
Subtyping and Inheritancefor Inductive TypesErik PollUniversity of Kent, Canterbury, UKE.Poll@ukc.ac.ukAbstractInheritance and subtyping are key features of object-oriented languages. We show thatthere are corresponding { or, more precisely, dual { notions for inductive types (or algebraicdatatypes): there is a natural notion of subtyping for these types and an associated form ofcode reuse (inheritance) for programs on these types.Inheritance and subtyping for inductive types not only suggest possible extensions offunctional programming languages, but also provide a new perspective on inheritance as weknow it from object-oriented languages, which may help to get a better understanding of thisnotion.1 IntroductionFunctional programming languages such as ML [MTH90] provide algebraic datatypes { e.g. lists,trees { , and type theories such as Coq [Cor95] or Alf [AGNvS94] provide a more general notionof inductive type. Algebras are a well-known way of modelling these types: algebraic datatypesand inductive types can be understood as term algebras (or initial algebras).It has been observed that object types can be modelled as co-algebras [Rei95]. Co-algebras arenot as well-known as algebras, but the importance of co-algebras has been recognised as a wayof modelling not only objects, but also in�nite data structures, coinductive types, and processes.(See [JR97] for a gentle introduction to co-algebras.) We don't have to know anything aboutco-algebras here, except that they are duals of algebras in some sense.If algebraic datatypes can be modelled as algebras and object types as co-algebras, then alge-braic data and objects can be seen as duals. This suggests that for constructions involving objectsthere may be corresponding { dual { constructions for algebraic datatypes. For objects we havesubtyping and inheritance. Are there dual notions for algebraic datatypes? It turns out that thereare: there is a natural notion of subtyping on algebraic types, and an associated form of code reusefor functions on algebraic types that is dual to inheritance. We will illustrate this in the settingof a functional programming language with algebraic datatypes. The dual of subtyping turns outto be supertyping, which is related to subtyping in the obvious way: A is a subtype of B i� B is asupertype of A. The code reuse for functions on algebraic datatypes will be called co-inheritance, todistinguish it from the inheritance in object-oriented languages. Under the propositions-as-typesisomorphism co-inheritance actually corresponds to a form of proof reuse for induction proofs thatis commonly used.We will only give an informal explanation of the duality with objects, just to show that whatwe describe really are duals of subtyping and inheritance in object-oriented languages. We will notgive the de�nition of co-algebras here, nor will we describe how co-algebras can be used to modelobjects. And although the observation that objects and algebraic datatypes are duals comes fromcategory theory, no category theory is used in this paper.1

2 Algebraic DatatypesIn functional programming languages such as ML or Haskell we can de�ne algebraic datatypes.For example, if A is some type, then a type of A-lists can be de�ned asdata ConsList = nil | cons A ConsListAlgebraic datatype are characterised by a set of constructors (nil and cons in the example above).These are the operations to construct elements of the algebraic datatype. The type ConsList canbe understood as the smallest set containing nil and closed under cons-ing. Functions on algebraictypes can be de�ned by pattern matching, for examplelength : ConsList->Natlength nil = 0length (cons a l) = 1 + length lRemark 2.1 (Duality with OO) A small hint as to how this is dual to objects: constructorsare the duals of methods. Just as an algebraic datatype is characterised by a set of constructors,object types are characterised by a set of methods. And whereas constructors are the only way toproduce algebraic data, methods provide the only way to observe objects.3 SubtypingConsider a type of lists that not only provides an operation cons to add an element at the frontof a list, but also provides an operation snoc to add an element at the end of a list:data List = nil | cons A List | snoc List ANote that List is just a term algebra, so for instance (cons a nil) and (snoc nil a) aredi�erent elements of List. It is possible to write functions on List that di�erentiate between(cons a nil) and (snoc nil a), although we might want to avoid such