Subtyping and Inheritance
for Inductive Types

Erik Poll
University of Kent, Canterbury, UK

E.PollQukc.ac.uk

Abstract

Inheritance and subtyping are key features of object-oriented languages. We show that
there are corresponding — or, more precisely, dual — notions for inductive types (or algebraic
datatypes): there is a natural notion of subtyping for these types and an associated form of
code reuse (inheritance) for programs on these types.

Inheritance and subtyping for inductive types not only suggest possible extensions of
functional programming languages, but also provide a new perspective on inheritance as we
know it from object-oriented languages, which may help to get a better understanding of this
notion.

1 Introduction

Functional programming languages such as ML [MTHO90] provide algebraic datatypes — e.g. lists,
trees — , and type theories such as Coq [Cor95] or Alf [AGNvS94] provide a more general notion
of inductive type. Algebras are a well-known way of modelling these types: algebraic datatypes
and inductive types can be understood as term algebras (or initial algebras).

It has been observed that object types can be modelled as co-algebras [Rei95]. Co-algebras are
not as well-known as algebras, but the importance of co-algebras has been recognised as a way
of modelling not only objects, but also infinite data structures, coinductive types, and processes.
(See [JRI7] for a gentle introduction to co-algebras.) We don’t have to know anything about
co-algebras here, except that they are duals of algebras in some sense.

If algebraic datatypes can be modelled as algebras and object types as co-algebras, then alge-
braic data and objects can be seen as duals. This suggests that for constructions involving objects
there may be corresponding — dual — constructions for algebraic datatypes. For objects we have
subtyping and inheritance. Are there dual notions for algebraic datatypes? It turns out that there
are: there is a natural notion of subtyping on algebraic types, and an associated form of code reuse
for functions on algebraic types that is dual to inheritance. We will illustrate this in the setting
of a functional programming language with algebraic datatypes. The dual of subtyping turns out
to be supertyping, which is related to subtyping in the obvious way: A is a subtype of B iff B is a
supertype of A. The code reuse for functions on algebraic datatypes will be called co-inheritance, to
distinguish it from the inheritance in object-oriented languages. Under the propositions-as-types
isomorphism co-inheritance actually corresponds to a form of proof reuse for induction proofs that
is commonly used.

We will only give an informal explanation of the duality with objects, just to show that what
we describe really are duals of subtyping and inheritance in object-oriented languages. We will not
give the definition of co-algebras here, nor will we describe how co-algebras can be used to model
objects. And although the observation that objects and algebraic datatypes are duals comes from
category theory, no category theory is used in this paper.

2 Algebraic Datatypes

In functional programming languages such as ML or Haskell we can define algebraic datatypes.
For example, if A is some type, then a type of A-lists can be defined as

data ConsList = nil | cons A ConsList

Algebraic datatype are characterised by a set of constructors (nil and cons in the example above).
These are the operations to construct elements of the algebraic datatype. The type ConsList can
be understood as the smallest set containing nil and closed under cons-ing. Functions on algebraic
types can be defined by pattern matching, for example

length : ConsList->Nat
length nil =0
length (cons a 1) = 1 + length 1

REMARK 2.1 (DuaLITY wiTH OQO) A small hint as to how this is dual to objects: constructors
are the duals of methods. Just as an algebraic datatype is characterised by a set of constructors,
object types are characterised by a set of methods. And whereas constructors are the only way to
produce algebraic data, methods provide the only way to observe objects.

3 Subtyping

Consider a type of lists that not only provides an operation cons to add an element at the front
of a list, but also provides an operation snoc to add an element at the end of a list:

data List = nil | cons A List | snoc List A

Note that List is just a term algebra, so for instance (cons a nil) and (snoc nil a) are
different elements of List. It is possible to write functions on List that differentiate between
(cons a nil) and (snoc nil a), although we might want to avoid such functions.

The constructors of ConsList — nil and cons — are also constructors of List, and so every
ConsList is also a List. This means that ConsList can be seen as a subtype of List, or,
equivalently, List as a supertype of ConsList. We write this as ConsList < List .

