
express “negative” information (i.e. tell about the absence of certain fields). In
Fwidth e only need types that express "positive” information (i.e. about the
presence of certain fields).

16

Although the system described in [CM91] is very expressive, it can not express
width-subtyping or width-bounded quantifications. In this system the polymor-
phic update have_birthday will have type

Vo < (age:Nat).o — o — age + (age:Nat)

where —[and +(I : o) are the operations of removing and adding fields to record
types. The bounded quantification in this type can not be restricted to those
types o for which o — age + (age:Nat) will be equal to o (i.e. to the width-
subtypes of (age:Nat)).

The system F'# presented in [Zwa95] provides a ”merge”-operation that can
be used to concatenate a record to another record, overwriting any common
fields, provided the records have ”compatible” types. F®%" is a subsystem of
F#: the update operation is a simple case of the merge operation, and width-
subtyping is a combination of ordinary subtyping and compatibility: width-
subtypes are exactly the compatible subtypes.

The notion of width-subtyping is also considered in [BL94] but in quite a
different setting, namely the lambda calculus with additional primitives for ob-
jects — so-called object calculus — introduced in [FHM94]. Consequently, width-
subtyping is there not a relation on record types but a relation on special object
types.

[AC95] describes another object calculus with a subtype relation on object
types. But here the subtype relation is more general than just width-subtyping:
annotation of the fields in object types controls whether depth-subtyping is al-
lowed on each individual field, so that both conventional subtyping and width-
subtyping are essentially special cases of this single subtype relation.

4.1 Comparison with Positive Subtyping

In [HP96] another restriction of subtyping is used to deal with the update-
operations, namely positive subtyping. We write <* for positive subtyping, and
F?°% for the extension of F with positive subtyping given in [HP96]. Positive
subtyping is a weaker relation than width-subtyping, i.e. C C <* C <. For <t we
have all the usual subtyping rules, with the exception of the contrapositive rule
for function types. In particular, <* includes both width- and depth-subtyping.
So, for example (l:(x,y:Nat)) <* (I:(x:Nat)). A consequence is a more general
update-operation. E.g. a record M : {l:(x,y:Nat)) can be updated in its [-field
with NV : (x:Nat), with as result a copy of M with the z-field of its I-field updated
with the z-field of N, but the y-field of its I-field unchanged. This is known as a
recursive or deep update. There is a price for this more general update-operation:

— Update-operations have to be annotated with more type information in F'P°%:
the types of both M and N have to be supplied as explicit type parameters
in M(l:=N).

— The notion of reduction in FP° is more limited than in F“!%" Whereas
M(l:= N).l reduces to N in F""¥h in FP°s they might not even be equal.

17

(E.g. consider the example above, where M : (I:(x, y:Nat)) and N : (z:Nat}).
Reduction in F?°® is a typed reduction, i.e. it depends on type information
in terms, whereas reduction in F¥%" asin F is an untyped reduction.

— The PER model for F?°* is more complicated than the one for F®** For
FP°% it is not possible to erase all type information from terms as a first step
when defining the semantics of terms.

The more general notion of subtyping and a more general update-operation
of F?°% are not required to write classes in the sense of [PT94]: all the examples
of class definitions given in [HP96] are typable in F™#* and all the equalities
that are proved for these examples in [HP96] also hold in Fwdth Tn fact, in
Fuidth)] these equalities are simple B-equalities.

The only serious disadvantage of FY" compared to FP°¢ is that because
of the weakness of the subtyping relation — in particular the lack of congruence
rules allowing for instance o — (l:p,m:p) C o — (l:p) the property of minimal
typing is lost. However, this property is regained when F"*¥" ig extended with
conventional subtyping, as discussed below.

5 Further Extensions

A further extension of F¥!* needed for the object encoding of [PT94] is con-
ventional subtyping. This is because we want Object(M') to be a subtype
of Object(M) if M' a richer interface than M, and we clearly do not have
Object(M') E Object(M), with Object as in Sect. 2.1. The positive subtyping
of [HP96] suffers from the same deficiency. Extending F*'*" with conventional
subtyping will result in a system with two subtyping relations, width-subtyping
C and conventional subtyping <, with C contained in <. The syntax becomes
more complicated, but as far as the PER semantics is concerned this extension
poses no problems, since our PER model of F¥i%* ig compatible with the PER
models of F<. Both subtype relations can be interpreted in the PER world:
the normal subset inclusion between relations as interpretation for <, and C as
defined in Definition 22 as interpretation for C.

Maybe the complexity of having two subtype relations conventional sub-
typing and width-subtyping — could be avoided by distinguishing updatable and
non-updatable fields in records, and then only allowing depth-subtyping on non-
updatable fields, as in [AC95] [Pie96], but a model for such a system would
probably be more complicated and very syntactic in flavour.