functions.The constructors of ConsList { nil and cons { are also constructors of List, and so everyConsList is also a List. This means that ConsList can be seen as a subtype of List, or,equivalently, List as a supertype of ConsList. We write this as ConsList < List .The subtyping relation < comes with the following type inference rule for programs, known asthe subsumption rule, which expresses the fact that subtypes are "subsets":a : A A < Ba : BSo if l:ConsList, then it follows from ConsList < List that l:List. The subtyping ConsList< List produces subtyping on more complicated types. For instance, for any type B we haveB->ConsList < B->List ,so if f:B->ConsList then also f:B->List. This means that we can immediately reuse all functionsthat produce elements of the old datatype ConsList as outputs to produce elements of the newdatatype List as outputs.To recap, we have shown thatadding constructors produces a supertype.and that after adding constructors to produce a new (super)type,programs that produce algebraic data as output can be reused.2

Remark 3.1 (Duality with OO) Recall that in object-oriented languages objects in a subclasscan have more methods than objects in the superclass. For instance, to use the standard example,ColouredPoint could be a subclass of Point, i.e. ColouredPoint < Point, with instances ofColouredPoint having more methods than instances of Point.So here the subtyping goes in the opposite direction as for algebraic types:adding methods produces a subtype.Consequently, a di�erent collection of functions can be reused. For example, a program that ex-pects Point's as input can be given ColouredPoint's as inputs. This will not cause any problems,because any messages that can be sent to a Point can also be sent to a ColouredPoint. Soafter adding methods to produce a new (sub)type,programs that take objects as inputs can immediately be reused.4 Co-inheritanceIt does not follow from ConsList < List that ConsList->B < List->B. This is the (in)famouscontravariance of -> in its �rst argument. The subtyping rule for function types isA0 < A B < B0A->B < A0->B0So we have List->B < ConsList->B and not ConsList->B < List->B. It makes sense that we donot have ConsList->B < List->B. Consider a typical function f:ConsList->B de�ned by patternmatching,f : ConsList->Bf nil = ...f (cons a l) = ...It is clear that applying this function f to a List may cause problems, because f(snoc l a) isnot de�ned. (Of course we could allow f to be applied to List's, and have it abort or divergewhen it hits a snoc. But this rather defeats the purpose of typing our programs, which is theprevention of such run-time errors. Subtyping should only give "safe" inclusions between types,that will not introduce run-time errors.)Since we do not have ConsList->B < List->B, we cannot reuse functions that accept ConsList'sas inputs and apply them to List's. However, all is not lost. There is a natural way in which afunction on ConsList's such as f above can be reused to de�ne a function on List's. A typicalde�nition for a function on List's will be of the formh : List -> Bh nil = ...h (cons a l) = ...h (snoc l a) = ...The only thing that is extra compared with the de�nition of f is the snoc-case. We could de�neh by inheriting the �rst two cases from f:h : List -> Bco-inherits f : ConsList->Bh (snoc l a) = ...This form of code reuse will be called co-inheritance. The de�nition of h above would be the sameas the one obtained by copying the two de�ning clauses of f and replacing all occurrences of f byh. For example, consider the following de�nition, which co-inherits the function length de�nedearlier in section 2: 3

newlength : List -> Natco-inherits length : ConsList->Natnewlength (snoc l a) = 1 + newlength lThis de�nition is equivalent withnewlength : List -> Natnewlength nil = 0newlength (cons a l) = 1 + newlength lnewlength (snoc l a) = 1 + newlength lSo the de�nition of length (cons a l), "1 + length l", is copied as the de�nition of newlength(cons a l), but instead of length now newlength is used to compute the recursive call.An obvious thing to do is to give the function newlength the same name as length. Thispossibility is discussed in 4.1. And, as we discuss in 4.2, some restrictions have to be imposed onthe function that is co-inherited if all de�nitions by co-inheritance are to be well-de�ned. But �rstwe show that co-inheritance really is dual to inheritance in object-oriented languages.The example above shows thatco-inheritance allows reuse of programs that take algebraic data as input.Note that this nicely complements the reuse provide by the subtyping discussed in the section 3:� Subtyping (ConsList < List) allows reuse of functions of type B->ConsList to produceList's as outputs.