The subtyping relation < comes with the following type inference rule for programs, known as
the subsumption rule, which expresses the fact that subtypes are ”subsets”:

a:A A<B
a:B

So if 1:ConsList, then it follows from ConsList < List that 1:List. The subtyping ConsList
< List produces subtyping on more complicated types. For instance, for any type B we have

B->ConsList < B->List ,

so if f :B->ConsList then also f:B->List. This means that we can immediately reuse all functions
that produce elements of the old datatype ConsList as outputs to produce elements of the new
datatype List as outputs.

To recap, we have shown that

adding constructors produces a supertype. ‘

and that

after adding constructors to produce a new (super)type,
programs that produce algebraic data as output can be reused.

REMARK 3.1 (DuaLiTy wiTH OO) Recall that in object-oriented languages objects in a subclass
can have more methods than objects in the superclass. For instance, to use the standard example,
ColouredPoint could be a subclass of Point, i.e. ColouredPoint < Point, with instances of
ColouredPoint having more methods than instances of Point.

So here the subtyping goes in the opposite direction as for algebraic types:

adding methods produces a subtype.

Consequently, a different collection of functions can be reused. For example, a program that ex-
pects Point’s as input can be given ColouredPoint’s as inputs. This will not cause any problems,
because any messages that can be sent to a Point can also be sent to a ColouredPoint. So

after adding methods to produce a new (sub)type,
programs that take objects as inputs can immediately be reused.

4 Co-inheritance

It does not follow from ConsList < List that ConsList->B < List->B. This is the (in)famous
contravariance of -> in its first argument. The subtyping rule for function types is

A <A B<B
A->B< A'->B'
So we have List->B < ConsList->Band not ConsList->B < List->B. It makes sense that we do

not have ConsList->B < List->B. Consider a typical function f :ConsList->B defined by pattern
matching,

f : ConsList->B
f nil = ...
f (cons a l) = ...

It is clear that applying this function f to a List may cause problems, because f (snoc 1 a) is
not defined. (Of course we could allow f to be applied to List’s, and have it abort or diverge
when it hits a snoc. But this rather defeats the purpose of typing our programs, which is the
prevention of such run-time errors. Subtyping should only give "safe” inclusions between types,
that will not introduce run-time errors.)

Since we do not have ConsList->B < List->B, we cannot reuse functions that accept ConsList’s
as inputs and apply them to List’s. However, all is not lost. There is a natural way in which a
function on ConsList’s such as £ above can be reused to define a function on List’s. A typical
definition for a function on List’s will be of the form

h : List > B

h nil = ...
h (cons a 1) = ...
h (snoc 1 a) = ...

The only thing that is extra compared with the definition of f is the snoc-case. We could define
h by inheriting the first two cases from f:

h : List -> B
co-inherits f : ConsList->B
h (snoc 1l a) = ...

This form of code reuse will be called co-inheritance. The definition of h above would be the same
as the one obtained by copying the two defining clauses of £ and replacing all occurrences of £ by
h.

For example, consider the following definition, which co-inherits the function length defined
earlier in section 2:

newlength : List -> Nat
co-inherits length : ConsList->Nat
newlength (snoc 1 a) = 1 + newlength 1

This definition is equivalent with

newlength : List -> Nat
newlength nil =0
newlength (cons a 1) = 1 + newlength 1
newlength (snoc 1 a) = 1 + newlength 1

So the definition of length (cons a 1),”1 + length 17, is copied as the definition of newlength
(cons a 1), but instead of length now newlength is used to compute the recursive call.

An obvious thing to do is to give the function newlength the same name as length. This
possibility is discussed in 4.1. And, as we discuss in 4.2, some restrictions have to be imposed on
the function that is co-inherited if all definitions by co-inheritance are to be well-defined. But first
we show that co-inheritance really is dual to inheritance in object-oriented languages.

The example above shows that

‘ co-inheritance allows reuse of programs that take algebraic data as input.

Note that this nicely complements the reuse provide by the subtyping discussed in the section 3:

e Subtyping (ConsList < List) allows reuse of functions of type B->ConsList to produce
List’s as outputs.

e Co-inheritance allows reuse of functions of type ConsList->B to accept List’s as inputs.

Note that these are different kinds of reusing code. The former is literally reusing the same
code, the latter is reusing code in the sense of making incremental changes to existing code to
produce new code. In 4.4 we show how co-inheritance also allows reuse of functions of type
ConsList->ConsList to accept List’s as inputs and produce List’s as outputs.

REMARK 4.1 (DuaLiTY wiTH OQO) Dualising the statement above predicts:

‘ inheritance allows reuse of programs that produce objects as output.

We know that in object-oriented languages inheritance allows class definitions to be reused. A
class definition does indeed provide a way to create objects, typically in the form of a function
new... that produces objects as outputs. For example, the definition of a class Point could
provide a function newPoint :B->Point, where the input of type B is used for initialisation. Think
of newPoint as a function that takes some initial state of type B as input and wraps it up with a
collection of methods (a method table) to produce an object. Inheritance would then allow us to
reuse newPoint :B->Point when defining newColouredPoint:B->ColouredPoint.

So functions like newPoint:B->Point are the dual of functions like f:ConsList->B in the
algebraic setting. Often a function such as newPoint will not take a argument, because there is
some fixed initialisation, which obscures this duality somewhat.

As for algebras, subtyping and inheritance provide different kinds of reuse. Subtyping allows
code to be reused without any change: client code for Point’s can be applied immediately be
applied to ColouredPoint’s. Inheritance allows code to be reused in the sense of making an
incremental change: newColouredPoint can be written by extending the definition newPoint.

4.1 Overloading

It would be nice to use the same name for length:ConsList->Nat and newlength:List->Nat,
for instance calling them both length. This overloading would not cause any ambiguities; there
would be two ways of interpreting (length 1) for 1:ConsList, namely

e as the original function length:ConsList->B applied to 1:ConsList, or

e as the new function length:List->B applied to 1:List (ConsList < List, so 1 also has
type List).

However, it is clear that both interpretations give the same result. This absence of ambiguities in
the presence of overloaded functions and subtyping is called coherence.

The overloading of 1ength is a somewhat degenerated form of overloading, because it can be ex-
plained as just an instance of subtyping. The two types of the function length are ConsList->Nat
and List->Nat. These are subtypes: List->Nat < ConsList->Nat. So we could just say that the
type of length is List->Nat, since this automatically subsumes its other type ConsList->Nat. A
more interesting example of overloading, which cannot be explained as just subtyping, is given in
4.4.

In the dual situation for objects, the idea of reusing the function name does not seem to make
sense. We would not want to use the same name for newPoint and newColouredPoint. Still, one
could imagine it would not do any harm to replace occurrences of newPoint by newColouredPoint.

4.2 Well-definedness

We have to impose a restriction on co-inheritance to ensure that definitions by co-inheritance are
well-defined: the definition of f:ConsList->B that is co-inherited may not use other functions on
ConsList. To understand why, consider a function

f : ConsList->B
f nil = ...
f (cons a 1) L D).,

So f is defined in terms of another function f’:ConsList->B’. If we were to define a function
h:List->B by co-inheriting f,

h : List -> B
co-inherits f : ConsList->B
h (snoc 1 a) = ...

then applying h to a List might result in applying £’ to a List, producing a type error.

We could however define h:List->B by co-inheriting £ after defining f£’:List->B by co-
inheriting £’, i.e. after extending the definition of £’ to cope with snoc-lists. Note that for
this it is crucial that the function that co-inherits £’ is also called £’, otherwise the definition of
f we inherit still refers to the old function £’ that can only take ConsList’s as inputs.

4.3 Overriding

Instead of just adding clauses, as in the definition of h above, we could also override existing
clauses. For instance, a function on List could redefine the value at nil:

length_plus_5 : List -> Nat

co-inherits length : ConsList->B

redefining length_plus_5 nil = 5
length_plus_5 (snoc 1 a) = 1 + length plus_ 51

Clearly now the same name cannot be used for both the old and the new function, as this would
introduce ambiguities.

