
An Object-Based Approach to Modelling andAnalysis of Failure PropertiesM. �Cepin1, R. de Lemos2, B. Mavko1, S. Riddle2, A. Saeed21 Reactor Engineering Division, \Jo�zef Stefan" Institute,Ljubljana, Slovenia2 Department of Computing Science, University of Newcastle upon Tyne,United KingdomAbstractIn protection systems, when traditional technology is replaced by software, the functionalityand complexity of the system is likely to increase. The quantitative evidence normally pro-vided for safety certi�cation of traditional systems cannot be relied upon in software-basedsystems. Instead there is a need to provide qualitative evidence. As a basis for the requiredqualitative evidence, we propose an object-based approach that allows modelling of both theapplication and software domains. From the object class model of a system and a formal spec-i�cation of the failure properties of its components, we generate a graph of failure propagationover object classes, which is then used to generate a graph in terms of object instances in orderto conduct fault tree analysis. The model is validated by comparing the resulting minimalcut sets with those obtained from the fault tree analysis of the original system. The approachis illustrated on a case study based on a protection system from the Nuclear Industry.Keywords: safety analysis, object-oriented modelling, fault tree analysis1 IntroductionIncreasingly traditional technology (hydraulic, pneumatic, electronic) is being replaced by softwarein process control systems. A typical consequence is that the functionality, and hence complexity,of the software-based system tends to increase, making the system harder to certify as assurancemust be provided that the overall system risk is not increased. Evidence for certi�cation is normallyprovided by conducting safety analysis.The quantitative evidence normally provided for traditional systems cannot be relied uponin software-based systems, due to the di�culty of obtaining estimates of failure rates. Insteaddevelopers will need to place greater reliance on qualitative evidence. The object-based approachwe propose begins with a model of an original system implemented in conventional technology,supported by the results of traditional safety analysis. The speci�cation is used to derive anabstract object model which is independent of the technology in which it may be implemented.Safety analysis conducted on this model provides the required qualitative evidence that risk hasnot increased. It also establishes criteria for assessing and certifying the software to be developed,by providing a speci�cation which re
ects the failure properties of the original system.2 Method descriptionThe method proposed in this paper consists of a set of techniques from the software and applicationdomains which are used to model the structure and behaviour of the existing system, and toconduct safety analysis. The result of the method is a formalised fault tree which can be directlycompared with one produced for the original system.The starting point for the method is a functional model of the original system, and its faulttree with resultant minimal cut sets. The method then proceeds as follows:1



Object class model of system structure. The original system is analysed and, using the no-tation of the object view of OMT [5], an object class model is produced which representsthe structure of the system.Formal de�nition of class structure and behaviour. For each object class, its behaviourand structure is formally speci�ed using a modi�ed form of interactor [2]. Instead of em-ploying operational techniques (e.g. statecharts) to express the dynamic view of OMT, weemploy an axiomatic notation [1].Causal analysis of object class model. From the object class model and interactor speci�-cations, a causal model is derived for the propagation of failure behaviours through objectclasses. This step results in a graph of failure propagation over object classes which is termedan impact structure (modi�ed from the form in which it appears in [7]).Fault tree instantiation. The graph of failure propagation over object classes can then be in-stantiated for a particular top event and used as a basis to build a fault tree over objectinstances.Minimal cut sets comparison. Comparing the minimal cut sets from the fault tree derivedfrom the impact structure with the minimal cut sets derived from the original system, thevalidity of the object class model can be assessed: if any new causes are included in the cutsets then safety can be a�ected [10].The techniques used in the method are established techniques employed in the �elds of softwareengineering (OMT and �rst order predicate logic) and safety analysis (fault tree analysis and failuremode and e�ect analysis), and novel techniques for safety analysis (impact structure).The paper illustrates the method outlined above by introducing as a case study a protectionsystem for a Nuclear Power Plant. We begin by providing an overview of the system itself, andthen go through each step in the method to perform the modelling and analysis of the case study.3 ESFAS case study descriptionThe case study system is the Engineered Safety Features Actuation System (ESFAS) employed aspart of the protection system in a Nuclear Power Plant [8].The system monitors parameters in the plant and, in the event of abnormal plant conditions,activates Engineered Safety Features, for example a safety injection signal. These safety featuresmaintain the safety of the reactor by providing core cooling, so reducing the damage to fuel andfuel cladding, and preventing the release of radioactive materials.The ESFAS initiates a safety injection signal if the value of one or more of the parameters(pressurizer pressure, steam line pressure, containment pressure) exceeds a de�ned safety limitduring normal plant operation. The signal can also be actuated manually.3.1 Structure of the ESFASThe ESFAS consists of three or four redundant analog channels to measure each of the diversepressure parameters, and two digital trains employing solid-state logic to vote on the actuation ofa safety signal in the applicable conditions.Redundancy is employed to ensure that no single failure can prevent actuation: only two outof the four channels are needed to provide an actuation signal. This is known as 2/4 voting, or2/3 when there are only three channels. 2/4 voting is used when the same parameter is also usedfor control functions. Each digital train is capable of producing independently a safety injectionsignal.
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3.2 ESFAS Case study simpli�cationsThe resolution of modelling is selected so that only one parameter, measured on four channels, ismonitored. The system for our purposes consists of two redundant trains, four redundant channelsand two manual switches. The case study system is referred to as ESFAS SI Small , the smallversion of the ESFAS Safety Injection system which is fully developed in [9]. The block diagrampresented in Figure 1 represents the functional model of the system.
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Figure 1: ESFAS SI Small Block Diagram4 Case study applicationHaving provided an overview of the system we now illustrate the proposed method in more detail.We begin by forming an object class model of the structure of the system.4.1 Object class model of system structureWe use the notation from the object view of OMT for our object class model, which shows theobjects in the system and their relationships. The object class model is formed by:� identifying object classes - examining components of the system and abstracting commonentities;� identifying associations - examining structural and inheritance relationships between objectclasses, which leads to a hierarchical diagram of aggregation and specialisation of objectclasses.The resulting object class model for the case study is shown in Figure 2. This model decomposesESFAS SI Small into an aggregation (signi�ed by a diamond) of Channel and Train classes.The numbered black circles on the arcs signify multiplicity: there are four channels and two trains.The Channel has an attribute, or state variable, which is the value of the setpoint for that channel(a constant).4.2 Formal de�nition of class structure and behaviourFrom the object class model we now go on to formally specify the structure and behaviour of theobject classes of the system. An interactor [1, 2] provides a formal axiomatic representation ofthe structure and behaviour of an object class. It is divided into declarations and predicates in asimilar way to a Z schema [4]. Table 1 is an interactor for the ESFAS SI Small class.The declarations consist of a composed of �eld (de�ning the structure) which says that theobject class consists of two instances of Train and an indexed sequence of Channels. The3
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Figure 2: ESFAS SI Small Object Class Diagraminteractor ESFAS SI Smallcomposed of:train A; train B Trainchann seqChannelconstants:setpoint R Pressure setpointvariables:input variables:reading seqR Pressure input readingsmanual A;manual B B Manual actuation inputsoutput variables:esfas A; esfas B B ESFAS actuation signalsstate variables:high pressure Binvariant:high pressure ,(9 i; j 2 f1:::4g � (i 6= j ) ^ (reading(i) > setpoint)^ (reading(j ) > setpoint)) Pressure is high if and only if at leasttwo channel setpoints are exceededstructure:8 i 2 f1:::4g:chann(i):reading = reading(i) ^train A:voters(i) = chann(i):channel signal ^train B :voters(i) = chann(i):channel signalesfas A = train A:voteesfas B = train B :votemanual A = train A:manual actmanual B = train B :manual actbehaviour:normal:((high pressure _ manual A), esfas A)^ ((high pressure _ manual B), esfas B) An actuation signal is produced if andonly if pressure is too high, or the rele-vant manual actuation is present.failure:(: high pressure ^((: manual A ^ esfas A) _(: manual B ^ esfas B)) An actuation signal is produced despiteno automatic or manual signal { spuri-ous actuation_(high pressure ^ (esfas A ^ : esfas B))_ (: esfas A ^ esfas B) Benign failure condition - only one ac-tuation signal is produced_(high pressure ^ (: esfas A ^ : esfas B)) _(manual A ^ : esfas A) _(manual B ^ : esfas B) Failure to produce actuation signalwhen needed { critical failureTable 1: Interactor for object class ESFAS SI Small4