� Co-inheritance allows reuse of functions of type ConsList->B to accept List's as inputs.Note that these are di�erent kinds of reusing code. The former is literally reusing the samecode, the latter is reusing code in the sense of making incremental changes to existing code toproduce new code. In 4.4 we show how co-inheritance also allows reuse of functions of typeConsList->ConsList to accept List's as inputs and produce List's as outputs.Remark 4.1 (Duality with OO) Dualising the statement above predicts:inheritance allows reuse of programs that produce objects as output.We know that in object-oriented languages inheritance allows class de�nitions to be reused. Aclass de�nition does indeed provide a way to create objects, typically in the form of a functionnew... that produces objects as outputs. For example, the de�nition of a class Point couldprovide a function newPoint:B->Point, where the input of type B is used for initialisation. Thinkof newPoint as a function that takes some initial state of type B as input and wraps it up with acollection of methods (a method table) to produce an object. Inheritance would then allow us toreuse newPoint:B->Point when de�ning newColouredPoint:B->ColouredPoint.So functions like newPoint:B->Point are the dual of functions like f:ConsList->B in thealgebraic setting. Often a function such as newPoint will not take a argument, because there issome �xed initialisation, which obscures this duality somewhat.As for algebras, subtyping and inheritance provide di�erent kinds of reuse. Subtyping allowscode to be reused without any change: client code for Point's can be applied immediately beapplied to ColouredPoint's. Inheritance allows code to be reused in the sense of making anincremental change: newColouredPoint can be written by extending the de�nition newPoint.
4

4.1 OverloadingIt would be nice to use the same name for length:ConsList->Nat and newlength:List->Nat,for instance calling them both length. This overloading would not cause any ambiguities; therewould be two ways of interpreting (length l) for l:ConsList, namely� as the original function length:ConsList->B applied to l:ConsList, or� as the new function length:List->B applied to l:List (ConsList < List, so l also hastype List).However, it is clear that both interpretations give the same result. This absence of ambiguities inthe presence of overloaded functions and subtyping is called coherence.The overloading of length is a somewhat degenerated form of overloading, because it can be ex-plained as just an instance of subtyping. The two types of the function length are ConsList->Natand List->Nat. These are subtypes: List->Nat < ConsList->Nat. So we could just say that thetype of length is List->Nat, since this automatically subsumes its other type ConsList->Nat. Amore interesting example of overloading, which cannot be explained as just subtyping, is given in4.4.In the dual situation for objects, the idea of reusing the function name does not seem to makesense. We would not want to use the same name for newPoint and newColouredPoint. Still, onecould imagine it would not do any harm to replace occurrences of newPoint by newColouredPoint.4.2 Well-de�nednessWe have to impose a restriction on co-inheritance to ensure that de�nitions by co-inheritance arewell-de�ned: the de�nition of f:ConsList->B that is co-inherited may not use other functions onConsList. To understand why, consider a functionf : ConsList->Bf nil = ...f (cons a l) = ...(f' l)...So f is de�ned in terms of another function f':ConsList->B'. If we were to de�ne a functionh:List->B by co-inheriting f,h : List -> Bco-inherits f : ConsList->Bh (snoc l a) = ...then applying h to a List might result in applying f' to a List, producing a type error.We could however de�ne h:List->B by co-inheriting f after de�ning f':List->B by co-inheriting f', i.e. after extending the de�nition of f' to cope with snoc-lists. Note that forthis it is crucial that the function that co-inherits f' is also called f', otherwise the de�nition off we inherit still refers to the old function f' that can only take ConsList's as inputs.4.3 OverridingInstead of just adding clauses, as in the de�nition of h above, we could also override existingclauses. For instance, a function on List could rede�ne the value at nil:length_plus_5 : List -> Natco-inherits length : ConsList->Bredefining length_plus_5 nil = 5length_plus_5 (snoc l a) = 1 + length_plus_5 lClearly now the same name cannot be used for both the old and the new function, as this wouldintroduce ambiguities. 5