REMARK 4.2 (DuaLiTY wiTH OO) Suppose that, in some object-oriented language with late
binding, we define a class Point with a method doublebump that calls another method bump. At
the time we write the definition of doublebump we do not know the code that will actually be
executed for bump, because bump could be redefined in a subclass (e.g. ColouredPoint).

We now seem to have something similar for the definitions by pattern-matching. At the time
we write the definition of length (cons a 1) we do not know the code that will actually be
executed to compute the recursive call on 1. For instance, the original definition of length (cons
a 1),”1 + length 17, is still used to compute length plus 5 (cons a 1), but now a different
piece of code is executed to compute the recursive call on 1, namely length plus_5, which will
produce a different result than length would. (The same thing already happens in the case of
newlength, but there the new recursive call newlength 1 will produce the same result as the
original call length 1 would, as least if 1 is a ConsList.)

To define the "new” value length plus 5 nil we could use the "old” value length nil. For
example,

length_plus_5 : List -> Nat
co-inherits length : ConsList->B
redefining length_plus_5 nil = 5 + length nil

Redefining of length plus_5 in terms of length nil looks like the dual of the use of ”super”, i.e.
defining a "new” method of a subclass in terms of the ”old” methods of the superclass.

4.4 ”Real” overloading

In all examples we have seen so far co-inheriting a function of type ConsList->B produced a
function of type List->B. This will not be the case if ConsList occurs in the output type B. For
example, consider

tail : ConsList->ConsList
tail nil = nil
tail (cons a 1) =1

We could co-inherit tail to define a function on List’s, but the output of this new function will
not be a ConsList, but a List.

tail : List->List
co-inherits tail : ConsList->ConsList
tail (snoc 1 a) = if (1 = nil) then nil
else (snoc (tail 1) a)

The overloading of the name tail can not be explained as subtyping, unlike the overloading
of length discussed in 4.1. The function tail has types ConsList->ConsList and List->List.
These two types are not in the subtype relation, and they do not even have a common subtype
that could serve as the minimal type of tail. So the overloading of tail is "real” overloading,
and not just subtyping. So co-inheritance provides a way to introduce ”real” overloaded functions
that are guaranteed to be coherent.

4.5 Co-inheritance is not supertyping
Co-inheritance may be possible even if there is no supertyping. Consider

data SnocList = nil | snoc A SnoclList

Clearly SnocList is not a sub- or supertype of ConsList. Still, we could define a function
g:SnocList -> B by co-inheriting the value at nil from a function f:SnocList -> B. For exam-
ple,

snoclength : SnocList->Nat
co-inherits length : ConsList->Nat
snoclength (snoc 1 a) = 1 + snoclength 1

There is actually a reason why we might want to define snoclength using co-inheritance rather
than simply define snoclength nil = 0. We can give it the same name as length:

length : SnocList->Nat
co-inherits length : ConsList->Nat
length (snoc 1 a) = 1 + length 1

So here co-inheritance is again used to overload a function name — length has type ConsList->ConsList
and SnocList->SnocList and again co-inheritance guarantees coherence.

5 Propositions as Types: Co-inheritance of Proofs

Co-inheritance is something most people will already have used, but for proofs rather than for
programs! By the Curry-Howard isomorphism (propositions-as-types) constructing proofs by in-
duction corresponds to defining functions by pattern-matching and (primitive) recursion, and so
co-inheritance provides a way to reuse induction proofs. Co-inheritance of induction proofs is
very common. Suppose we have given an proof by induction over A. If the (inductive) definition
of A is later extended with another clause, then to update the proof we only have to add the
corresponding new case in the induction proof.

For instance, suppose R be a relation defined by a set of rules (e.g. a reduction or typing
relation) and suppose that we have proved Vz,y. 2Ry = P(z,y) by induction on the generation
of zRy. If a new relation R’ is defined by adding an extra rule to those for R, then to prove
Vz,y.zR'y = P(x,y) we only have to prove the induction step for the extra rule. Of course this
is only sound if no other properties of R are used, which is exactly the point made in 4.2 earlier.
If other properties of R are used, then first we have to prove that these still hold for R’ , which
will again typically be done by just checking the extra case.