Other useful extensions would be F“-style type operators and a fixpoint op-
erator for terms. The interpretation of F'“-style type operators is not a problem
in the PER model, but if a fixpoint is added the PER model we have given no
longer suffices, and it remains to be seen if the more complex PER models for
system F with recursion described in [AP90] [Ama91] [BM92] could be adapted.

18
6 Conclusions

We have presented a system F%%" that extends system F with a primitive for
updating records and width-subtyping on record types. It provides the poly-
morphic record-updates needed for the class definitions in the existential object
model of [PT94].

The combination of width-subtyping and a primitive operation for updating
seems to be the easiest way to provide polymorphic record-updates. Intuitively
width-subtyping and updating are very simple notions: the rules of F™* are
fairly obvious, the record-update has a very simple operational semantics (given
by the reduction relation >g3), and a straightforward interpretation in the PER
model. Decomposing record-updating into more primitive operations for field-
removal and record-extension, as in [CM91], results in more expressive and com-
plex systems than F™idh

The main technical result is the PER model for F**%" Key to this model
construction is the important observation that it possible to tell which pers
are interpretations of record types. This enables us to give an interpretation of
width-subtyping — which is a restricted form of ”structural” subtyping — without
having to resort to the very syntactical model constructions like those sketched
in [CM91].

Width-subtyping is a restriction of positive subtyping introduced in [HP96].
As discussed in Sect. 4.1, this restriction has several advantages, notably the
simpler PER model and the simpler — and untyped — reduction relation giving
an operational semantics.

Acknowledgements

I want to thank Benjamin Pierce, Jan Zwanenburg, and the anonymous referees
for their helpful comments on this paper.

References

[AC95] Martin Abadi and Luca Cardelli. An imperative object calculus. In P. D.
Mosses, M. Nielsen, and M.I. Schwartzbach, editors, TAPSOFT’95: Theory
and Practice of Software Development, volume 915 of Lecture Notes in Com-
puter Science, pages 471 485, 1995.

[AC96] Martin Abadi and Luca Cardelli. A Theory of Objects. Monographs in Com-
puter Science. Springer, 1996.

[Ama91] Roberto M. Amadio. Recursion over realizability structures. Information and
Computation, 90(2):55 85, 1991.

[AP90] Martin Abadi and Gordon Plotkin. A PER-model of polymorphism and
recursive types. In Logic in Computer Science, pages 355 365. IEEE, 1990.

[BL90] Kim B. Bruce and Giuseppe Longo. A modest model of records, inheritance,
and bounded quantification. Information and Computation, 87:196—240, 1990.
Also in [GM94].

[BLY4]

[BM92]

[Car92]
[CM91]

[CW85]

19

Viviana Bono and Luigi Liquori. A subtyping for the Fisher-Honsell-Mitchell
lambda calculus of objects. In Leszek Pacholski and Jerzy Tiuryn, editors,
CSL ’94, volume 933 of LNCS, pages 16-30. Springer, 1994.

Kim B. Bruce and John C. Mitchell. PER models of subtyping, recursive types
and higher-order polymorphism. In Principles of Programming Languages,
pages 316-327. ACM, 1992.

Luca Cardelli. Extensible records in a pure calculus of subtyping. Research
report 81, DEC Systems Research Center, 1992. Also in [GM94].

Luca Cardelli and John Mitchell. Operations on records. Mathematical Struc-
tures in Computer Science, 1:3 48, 1991. Also in [GM94].

Luca Cardelli and Peter Wegner. On understanding types, data abstraction
and polymorphism. Computing Surveys, 17(4):471-522, 1985.

[FHM94] Kathleen Fisher, Furio Honsell, and John C. Mitchell. A lambda calculus of

[FM94]

[GM94]
[HP6]
[Oho95)]
[Pie96]

[PT94]

[Zwa95]

objects and method specialization. Nordic Journal of Computing, 1(1):3 37,
1994.

Kathleen Fisher and John C. Mitchell. Notes on typed object-oriented
programming. In Proceedings of Theoretical Aspects of Computer Software
(TACS94) , Sendai, Japan, volume 789 of LNCS, pages 844-886. Springer,
1994.

Carl A. Gunter and John C. Mitchell. Theoretical Aspects of Object-Oriented
Programming: Types, Semantics, and Language Design. The MIT Press, 1994.
Martin Hofmann and Benjamin C. Pierce. Positive subtyping. Information
and Computation, 126(1):11-33, 10 April 1996.

Atsushi Ohori. A polymorphic record calculus and its compilation. ACM
Trans. on Prog. Lang. and Syst., 17(6):845 895, 1995.

Benjamin C. Pierce. Even simpler type-theoretic foundations for object-
oriented programming. manuscript, March 1996.

Benjamin C. Pierce and David N. Turner. Simple type-theoretic founda-
tions for object-oriented programming. Journal of Functional Programming,
4(2):207-247, April 1994.

Jan Zwanenburg. Record concatenation with intersection types. Computing
Science Report (95/34), Eindhoven University of Technology, 1995.