Remark 4.2 (Duality with OO) Suppose that, in some object-oriented language with latebinding, we de�ne a class Point with a method doublebump that calls another method bump. Atthe time we write the de�nition of doublebump we do not know the code that will actually beexecuted for bump, because bump could be rede�ned in a subclass (e.g. ColouredPoint).We now seem to have something similar for the de�nitions by pattern-matching. At the timewe write the de�nition of length (cons a l) we do not know the code that will actually beexecuted to compute the recursive call on l. For instance, the original de�nition of length (consa l), "1 + length l", is still used to compute length plus 5 (cons a l), but now a di�erentpiece of code is executed to compute the recursive call on l, namely length plus 5, which willproduce a di�erent result than length would. (The same thing already happens in the case ofnewlength, but there the new recursive call newlength l will produce the same result as theoriginal call length l would, as least if l is a ConsList.)To de�ne the "new" value length plus 5 nil we could use the "old" value length nil. Forexample,length_plus_5 : List -> Natco-inherits length : ConsList->Bredefining length_plus_5 nil = 5 + length nilRede�ning of length plus 5 in terms of length nil looks like the dual of the use of "super", i.e.de�ning a "new" method of a subclass in terms of the "old" methods of the superclass.4.4 "Real" overloadingIn all examples we have seen so far co-inheriting a function of type ConsList->B produced afunction of type List->B. This will not be the case if ConsList occurs in the output type B. Forexample, considertail : ConsList->ConsListtail nil = niltail (cons a l) = lWe could co-inherit tail to de�ne a function on List's, but the output of this new function willnot be a ConsList, but a List.tail : List->Listco-inherits tail : ConsList->ConsListtail (snoc l a) = if (l = nil) then nilelse (snoc (tail l) a)The overloading of the name tail can not be explained as subtyping, unlike the overloadingof length discussed in 4.1. The function tail has types ConsList->ConsList and List->List.These two types are not in the subtype relation, and they do not even have a common subtypethat could serve as the minimal type of tail. So the overloading of tail is "real" overloading,and not just subtyping. So co-inheritance provides a way to introduce "real" overloaded functionsthat are guaranteed to be coherent.4.5 Co-inheritance is not supertypingCo-inheritance may be possible even if there is no supertyping. Considerdata SnocList = nil | snoc A SnocListClearly SnocList is not a sub- or supertype of ConsList. Still, we could de�ne a functiong:SnocList -> B by co-inheriting the value at nil from a function f:SnocList -> B. For exam-ple, 6

snoclength : SnocList->Natco-inherits length : ConsList->Natsnoclength (snoc l a) = 1 + snoclength lThere is actually a reason why we might want to de�ne snoclength using co-inheritance ratherthan simply de�ne snoclength nil = 0. We can give it the same name as length:length : SnocList->Natco-inherits length : ConsList->Natlength (snoc l a) = 1 + length lSo here co-inheritance is again used to overload a function name { length has type ConsList->ConsListand SnocList->SnocList { and again co-inheritance guarantees coherence.5 Propositions as Types: Co-inheritance of ProofsCo-inheritance is something most people will already have used, but for proofs rather than forprograms! By the Curry-Howard isomorphism (propositions-as-types) constructing proofs by in-duction corresponds to de�ning functions by pattern-matching and (primitive) recursion, and soco-inheritance provides a way to reuse induction proofs. Co-inheritance of induction proofs isvery common. Suppose we have given an proof by induction over A. If the (inductive) de�nitionof A is later extended with another clause, then to update the proof we only have to add thecorresponding new case in the induction proof.For instance, suppose R be a relation de�ned by a set of rules (e.g. a reduction or typingrelation) and suppose that we have proved 8x; y: xRy) P (x; y) by induction on the generationof xRy. If a new relation R0 is de�ned by adding an extra rule to those for R, then to prove8x; y: xR0y) P (x; y) we only have to prove the induction step for the extra rule. Of course thisis only sound if no other properties of R are used, which is exactly the point made in 4.2 earlier.If other properties of R are used, then �rst we have to prove that these still hold for R0 , whichwill again typically be done by just checking the extra case.6 Inheritance vs Co-inheritanceWe now give another example of subtyping and co-inheritance, which is more object-oriented in