6 Inheritance vs Co-inheritance

We now give another example of subtyping and co-inheritance, which is more object-oriented in
flavour. It shows that co-inheritance and inheritance can be used in similar situations, namely
when new representations are added to a type (or, in OO terminology, a class).

Consider a datatype of Shape’s that can either be circles or squares, and a function area that
computes the surface area of a shape:

data Shape = circle Point Num
square Point Num

area : Shape -> Num

area (circle centre radius) 0.5 * pi * square (radius)

area (square bottomleftcorner width) square (width)

We can make a subtype NewShape of Shape by adding more constructors, and then define area
for NewShape’s using co-inheritance. For example:

= circle Point Num
| square Point Num
| rectangle Point Num Num

data NewShape

area : Shape -> Num

co-inherits area : Shape -> Num
area (rectangle bottomleftcorner width height) = width * height

Extending a type with a new representation (e.g. Shape with rectangles) is something that also
happens in OO languages. We could have a class Shape with subclasses Circle and Square, and
then decide to introduce a new subclass Rectangle. (We ignore the fact that Square should be a
subclass of Rectangle.)

The difference with the OO approach is that in the example above no attempt is made to hide
— or abstract away from — the representation of shapes. The constructors of Shape are visible for
all to see, and functions on Shape can be defined by pattern matching in any part of the program.
This is why when we add a new representation for rectangles we get a new type NewShape and
cannot immediately reuse code written for Shape’s to deal with NewShape'’s.

In the OO approach there would only be a select group of functions — the methods — that know
about the representation of Shape’s, and the representation of Shape’s would be hidden from the
rest of the program. Adding a new representation then only affects the methods, and we typically
give new definitions of the methods for the new representation. All other code (the so-called client
code) written for the old class can be reused without any change. Because of this, adding a new
representation for rectangles to a class Shape does not have to produce a a new class NewShape,
but we can still use the original class Shape.

7 Multiple Co-inheritance

It is straightforward to generalise the notion of co-inheritance to multiple co-inheritance. For
example, recall the three algebraic types introduced earlier:

data ConsList = nil | cons A ConsList

data SnocList = nil | snoc A SnoclList

data List = nil | cons A List | snoc List A

Clearly List is a supertype of both SnocList and ConsList: ConsList < List and SnoclList <
List. We can define a function on List by multiple co-inheritance, co-inheriting both a function
on SnocList and a function on ConsList:

h : List -> B
co-inherits f: ConsList->B
and g: SnocList->B

But both ConsList and SnocList have a constructor nil, so the value of h at nil could be co-
inherited from f or g. So if (f nil) and (g nil) are not equal the definition above is ambiguous.
Anyone familiar with object-oriented programming will notice that multiple inheritance can cause
exactly the same problem! There are several ways to solve or avoid this problem:

e give priority to one of the functions that is co-inherited, e.g. the one mentioned first.

e forbid multiple co-inheritance in cases like this, i.e. where the subtypes have constructors in
common.

e only allow multiple co-inheritance of £ and g if the defining clauses of £ and g for the shared
constructors are inherited from a common source and hence identical. E.g. in the example
above, if g inherits its value at nil from f or vice versa, or if £ and g inherit their values at
nil from some common ”super” definition, then the definition of h would not be ambiguous.

Overloading

Like single co-inheritance, multiple co-inheritance can be used to introduce overloading: a function
defined by co-inheritance can be given the same name as one of functions it co-inherits. If the
domains of the functions it co-inherits have a constructor in common — e.g. nil in the example
above then we can only give it the name of the function that was given ”"priority”. It is
possible that the functions that we co-inheriting already have the same name. E.g. suppose
tail:SnocList->SnocList is defined by inheriting tail:ConsList->ConsList:

tail : SnocList->Snoclist
co-inherits tail : ConsList->ConsList
tail (snoc 1 a) = if (1 = nil) then nil
else (snoc (tail 1) a)

Then tail:List->List can be defined as follows

tail : List->List
co-inherits tail : ConsList->ConsList
and tail : SnocList->SnocList

Clearly it doesn’t matter here from which function the nil case is co-inherited.

