
Boiten, Eerke Albert (1991) The many disguises of accumulation. Technical
report. Dept. of Informatics, University of Nijmegen

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/20986/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/20986/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

The many disguises of accumulation

Eerke Boiten

University of Nijmegen� Dept� of Informatics
Technical Report ������ December ����

Abstract

Several descriptions of basically one transformation technique� viz� accumulation� are
compared� Their basis� viz� the associativity and the existence of a neutral element
inherent in a monoid� is identi�ed�

Keywords

transformational programming� factorial� fast reverse� accumulation� continuations�
lambda abstraction� generalisation� tail recursion� implementation of lists�

This research has been sponsored by the Netherlands Organisation for Scienti�c
Research �NWO�� under grant NF ��	�
��
� �the STOP � Speci�cation and Trans�
formation Of Programs � project��

� Introduction

One of the �rst program transformations that appeared in the literature was the ac�
cumulation transformation� The transformation is now classic� although not everyone
may know it under exactly this name�

In this note� I try to relate several descriptions of this program transformation
technique� In a purely algebraic view� it is the exploitation of the properties of a
monoid� In literature� it can be found under the headings of recursion removal �Str�
�
WS��� AS��� or � simpli�cation �Par���� generalisation of output terms �Aub���� data
structures representing continuations �Wan���� rebracketing �BW�
�� accumulation
�Bir��a�� lambda abstraction or higher order generalisation �Pet��� PS���� or even
a novel implementation of lists �Hug���� It falls under the generalisation tactic in
Feather�s survey paper �Fea���� but is not mentioned explicitly there�

I will start by showing the two �famous examples� of accumulation� Then I show
the basis of the technique with the monoid� Finally� I comment on various papers by
showing how they describe accumulation and what other transformations are possible
using the described technique�

The examples come from many sources� each with their own variant of a func�
tional notation� which is in some cases the clearest notation to express their ideas in�
Therefore� I ask to be excused for the variations in notation throughout this note�

Both juxtaposition and bracketing are used for function application� � denotes
function composition� � always denotes a binary in�x operator� with unit element

��

� Famous example � �� reverting lists

Assuming we are dealing with cons�lists over a �here� irrelevant� type �� de�ned by�

� � � List���
x � �� l � List���
�x � l� � List���

and� additionally� a function �k �append� de�ned by�

� ��k l � l

�a� l���k l� � a� �l��k l��

i�e�� the use of l��k l� forces iteration over l�� Thus� the reverse of a list can be de�ned

by�

rev� � � � �

rev�a� l� � �rev l��k �a� � ��

which is �given this de�nition of �k � an algorithm quadratic in the length of the
argument� By some� as of yet unknown� motive we are led to de�ne

h l� l� � �rev l���k l��

Obviously� then

rev l � h l� �

and also

h� �l� � l�

h�a � l��l� � h l��a� l��

which constitutes a linear algorithm for rev�

� Famous example � �� accumulator version of

factorial

We are given the usual de�nition of the factorial function fact� i�e�

fact��� �

fact�n� � n� fact�n�
� for n �

By generalising fact�n� to k � fact�n� we obtain�

fact ��k� n� � k � fact�n�

and thus�

fact�n� � fact ��
� n�

and also

fact ��k� �� � k

fact ��k� n� � fact ��k � n� n�
�

which is a tail�recursive version of fact �

�

� The monoid

According to �Gil���� a binary algebra S � �S��� is a monoid i� � is associative�
i�e� for all a� b� c � S�

a� �b� c� � �a� b�� c

and an element
� � S exists� such that� for all a � S�

� � a � a

a�
� � a

In the examples� we encountered two monoids� �List��k �� and �Nat���� with
unit elements � � and
� respectively�

The functions in the examples are of the form�

f�x� � if T �x�
then
�

�

else f�K�x���H�x�
�

so they compute

� � �x� � �x� � �� � �� � � ���

with xi � Ki�x� �i �
 � � � n for some n such that T �Kn�x���� which is equal to �by
associativity�

�� � � ��
� � x��� x��� � � ��

so� an equivalent de�nition is

f�x� � f ��x�
��

f ��x� y� � if T �x�
then y
else f ��K�x�� H�x�� y�
��

The crucial step in a unfold�fold style derivation is the de�nition of f � in terms of f �

f ��x� y� � f�x�� y

�the generalisation step�� This transformation was �rst presented in a comparable
form by Darlington and Burstall �Dar�
� DB����

�This is not essential� when T �x�� f�x� may also be G�x� for the derivation to be possible� In
that case� f ��x� y� will be G�x�� y when T �x��

�

� A taxonomy

In the literature� roughly speaking three strategies that allow the above derivation
can be discerned�

The simple accumulation strategy allows only the derivation of accumulator ver�
sions of functions� as in the above examples�

Embedding of the domain �a parameter is added to a function� is the underlying
strategy for accumulation� but also for other strategies like �nite di�erencing �PK�
��

Continuation�based transformation strategies also allow the derivation of pro�
grams with functions as parameters�

All three strategies rely on the generalisation of a constant to a parameter� the
constant may not always be visible� however�

	 On the equivalence of certain computations

In the early sixties� the advent of algol� and McCarthy laying the foundation for
a mathematical theory of computation �McC���� paved the way for the formal study
of programs and algorithms�

The �rst paper I found that deals with accumulation is �Coo���� There� one
can already �nd the classical examples� factorial and fast reverse� By generalising
those functions and the properties that guarantee the equivalence of their di�erent
versions� Cooper derives a general theorem for proving the equivalence of certain
computations�

Cooper also gives the �rst formal treatment of inverting the order of evaluation
�Boi�
� for the factorial function�

 Some descriptions by R� Bird and others

In �Bir��a�� the use of the accumulation strategy in transformational programming is
described� Bird considers parameter accumulation to be one of the most important
things to be taught in functional programming� In his notation� the conditions for
applicability of parameter accumulation are given as follows�

� Given a speci�cation of the form

spec x � f�H x�

�

where H x is a �large� object� de�ned by �when x is a list�

H� � � � � �

H�a� x� � h a �H x�

and a function f � exists such that

f x � f � c x

for some constant c�

� and the following condition holds�

�f � s� � �h a� � �h� a� � �f ��g a s��

for suitable functions g and h��

� then spec can be generalised to a function

spec� s x � f � s �H x��

� and we get

spec x � spec� c x

spec� s�a� x� � h� a�spec�g a s�x��

Lately� R� Bird has been developing a formalism with L� Meertens and others�
which is colloquially called Squiggol �STO��� Bir��� Mee���� In Squiggol� the term
�accumulation� has taken on a slightly di�erent meaning� The accumulation of an
operator � over a list L� ����eL� returns the list containing all intermediate results
of a directed reduction� i�e�

����e �a�� a�� � � � � an� � �e� e� a�� � � � � �� � � �e� a��� a� � � ��� an�

���	e �a�� a�� � � � � an� � �a� � �a� � � � � �an � e� � � ��� � � � � an � e� e�

This bears some relation to the accumulation described in �Bir��a�� in the sense that
the ��nal result� is built up iteratively� The related optimising transformation is
comparable to the relation between reductions on one hand and directed reductions
and accumulations on the other hand �cf� �Bir����� One could also argue that accu�
mulations in the traditional sense are less important in Squiggol because of the use

�

of the �undirected� reduction operator � which makes associativity and� often� unit
elements� implicit� Informally� the reduction operator � can be characterised by�

���a�� a�� � � � � an� � a� � a� � � � �� an

where the absence of brackets indicates associativity of ��
The accumulation strategy as described in this paper is called �one of the appli�

cations of� tupling in more recent Squiggol terminology� Meertens recently proposed
a class of functions called paramorphisms �Mee�
�� Using a form of tupling� paramor�
phisms can be transformed into homomorphisms� This construction is also used by
Harrison �Har�
� fold�axiom R���

Recent work by Meijer� Fokkinga and Paterson �MFP�
� introduces a still wider
class of functions� called hylomorphisms� Erik Meijer has shown that accumulation
can be easily handled in this context �Mei�
��

� Descriptions in CIP
L

In the Munich CIP�project �BBB����� accumulation is mainly viewed as one of the
possibilities for transforming a linear recursive function into tail�recursive form� This
can clearly be seen in the textbooks �BW�
� Par����

Bauer and W�ossner describe the accumulation with the monoid conditions as a
special instance of accumulation with an associative dual� i�e�� � is of type P�Q� P �
and an operator
 �the associative dual of �� of type Q�Q� Q exists� such that

�a� x�� y � a� �x
 y��

This condition� with the existence of a right identity of �� is also su�cient for
accumulation �by de�nition of f ��x� y� � f�x� � y�� See also �BT��� for a more
extensive treatment of associative duals and their properties�

In �Par���� accumulation is described as follows�

Simpli�cation of linear recursion I

funct f � �m x�m�
if B�x� then H�x� else p�K�x��f�K��x��� �

�

�

assoc�m� p�

neutral�m� p� E�

�

funct f � �m x�m�
f ��E� x� where
funct f � � �m y� m x�m�
if B�x� then p�y� H�x�� else f ��p�y� K�x��� K��x�� �

where assoc and neutral denote degenerated algebraic types which state that the
function p is associative on type m and that E is a neutral element �identity� of the
function p on type m� respectively� These are the monoid conditions� as expected�

Of course� this transformation rule can also be viewed as the summary of a
schematic transformational development� starting from the input scheme of the rule�

Embedding�

de�ne new function f � by

f ��m y� m x� � p�y� f�x��

Development�

Focus� function f �

Goal� de�nition of f � independent of f

Strategy� unfold�fold

Transformations�

step
� unfold f

p�y� f�if B�x� then H�x� else p�K�x�� f�K��x�� ���

step
� distribution of function call over conditional

if B�x� then p�y� H�x�� else p�y� p�K�x�� f�K��x���� �

step �� associativity of p

if B�x� then p�y� H�x�� else p� p�y� K�x��� f�K��x��� �

step �� fold f �

if B�x� then p�y� H�x�� else f �� p�y� K�x��� K��x�� �

The condition neutral�m� p� E� comes in when f is subsequently de�ned in terms
of f ��

Note that the embedding �of the domain� is the crucial step in the derivation�
Generally� it is well recognised in the CIP�methodology that embedding �or general�
isation� is a very important method in program transformation�

�

� The Edinburgh generalisation strategy

Among the �rst to recognise the importance of generalisation in program transforma�
tions was the theorem proving group in Edinburgh �BM��� Aub���� The generalisa�
tion strategy is based on the well�known heuristic that� in order to prove a theorem�
one should sometimes prove a more general theorem� In functional programming� this
translates to de�ning more general functions� e�g� functions with extra arguments�
The choice between possible generalisations is based on mismatch information� Ob�
viously one of the applications of this strategy is accumulation �called generalisation
of output terms in �Aub����� where the unfold�fold derivation starts with a more
general function� In �Aub���� one can also �nd a derivation of the fast reverse�

�� Accumulation by e�cient representation of

continuations

In the area of program development� one of the most important issues is reducing
the number of eurekas or rabbits �Bro��� vdW���� Steps that appear to be inventive
need a simple motivation rather than �a little foresight��

In my opinion� one of the best motivations given for accumulation is the one by
Wand �Wan���� In his paper� he describes a simple strategy�

given a function f with argument x� de�ne a new function f � by

f ���� x� � ��f�x���

Thus� f�x� � f ���y�y� x�� � is a continuation function� Then derive a de�nition of
f � independent of f � In many cases� a more e�cient representation of the contin�
uation function suggests itself �at this point� there is still a �small � eureka�� This
is a generalisation� an �invisible� occurrence of the identity function �a constant� is
generalised to an arbitrary function�

Accumulator versions of functions can be derived as follows�
given a function of the form

f�x� � if T �x� then
�
else f�K�x���H�x� �

de�ne

f ���� x� � ��f�x���

�

then

f ���� x� �funfold fg �� if T �x� then
�
else f�K�x���H�x� ��

�fdistributivityg if T �x� then ��
��
else ��f�K�x���H�x�� �

�fabstractg if T �x� then ��
��
else ��y���y �H�x����f�K�x�� �

�ffold f �g if T �x� then ��
��
else f ��� � ��y�y �H�x��� K�x�� ��

Now it can be shown that every function � is of the form �y�y � z for some z�

�y�y �ftrivialg �y�y �
��

� � ��y�y �H�x�� �f� is �y�y � zg �y��y �H�x��� z

�fassociativity �g �y�y � �H�x�� z��

Thus� � � �y�y � z can be represented by just z� Note that ��
�� simpli�es to z�
This gives the well�known accumulator version of f �

f�x� � f ���
�� x�

f ���z� x� � if T �x� then z
else f ���H�x�� z�K�x�� ��

It is important to note that there is not much operational di�erence between the
original f and f �� In f � the continuation function represents the actions that have to
be taken after the recursion has terminated� while this is left implicit in f � Gener�
ally� transformations that change or simplify recursion can be applied by �rst making
explicit part of the recursion mechanism and then proving properties of these repre�
sentations of recursion �e�g�� stacks� cf� the discussion in �Boi�
���

�� Pettorossi�s higher order generalisation

Pettorossi and Skowron�s lambda abstraction or higher order generalisation strategy
�PS��� Pet��� PS��� takes the ideas from �Wan��� even further� As in the Edinburgh
generalisation strategy� mismatch information is used to motivate the introduction
of functions with functions as extra arguments� Their goal usually is the derivation
of tail�recursive functions� as in the CIP methodology�

�

The application of lambda abstraction to the standard accumulation examples
leads to curried versions of the transformed functions�

Often� the lambda abstraction strategy is used in conjunction with the tupling
strategy �Pet���� Apart from accumulation� lambda abstraction can also be used
to derive programs with continuations� e�g� for deriving complicated programs for
traversing datastructures in one pass as in �Bir��b�� Related techniques are described
in �Hug�
� Joh��� Tak����

�� Hughes� novel implementation of lists

In �Hug���� the idea is presented that a list x could be represented by

rep�x� � �y�x�k y�

with corresponding abstraction function

abs�x� � x� ��

It is shown how this allows a straightforward derivation of the �fast reverse� �cf�
section
�� Also� concatenation on the abstract level is represented by function
composition on the concrete level� since

rep�x�k y� �fde�nition repg �z��x�k y��k z

�
fassociativity�k g

�z�x�k �y�k z�

�fde�nition repg �z�rep�x��rep�y�z�

�f��conversiong rep�x� � rep�y��

At a �rst glance� this seems a revolutionary idea� I will demonstrate that� when
one generalises this idea to arbitrary data types with an arbitrary binary operation�
it appears that� again� the monoid conditions should hold for this kind of implemen�
tations of data types to be useful�

Given a data type D with function � of type D�D � D �or D � D� D�� let

rep�d� � �d��

abs�x� � x�
��

This is always a valid implementation of D� since

abs�rep d� � abs�d�� � d�
� � d�

The equation
rep�abs x� � x

only holds for x �a function from D� D� that can be written as �y�x� � y�

rep�abs x� �fdef� repg �z��abs x�� z

�fdef� absg �z��x
��� z

�fx is �y�x� � yg �z�x� � z

�f��conversiong x

When does this constitute a useful implementation of D The most important aspect
is whether � can be e�ciently implemented in the new representation�

rep�x� y� �fdef� repg �z��x� y�� z

�fassociativity of � necessaryg �z�x� �y � z�

�fdef� repg �z��rep x��rep y�z

�f��conversiong �rep x� � �rep y��

For other operators to be e�ciently implementable� certain distributive properties
should hold�

So� for implementation of objects d of a data type D by a function d�� again the
monoid properties should hold� An identity of � should exist to allow an abstraction
function� and � should be associative for its implementation to be simple� Thus� it
is not surprising that this technique led to a derivation of the fast reverse�

�� Some more papers

There are many more papers discussing accumulation� generalisation and related
techniques�

Burstall and Feather�s early survey paper �BF��� gives the familiar factorial ex�
ample as an example for generalisation� and more references to papers from the early
days of transformational programming�

The classic papers by Strong and others �AS��� Str�
� WS��� are mostly con�
cerned with recursion elimination� i�e� with conditions that allow more than the
trivial transition from tail recursion to iteration� The associativity conditions are
among the most obvious of those�

The paper by Huet and Lang �HL��� uses recursion removal as an example of
program transformations expressed with second�order patterns� �These second�order

patterns are comparable to the transformation rules in the CIP approach�� These
examples �mainly taken from Darlington�s thesis �Dar�
�� include accumulation and
accumulation with associative dual�

Manna and Waldinger �MW� also mention generalisation as an important tech�
nique in program synthesis� and show a derivation of the fast reverse�

Arsac and Kodrato� �AK�
� give a method for �nding generalisations that lead
to tail�recursive functions� Their examples involve more complicated properties than
just associativity� the existence of identities of functions is generally assumed �cf�
the adjunction of !�ctitious� identity elements in Squiggol �Bir����� They also brie"y
consider !generalisation using second�order ideas�� where a functional variable is in�
troduced� By explicitly introducing the stacks that are necessary in the evaluation
of non�tail�recursive functions� they derive iterative versions of arbitrary recursive
functions�

Gabriel �Gab�
� calls the accumulation rule parentheses movement�� and uses it
as an example of the DEVA meta�calculus� The most impressive aspect of this paper
is the LATEX�representation of the �really two�dimensional� DEVA fragments� which
has been automatically generated by the DEVA system�

Acknowledgement

I thank Alberto Pettorossi for introducing me to many of the papers mentioned above
and for interesting discussions on this and other subjects during my stay at IASI in
Rome� Helmut Partsch also provided numerous references and useful comments on
this paper�

References

�AK�
� J� Arsac and Y� Kodrato�� Some techniques for recursion removal from
recursive functions� ACM Transactions on Programming Languages and
Systems� ��
��
��#�

� April
��
�

�AS��� M�A� Auslander and M�R� Strong� Systematic recursion removal� Com�
munications of the ACM�

�
��

�#
���
����

�The German version of Bauer and W�ossner�s book has 	Klammerverschiebung
�

�

�Aub��� R� Aubin� Some generalization heuristics in proofs by induction� In Proc�
Int� Symp� on Proving and Improving Programs� Arc�et�Senans� France�
pages
��#
���
����

�BBB���� F�L� Bauer� R� Berghammer� M� Broy� W� Dosch� F� Geiselbrechtinger�
R� Gnatz� E� Hangel� W� Hesse� B� Krieg�Br�uckner� A� Laut� T� Matzner�
B� M�oller� F� Nickl� H� Partsch� P� Pepper� K� Samelson� M� Wirsing�
and H� W�ossner� The Munich Project CIP� Volume I� The Wide Spec�
trum Language CIP�L� volume
�� of Lecture Notes in Computer Science�
Springer�Verlag� Berlin	Heidelberg	New York�
����

�BF��� R�M� Burstall and M�S� Feather� Program development by transformation�
an overview� In M� Amirchahy and D� Neel� editors� Les fondements de la
programmation� Proc� Toulouse CREST Course on Programming� IRIA�
SEFI� Le Chesnay� France�
����

�Bir��a� R�S� Bird� The promotion and accumulation strategies in transforma�
tional programming� ACM Transactions on Programming Languages and
Systems� ��������#����
����

�Bir��b� R�S� Bird� Using circular programs to eliminate multiple traversals of
data� Acta Informatica�

�
��#
���
����

�Bir��� R�S� Bird� An introduction to the theory of lists� In M� Broy� editor� Logic
of Programming and Calculi of Discrete Design� NATO ASI Series Vol�
F�	� pages �#�
� Springer�Verlag� Berlin�
����

�BM��� R�S� Boyer and J�S� Moore� Proving theorems about LISP functions�
Communications of the ACM�

�
��

�#
���
����

�Boi�
� E�A� Boiten� Improving recursive functions by inverting the order of eval�
uation� Science of Computer Programming�
��
��#
���
��
�

�Bro��� M� Broy� editor� Constructive Methods in Computing Science� NATO ASI
Series Vol� F

� Berlin�
���� Springer�Verlag�

�BT��� E�A� Boiten and D� Tuijnman� Properties and application of associative
duals� Unpublished note�
����

�BW�
� F�L� Bauer and H� W�ossner� Algorithmic Language and Program Devel�
opment� Springer�Verlag� Berlin�
��
�

�

�Coo��� D�C� Cooper� The equivalence of certain computations� Computer Jour�
nal� ����#�
�
����

�Dar�
� J� Darlington� A semantic approach to automatic program improvement�
PhD thesis� Dept� of Machine Intelligence� University of Edinburgh�
��
�
Summarized in �DB����

�DB��� J� Darlington and R�M� Burstall� A system which automatically improves
programs� Acta Informatica� ��
���
#���
����

�Fea��� M�S� Feather� A survey and classi�cation of some program transforma�
tion approaches and techniques� In L�G�L�T� Meertens� editor� Program
Speci�cation and Transformation� Proceedings of the IFIP TC��WG��

Working Conference on Program Speci�cation and Transformation� pages

��#
��� Amsterdam�
���� North�Holland Publishing Company�

�Gab�
� R� Gabriel� Program transformation expressed in DEVA meta�calculus�
In M�oller �M�ol�
�� pages
��#
���

�Gil��� Arthur Gill� Applied Algebra for the Computer Sciences� Prentice�Hall�

����

�Har�
� P�G� Harrison� Towards the synthesis of static parallel algorithms� a
categorical approach� In M�oller �M�ol�
�� pages ��#���

�HL��� G� Huet and B� Lang� Proving and applying program transformations
expressed with second�order patterns� Acta Informatica�

��
#���
����

�Hug�
� John Hughes� Super�combinators� A new implementation method for
applicative languages� In Conference Record of the
��� ACM Symposium
on LISP and Functional Programming� pages
#
�� Pittsburgh� August

��
�

�Hug��� R�J�M� Hughes� A novel implementation of lists and its application to the
function !reverse�� Information Processing Letters�

�
�
#
���
����

�Joh��� T� Johnsson� Lambda�lifting� transforming programs to recursive equa�
tions� In J�P� Jouannaud� editor� Functional Programming and Computer
Architecture� volume
�
 of Lecture Notes in Computer Science� pages

��#
��� Berlin�
���� Springer�Verlag�

�

�McC��� J� McCarthy� Recursive functions of symbolic expressions and their com�
putation by machine� Communications of the ACM� ��
��#
���
����

�Mee��� L�G�L�T� Meertens� Algorithmics � towards programming as a mathe�
matical activity� In J�W� de Bakker� M� Hazewinkel� and J�K� Lenstra�
editors� Proc� CWI Symposium on Mathematics and Computer Science�
volume
 of CWI Monographs� pages
��#����
����

�Mee�
� L�G�L�T� Meertens� Paramorphisms� Formal Aspects of Computing�
������
�#�
��
��
�

�Mei�
� E� Meijer� Abreasting accumulating arguments� Unpublished note� May

��
�

�MFP�
� E� Meijer� M�M� Fokkinga� and R� Paterson� Functional programming
with bananas� lenses� envelopes and barbed wire� In John Hughes� edi�
tor� Functional Programming and Computer Architecture� volume �
� of
Lecture Notes in Computer Science� Springer�Verlag�
��
�

�M�ol�
� B� M�oller� editor� Proceedings of the IFIP TC� Working Conference
on Constructing Programs from Speci�cations� Amsterdam�
��
� North�
Holland Publishing Company�

�MW� Z� Manna and R� Waldinger� Knowledge and reasoning in program syn�
thesis�

�Par��� H� Partsch� Speci�cation and Transformation of Programs � a Formal
Approach to Software Development� Springer�Verlag� Berlin�
����

�Pet��� A� Pettorossi� A powerful strategy for deriving e�cient programs by trans�
formation� In ACM Symposium on LISP and Functional Programming�
pages
��#
�
�
����

�Pet��� A� Pettorossi� Program development using lambda abstraction� In Proc�
�th Int� Conf� on Foundations of Software Technology and Theoretical
Computer Science� Pune� India�
���� volume
�� of Lecture Notes in
Computer Science� pages ��
#���� Berlin�
���� Springer�Verlag�

�PK�
� R� Paige and S� Koenig� Finite di�erencing of computable expressions�
ACM Transactions on Programming Languages and Systems� �������
#
���� July
��
�

�

�PS��� A� Pettorossi and A� Skowron� Higher order generalization in program
derivation� In Hartmut Ehrig� Robert Kowalski� Giorgio Levi� and Ugo
Montanari� editors� TAPSOFT��� � Proceedings of the International
Joint Conference on Theory and Practice of Software Development� vol�
ume
�� of Lecture Notes in Computer Science� pages
�
#
��� Pisa�
March
���� Springer�Verlag�

�PS��� A� Pettorossi and A� Skowron� The lambda abstraction strategy for pro�
gram derivation� To be submitted for publication�
����

�STO��� STOP� STOP International Summer School on Constructive Algorith�
mics� Ameland� September
���� Lecture notes�

�Str�
� H�R� Strong� Jr� Translating recursion equations into "owcharts� Journal
of Computer and System Sciences� ��
��#
���
��
�

�Tak��� Masato Takeichi� Partial parametrization eliminates multiple traversals
of data� Acta Informatica�
����#���
����

�vdW��� J� van der Woude� Rabbitcount �� Rabbitcount #
� In J�L�A� Van de
Snepscheut� editor� Mathematics of Program Construction� volume ���
of Lecture Notes in Computer Science� pages ���#�
�� Berlin�
����
Springer�Verlag�

�Wan��� M� Wand� Continuation�based program transformation strategies� Journal
of the ACM�
��
��
��#
��� January
����

�WS��� S�A� Walker and H�R� Strong� Characterizations of "owchartable recur�
sions� Journal of Computer and System Sciences� �����#����
����

�

