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Abstract

Several descriptions of basically one transformation technique� viz� accumulation� are
compared� Their basis� viz� the associativity and the existence of a neutral element
inherent in a monoid� is identi�ed�
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� Introduction

One of the �rst program transformations that appeared in the literature was the ac�
cumulation transformation� The transformation is now classic� although not everyone
may know it under exactly this name�

In this note� I try to relate several descriptions of this program transformation
technique� In a purely algebraic view� it is the exploitation of the properties of a
monoid� In literature� it can be found under the headings of recursion removal �Str�
�
WS��� AS��� or � simpli�cation �Par���� generalisation of output terms �Aub���� data
structures representing continuations �Wan���� rebracketing �BW�
�� accumulation
�Bir��a�� lambda abstraction or higher order generalisation �Pet��� PS���� or even
a novel implementation of lists �Hug���� It falls under the generalisation tactic in
Feather�s survey paper �Fea���� but is not mentioned explicitly there�

I will start by showing the two �famous examples� of accumulation� Then I show
the basis of the technique with the monoid� Finally� I comment on various papers by
showing how they describe accumulation and what other transformations are possible
using the described technique�

The examples come from many sources� each with their own variant of a func�
tional notation� which is in some cases the clearest notation to express their ideas in�
Therefore� I ask to be excused for the variations in notation throughout this note�

Both juxtaposition and bracketing are used for function application� � denotes
function composition� � always denotes a binary in�x operator� with unit element

��

� Famous example � �� reverting lists

Assuming we are dealing with cons�lists over a �here� irrelevant� type �� de�ned by�

� � � List���
x � �� l � List���
�x � l� � List���

and� additionally� a function �k �append� de�ned by�

� ��k l � l

�a� l���k l� � a� �l��k l��

i�e�� the use of l��k l� forces iteration over l�� Thus� the reverse of a list can be de�ned






by�

rev� � � � �

rev�a� l� � �rev l��k �a� � ��

which is �given this de�nition of �k � an algorithm quadratic in the length of the
argument� By some� as of yet unknown� motive we are led to de�ne

h l� l� � �rev l���k l��

Obviously� then

rev l � h l� �

and also

h� �l� � l�

h�a � l��l� � h l��a� l��

which constitutes a linear algorithm for rev�

� Famous example � �� accumulator version of

factorial

We are given the usual de�nition of the factorial function fact� i�e�

fact��� � 


fact�n� � n� fact�n� 
� for n � 


By generalising fact�n� to k � fact�n� we obtain�

fact ��k� n� � k � fact�n�

and thus�

fact�n� � fact ��
� n�

and also

fact ��k� �� � k

fact ��k� n� � fact ��k � n� n� 
�

which is a tail�recursive version of fact �

�



� The monoid

According to �Gil���� a binary algebra S � �S��� is a monoid i� � is associative�
i�e� for all a� b� c � S�

a� �b� c� � �a� b�� c

and an element 
� � S exists� such that� for all a � S�


� � a � a

a� 
� � a

In the examples� we encountered two monoids� �List��k �� and �Nat���� with
unit elements � � and 
� respectively�

The functions in the examples are of the form�

f�x� � if T �x�
then 
�

�

else f�K�x���H�x�
�

so they compute

� � �x� � �x� � �� � �� � � ���

with xi � Ki�x� �i � 
 � � � n for some n such that T �Kn�x���� which is equal to �by
associativity�

�� � � ��
� � x��� x��� � � ��

so� an equivalent de�nition is

f�x� � f ��x� 
��

f ��x� y� � if T �x�
then y
else f ��K�x�� H�x�� y�
��

The crucial step in a unfold�fold style derivation is the de�nition of f � in terms of f �

f ��x� y� � f�x�� y

�the generalisation step�� This transformation was �rst presented in a comparable
form by Darlington and Burstall �Dar�
� DB����

�This is not essential� when T �x�� f�x� may also be G�x� for the derivation to be possible� In
that case� f ��x� y� will be G�x�� y when T �x��

�



� A taxonomy

In the literature� roughly speaking three strategies that allow the above derivation
can be discerned�

The simple accumulation strategy allows only the derivation of accumulator ver�
sions of functions� as in the above examples�

Embedding of the domain �a parameter is added to a function� is the underlying
strategy for accumulation� but also for other strategies like �nite di�erencing �PK�
��

Continuation�based transformation strategies also allow the derivation of pro�
grams with functions as parameters�

All three strategies rely on the generalisation of a constant to a parameter� the
constant may not always be visible� however�

	 On the equivalence of certain computations

In the early sixties� the advent of algol� and McCarthy laying the foundation for
a mathematical theory of computation �McC���� paved the way for the formal study
of programs and algorithms�

The �rst paper I found that deals with accumulation is �Coo���� There� one
can already �nd the classical examples� factorial and fast reverse� By generalising
those functions and the properties that guarantee the equivalence of their di�erent
versions� Cooper derives a general theorem for proving the equivalence of certain
computations�

Cooper also gives the �rst formal treatment of inverting the order of evaluation
�Boi�
� for the factorial function�


 Some descriptions by R� Bird and others

In �Bir��a�� the use of the accumulation strategy in transformational programming is
described� Bird considers parameter accumulation to be one of the most important
things to be taught in functional programming� In his notation� the conditions for
applicability of parameter accumulation are given as follows�

� Given a speci�cation of the form

spec x � f�H x�

�



where H x is a �large� object� de�ned by �when x is a list�

H� � � � � �

H�a� x� � h a �H x�

and a function f � exists such that

f x � f � c x

for some constant c�

� and the following condition holds�

�f � s� � �h a� � �h� a� � �f ��g a s��

for suitable functions g and h��

� then spec can be generalised to a function

spec� s x � f � s �H x��

� and we get

spec x � spec� c x

spec� s�a� x� � h� a�spec�g a s�x��

Lately� R� Bird has been developing a formalism with L� Meertens and others�
which is colloquially called Squiggol �STO��� Bir��� Mee���� In Squiggol� the term
�accumulation� has taken on a slightly di�erent meaning� The accumulation of an
operator � over a list L� ����eL� returns the list containing all intermediate results
of a directed reduction� i�e�

����e �a�� a�� � � � � an� � �e� e� a�� � � � � �� � � �e� a��� a� � � ��� an�

���	e �a�� a�� � � � � an� � �a� � �a� � � � � �an � e� � � ��� � � � � an � e� e�

This bears some relation to the accumulation described in �Bir��a�� in the sense that
the ��nal result� is built up iteratively� The related optimising transformation is
comparable to the relation between reductions on one hand and directed reductions
and accumulations on the other hand �cf� �Bir����� One could also argue that accu�
mulations in the traditional sense are less important in Squiggol because of the use

�



of the �undirected� reduction operator � which makes associativity and� often� unit
elements� implicit� Informally� the reduction operator � can be characterised by�

���a�� a�� � � � � an� � a� � a� � � � �� an

where the absence of brackets indicates associativity of ��
The accumulation strategy as described in this paper is called �one of the appli�

cations of� tupling in more recent Squiggol terminology� Meertens recently proposed
a class of functions called paramorphisms �Mee�
�� Using a form of tupling� paramor�
phisms can be transformed into homomorphisms� This construction is also used by
Harrison �Har�
� fold�axiom R���

Recent work by Meijer� Fokkinga and Paterson �MFP�
� introduces a still wider
class of functions� called hylomorphisms� Erik Meijer has shown that accumulation
can be easily handled in this context �Mei�
��

� Descriptions in CIP
L

In the Munich CIP�project �BBB����� accumulation is mainly viewed as one of the
possibilities for transforming a linear recursive function into tail�recursive form� This
can clearly be seen in the textbooks �BW�
� Par����

Bauer and W�ossner describe the accumulation with the monoid conditions as a
special instance of accumulation with an associative dual� i�e�� � is of type P�Q� P �
and an operator 
 �the associative dual of �� of type Q�Q� Q exists� such that

�a� x�� y � a� �x
 y��

This condition� with the existence of a right identity of �� is also su�cient for
accumulation �by de�nition of f ��x� y� � f�x� � y�� See also �BT��� for a more
extensive treatment of associative duals and their properties�

In �Par���� accumulation is described as follows�

Simpli�cation of linear recursion I

funct f � �m x�m�
if B�x� then H�x� else p�K�x��f�K��x��� �

�

�

assoc�m� p�

neutral�m� p� E�

�



funct f � �m x�m�
f ��E� x� where
funct f � � �m y� m x�m�
if B�x� then p�y� H�x�� else f ��p�y� K�x��� K��x�� �

where assoc and neutral denote degenerated algebraic types which state that the
function p is associative on type m and that E is a neutral element �identity� of the
function p on type m� respectively� These are the monoid conditions� as expected�

Of course� this transformation rule can also be viewed as the summary of a
schematic transformational development� starting from the input scheme of the rule�

Embedding�

de�ne new function f � by

f ��m y� m x� � p�y� f�x��

Development�

Focus� function f �

Goal� de�nition of f � independent of f

Strategy� unfold�fold

Transformations�

step 
� unfold f

p�y� f�if B�x� then H�x� else p�K�x�� f�K��x�� ���

step 
� distribution of function call over conditional

if B�x� then p�y� H�x�� else p�y� p�K�x�� f�K��x���� �

step �� associativity of p

if B�x� then p�y� H�x�� else p� p�y� K�x��� f�K��x��� �

step �� fold f �

if B�x� then p�y� H�x�� else f �� p�y� K�x��� K��x�� �

The condition neutral�m� p� E� comes in when f is subsequently de�ned in terms
of f ��

Note that the embedding �of the domain� is the crucial step in the derivation�
Generally� it is well recognised in the CIP�methodology that embedding �or general�
isation� is a very important method in program transformation�

�



� The Edinburgh generalisation strategy

Among the �rst to recognise the importance of generalisation in program transforma�
tions was the theorem proving group in Edinburgh �BM��� Aub���� The generalisa�
tion strategy is based on the well�known heuristic that� in order to prove a theorem�
one should sometimes prove a more general theorem� In functional programming� this
translates to de�ning more general functions� e�g� functions with extra arguments�
The choice between possible generalisations is based on mismatch information� Ob�
viously one of the applications of this strategy is accumulation �called generalisation
of output terms in �Aub����� where the unfold�fold derivation starts with a more
general function� In �Aub���� one can also �nd a derivation of the fast reverse�

�� Accumulation by e�cient representation of

continuations

In the area of program development� one of the most important issues is reducing
the number of eurekas or rabbits �Bro��� vdW���� Steps that appear to be inventive
need a simple motivation rather than �a little foresight��

In my opinion� one of the best motivations given for accumulation is the one by
Wand �Wan���� In his paper� he describes a simple strategy�

given a function f with argument x� de�ne a new function f � by

f ���� x� � ��f�x���

Thus� f�x� � f ���y�y� x�� � is a continuation function� Then derive a de�nition of
f � independent of f � In many cases� a more e�cient representation of the contin�
uation function suggests itself �at this point� there is still a �small � eureka�� This
is a generalisation� an �invisible� occurrence of the identity function �a constant� is
generalised to an arbitrary function�

Accumulator versions of functions can be derived as follows�
given a function of the form

f�x� � if T �x� then 
�
else f�K�x���H�x� �

de�ne

f ���� x� � ��f�x���

�



then

f ���� x� �funfold fg �� if T �x� then 
�
else f�K�x���H�x� ��

�fdistributivityg if T �x� then ��
��
else ��f�K�x���H�x�� �

�fabstractg if T �x� then ��
��
else ��y���y �H�x����f�K�x�� �

�ffold f �g if T �x� then ��
��
else f ��� � ��y�y �H�x��� K�x�� ��

Now it can be shown that every function � is of the form �y�y � z for some z�

�y�y �ftrivialg �y�y � 
��

� � ��y�y �H�x�� �f� is �y�y � zg �y��y �H�x��� z

�fassociativity �g �y�y � �H�x�� z��

Thus� � � �y�y � z can be represented by just z� Note that ��
�� simpli�es to z�
This gives the well�known accumulator version of f �

f�x� � f ���
�� x�

f ���z� x� � if T �x� then z
else f ���H�x�� z�K�x�� ��

It is important to note that there is not much operational di�erence between the
original f and f �� In f � the continuation function represents the actions that have to
be taken after the recursion has terminated� while this is left implicit in f � Gener�
ally� transformations that change or simplify recursion can be applied by �rst making
explicit part of the recursion mechanism and then proving properties of these repre�
sentations of recursion �e�g�� stacks� cf� the discussion in �Boi�
���

�� Pettorossi�s higher order generalisation

Pettorossi and Skowron�s lambda abstraction or higher order generalisation strategy
�PS��� Pet��� PS��� takes the ideas from �Wan��� even further� As in the Edinburgh
generalisation strategy� mismatch information is used to motivate the introduction
of functions with functions as extra arguments� Their goal usually is the derivation
of tail�recursive functions� as in the CIP methodology�


�



The application of lambda abstraction to the standard accumulation examples
leads to curried versions of the transformed functions�

Often� the lambda abstraction strategy is used in conjunction with the tupling
strategy �Pet���� Apart from accumulation� lambda abstraction can also be used
to derive programs with continuations� e�g� for deriving complicated programs for
traversing datastructures in one pass as in �Bir��b�� Related techniques are described
in �Hug�
� Joh��� Tak����

�� Hughes� novel implementation of lists

In �Hug���� the idea is presented that a list x could be represented by

rep�x� � �y�x�k y�

with corresponding abstraction function

abs�x� � x� ��

It is shown how this allows a straightforward derivation of the �fast reverse� �cf�
section 
�� Also� concatenation on the abstract level is represented by function
composition on the concrete level� since

rep�x�k y� �fde�nition repg �z��x�k y��k z

�
fassociativity�k g

�z�x�k �y�k z�

�fde�nition repg �z�rep�x��rep�y�z�

�f��conversiong rep�x� � rep�y��

At a �rst glance� this seems a revolutionary idea� I will demonstrate that� when
one generalises this idea to arbitrary data types with an arbitrary binary operation�
it appears that� again� the monoid conditions should hold for this kind of implemen�
tations of data types to be useful�

Given a data type D with function � of type D�D � D �or D � D� D�� let

rep�d� � �d��

abs�x� � x�
��

This is always a valid implementation of D� since

abs�rep d� � abs�d�� � d� 
� � d�







The equation
rep�abs x� � x

only holds for x �a function from D� D� that can be written as �y�x� � y�

rep�abs x� �fdef� repg �z��abs x�� z

�fdef� absg �z��x 
��� z

�fx is �y�x� � yg �z�x� � z

�f��conversiong x

When does this constitute a useful implementation of D The most important aspect
is whether � can be e�ciently implemented in the new representation�

rep�x� y� �fdef� repg �z��x� y�� z

�fassociativity of � necessaryg �z�x� �y � z�

�fdef� repg �z��rep x��rep y�z

�f��conversiong �rep x� � �rep y��

For other operators to be e�ciently implementable� certain distributive properties
should hold�

So� for implementation of objects d of a data type D by a function d�� again the
monoid properties should hold� An identity of � should exist to allow an abstraction
function� and � should be associative for its implementation to be simple� Thus� it
is not surprising that this technique led to a derivation of the fast reverse�

�� Some more papers

There are many more papers discussing accumulation� generalisation and related
techniques�

Burstall and Feather�s early survey paper �BF��� gives the familiar factorial ex�
ample as an example for generalisation� and more references to papers from the early
days of transformational programming�

The classic papers by Strong and others �AS��� Str�
� WS��� are mostly con�
cerned with recursion elimination� i�e� with conditions that allow more than the
trivial transition from tail recursion to iteration� The associativity conditions are
among the most obvious of those�

The paper by Huet and Lang �HL��� uses recursion removal as an example of
program transformations expressed with second�order patterns� �These second�order







patterns are comparable to the transformation rules in the CIP approach�� These
examples �mainly taken from Darlington�s thesis �Dar�
�� include accumulation and
accumulation with associative dual�

Manna and Waldinger �MW� also mention generalisation as an important tech�
nique in program synthesis� and show a derivation of the fast reverse�

Arsac and Kodrato� �AK�
� give a method for �nding generalisations that lead
to tail�recursive functions� Their examples involve more complicated properties than
just associativity� the existence of identities of functions is generally assumed �cf�
the adjunction of !�ctitious� identity elements in Squiggol �Bir����� They also brie"y
consider !generalisation using second�order ideas�� where a functional variable is in�
troduced� By explicitly introducing the stacks that are necessary in the evaluation
of non�tail�recursive functions� they derive iterative versions of arbitrary recursive
functions�

Gabriel �Gab�
� calls the accumulation rule parentheses movement�� and uses it
as an example of the DEVA meta�calculus� The most impressive aspect of this paper
is the LATEX�representation of the �really two�dimensional� DEVA fragments� which
has been automatically generated by the DEVA system�
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