Well-definedness

Again we have to be careful with co-inheriting functions that rely on other functions. E.g.
suppose f:ConsList->B and g:SnocList->B are defined using functions £’ :ConsList->B and
g’ :SnocList->B:

f : ConsList->B
f nil = ...
f (cons a 1) = (f’ 1)

g : SnocList->B
g mnil = ...
(g’ 1

g (snoc 1 a)

If we define h:List->B by co-inheriting £ and g, then £’ and g’ — which expect ConsList’s and
SnocList’s as arguments — may be invoked with List’s as arguments. As in the case of single
co-inheritance, it would be possible to safely define h:List->B by co-inheriting £ and g after
upgrading the functions £’ and g’ to deal with List’s as arguments.

8 Conclusion

We have described notions of co-inheritance and subtyping for algebraic datatypes, that are duals
of the inheritance and subtyping we know from OQO. For algebraic datatypes

e adding constructors to an algebraic datatype produces a supertype,

e subtyping allows reuse of programs that produce algebraic data as output,

e co-inheritance allows reuse of programs that take algebraic data as input.
For objects on the other hand,

e adding methods to a class produces a subclass,

e subtyping allows reuse of programs that accept objects an input (and send messages to
them)

e inheritance allows reuse of programs that produce objects as output (i.e. class definitions).

Note that there are two different kinds of code reuse here. The code reuse made possible by sub-
typing is literally reuse of exactly the same code. The code reuse made possible by (co)inheritance
is reuse in the sense of making incremental changes to existing code to produce new code.

There are several questions still unanswered. Co-inheritance and subtyping for algebraic types
suggest possible extensions of functional programming languages. However, it is not clear how
useful these would be, or what complications they would introduce. Also, what is the relation
with other extensions of functional programming languages aimed at supporting code reuse or
limited forms of object orientation? There are several of these extensions, for instance the class
mechanism in Haskell [HHIJW96] — which also allows some form of overloading —, the combination
of this class mechanism with existential types [Lau96], and the experimental Haskell dialect called
Mondrian [MC97].

The notion of co-inheritance for inductive types introduced here provides a different perspective
on inheritance as we know it from object-oriented languages. This may help to get a better
understanding of it. For example, for inductive types it is easier to see that subtyping and co-
inheritance complement each other, in that they allow the reuse of different sets of functions.

One thing to be done is extending the description of objects as members of (terminal) co-
algebras [Rei95] to account for inheritance and subtyping. This should make it easier to examine
the relation between inheritance and co-inheritance. It remains to be seen if such an account of
inheritance and subtyping for co-algebras would be a good description of these notions as they
exist in real object-oriented languages.

References
[AGNvS94] Thorsten Altenkirch, Veronica Gaspes, Bengt Nordstrom, and Bjérn von Sydow. A user’s
guide to ALF. Technical report, University of G6éteborg/Chalmers, May 1994.

[Cor95] C. Cornes et al. The Coq proof assistant reference manual, version 5.10. Rapport technique
RT-0177, INRIA, 1995.

[HHJW96] C. Hall, K. Hammond, S.L. Peyton Jones, and P. Wadler. Type classes in Haskell. TOPLAS,
18(2):pp.109-138, March 1996.

[JRIT7] Bart Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. In EAT'CS Bulletin.
june 1997.
[Lau96] K. Laufer. Type classes with existential types. Journal of Functional Programming, 6(3):485—

517, May 1996.

[MC97] Erik Meijer and Koen Claessen. The design and implementation of Mondrian. In Haskell
Workshop. ACM, June 1997.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. The MIT
Press, 1990.

[Rei95] Horst Reichel. An approach to object semantics based on terminal co-algebras. Mathematical
Structures in Computer Science, 5:129 152, 1995.

10