avour. It shows that co-inheritance and inheritance can be used in similar situations, namelywhen new representations are added to a type (or, in OO terminology, a class).Consider a datatype of Shape's that can either be circles or squares, and a function area thatcomputes the surface area of a shape:data Shape = circle Point Num| square Point Numarea : Shape -> Numarea (circle centre radius) = 0.5 * pi * square (radius)area (square bottomleftcorner width) = square (width)We can make a subtype NewShape of Shape by adding more constructors, and then de�ne areafor NewShape's using co-inheritance. For example:data NewShape = circle Point Num| square Point Num| rectangle Point Num Numarea : Shape -> Num 7

co-inherits area : Shape -> Numarea (rectangle bottomleftcorner width height) = width * heightExtending a type with a new representation (e.g. Shape with rectangles) is something that alsohappens in OO languages. We could have a class Shape with subclasses Circle and Square, andthen decide to introduce a new subclass Rectangle. (We ignore the fact that Square should be asubclass of Rectangle.)The di�erence with the OO approach is that in the example above no attempt is made to hide{ or abstract away from { the representation of shapes. The constructors of Shape are visible forall to see, and functions on Shape can be de�ned by pattern matching in any part of the program.This is why when we add a new representation for rectangles we get a new type NewShape andcannot immediately reuse code written for Shape's to deal with NewShape's.In the OO approach there would only be a select group of functions { the methods { that knowabout the representation of Shape's, and the representation of Shape's would be hidden from therest of the program. Adding a new representation then only a�ects the methods, and we typicallygive new de�nitions of the methods for the new representation. All other code (the so-called clientcode) written for the old class can be reused without any change. Because of this, adding a newrepresentation for rectangles to a class Shape does not have to produce a a new class NewShape,but we can still use the original class Shape.7 Multiple Co-inheritanceIt is straightforward to generalise the notion of co-inheritance to multiple co-inheritance. Forexample, recall the three algebraic types introduced earlier:data ConsList = nil | cons A ConsListdata SnocList = nil | snoc A SnocListdata List = nil | cons A List | snoc List AClearly List is a supertype of both SnocList and ConsList: ConsList < List and SnocList <List. We can de�ne a function on List by multiple co-inheritance, co-inheriting both a functionon SnocList and a function on ConsList:h : List -> Bco-inherits f: ConsList->Band g: SnocList->BBut both ConsList and SnocList have a constructor nil, so the value of h at nil could be co-inherited from f or g. So if (f nil) and (g nil) are not equal the de�nition above is ambiguous.Anyone familiar with object-oriented programming will notice that multiple inheritance can causeexactly the same problem! There are several ways to solve or avoid this problem:� give priority to one of the functions that is co-inherited, e.g. the one mentioned �rst.� forbid multiple co-inheritance in cases like this, i.e. where the subtypes have constructors incommon.� only allow multiple co-inheritance of f and g if the de�ning clauses of f and g for the sharedconstructors are inherited from a common source and hence identical. E.g. in the exampleabove, if g inherits its value at nil from f or vice versa, or if f and g inherit their values atnil from some common "super" de�nition, then the de�nition of h would not be ambiguous.8

OverloadingLike single co-inheritance, multiple co-inheritance can be used to introduce overloading: a functionde�ned by co-inheritance can be given the same name as one of functions it co-inherits. If thedomains of the functions it co-inherits have a constructor in common { e.g. nil in the exampleabove { then we can only give it the name of the function that was given "priority". It ispossible that the functions that we co-inheriting already have the same name. E.g. supposetail:SnocList->SnocList is de�ned by inheriting tail:ConsList->ConsList:tail : SnocList->SnocListco-inherits tail : ConsList->ConsListtail (snoc l a) = if (l = nil) then nilelse (snoc (tail l) a)Then tail:List->List can be de�ned as followstail : List->Listco-inherits tail : ConsList->ConsListand tail : SnocList->SnocListClearly it doesn't matter here from which function the nil case is co-inherited.Well-de�nednessAgain we have to be careful with co-inheriting functions that rely on other functions. E.g.suppose f:ConsList->B and g:SnocList->B are de�ned using functions f':ConsList->B andg':SnocList->B:f : ConsList->Bf nil = ...f (cons a l) = (f' l)g : SnocList->Bg nil = ...g (snoc l a) = (g' l)If we de�ne h:List->B by co-inheriting f and g, then f' and g' { which expect ConsList's andSnocList's as arguments { may be invoked with List's as arguments. As in the case of singleco-inheritance, it would be possible to safely de�ne h:List->B by co-inheriting f and g afterupgrading the functions f' and g' to deal with List's as arguments.8 ConclusionWe have described notions of co-inheritance and subtyping for algebraic datatypes, that are dualsof the inheritance and subtyping we know from OO. For algebraic datatypes� adding constructors to an algebraic datatype produces a supertype,� subtyping allows reuse of programs that produce algebraic data as output,� co-inheritance allows reuse of programs that take algebraic data as input.For objects on the other hand,� adding methods to a class produces a subclass,� subtyping allows reuse of programs that accept objects an input (and send messages tothem), 9

� inheritance allows reuse of programs that produce objects as output (i.e. class de�nitions).Note that there are two di�erent kinds of code reuse here. The code reuse made possible by sub-typing is literally reuse of exactly the same code. The code reuse made possible by (co)inheritanceis reuse in the sense of making incremental changes to existing code to produce new code.There are several questions still unanswered. Co-inheritance and subtyping for algebraic typessuggest possible extensions of functional programming languages. However, it is not clear howuseful these would be, or what complications they would introduce. Also, what is the relationwith other extensions of functional programming languages aimed at supporting code reuse orlimited forms of object orientation? There are several of these extensions, for instance the classmechanism in Haskell [HHJW96] { which also allows some form of overloading {, the combinationof this class mechanism with existential types [L�au96], and the experimental Haskell dialect calledMondrian [MC97].The notion of co-inheritance for inductive types introduced here provides a di�erent perspectiveon inheritance as we know it from object-oriented languages. This may help to get a betterunderstanding of it. For example, for inductive types it is easier to see that subtyping and co-inheritance complement each other, in that they allow the reuse of di�erent sets of functions.One thing to be done is extending the description of objects as members of (terminal) co-algebras [Rei95] to account for inheritance and subtyping. This should make it easier to examinethe relation between inheritance and co-inheritance. It remains to be seen if such an account ofinheritance and subtyping for co-algebras would be a good description of these notions as theyexist in real object-oriented languages.References[AGNvS94] Thorsten Altenkirch, Veronica Gaspes, Bengt Nordstr�om, and Bj�orn von Sydow. A user'sguide to ALF. Technical report, University of G�oteborg/Chalmers, May 1994.[Cor95] C. Cornes et al. The Coq proof assistant reference manual, version 5.10. Rapport techniqueRT-0177, INRIA, 1995.[HHJW96] C. Hall, K. Hammond, S.L. Peyton Jones, and P. Wadler. Type classes in Haskell. TOPLAS,18(2):pp.109{138, March 1996.[JR97] Bart Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. In EATCS Bulletin.june 1997.[L�au96] K. L�aufer. Type classes with existential types. Journal of Functional Programming, 6(3):485{517, May 1996.[MC97] Erik Meijer and Koen Claessen. The design and implementation of Mondrian. In HaskellWorkshop. ACM, June 1997.[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The De�nition of Standard ML. The MITPress, 1990.[Rei95] Horst Reichel. An approach to object semantics based on terminal co-algebras. MathematicalStructures in Computer Science, 5:129{152, 1995.

10