indexed sequence is an abstraction of an array. Constants and variables are dealt with next: eachdeclaration gives name, type and an optional comment for variable listed.The predicates consist of an invariant, a structure �eld de�ning how sub-classes communicate(via input and output variables) and how these variables relate to the inputs and outputs of theobject class being speci�ed in the interactor, and a behaviour �eld which de�nes the possiblebehaviour modes of the object class.In terms of the variables de�ned in the interactor, the requirements that the system mustsatisfy can be summarised as follows:1. Whenever the high pressure threshold is exceeded on at least two channels, at least one ofthe trains must generate a safety injection signal:high pressure ) (esfas A _ esfas B)2. The safety injection signal on each train can be independently actuated by a manual switch:(manual A) esfas A) ^ (manual B ) esfas B)3. The injection signal should not be activated spuriously:(esfas A) high pressure _ manual A)^ (esfas B ) high pressure _ manual B)Disjunction of the above requirements characterises the normal behaviour of ESFAS SI Small ,speci�ed in the interactor (Table 1) as((high pressure _ manual A), esfas A)^ ((high pressure _ manual B), esfas B)A consequence of the normal behaviour is that high pressure ) (esfas A ^ esfas B). The normalbehaviour satis�es all the requirements.Failure behaviours are identi�ed either by negating the normal behaviour of the object classor by applying the FMEA technique to identify possible failure behaviours of the object class [6].By negating the normal behaviour predicate for ESFAS SI Small , we obtain(: high pressure ^ (: manual A ^ esfas A) _ (: manual B ^ esfas B)_ (high pressure ^ (: esfas A _ : esfas B))_ (manual A ^ : esfas A) _ (manual B ^ : esfas B)The �rst line in this predicate is related with spurious generation of an actuation signal. Theremaining lines are related with a combination of critical and benign failures (benign being thecase when one train fails but the requirements are still satis�ed). This can be rewritten to separateout the failure modes. The benign failure is speci�ed as(high pressure ^ ((esfas a ^ : esfas b) _ (: esfas a ^ esfas b)))and critical failure is speci�ed as(high pressure ^ (: esfas a ^ : esfas b))_ (manual a ^ : esfas a) _ (manual b ^ : esfas b)Each of these failure conditions is represented by a failure mode (spurious, benign or critical)in the behaviour of the interactor.The method de�nes an interactor for each object class in the model (Train, Train Logic,Sum, Manual Actuation, Channel). The Channel is an example of a primitive object class,which is speci�ed by the interactor in Table 2. The failure behaviour is obtained from the negationof the normal behaviour in the same way as above: in this case there is no benign failure.5



interactor Channelconstants:setpoint R A channel has a constant setpointvariables:input variables:reading R pressure valueoutput variables:channel signal B channel outputbehaviour:normal:(reading � setpoint), channel signal A signal is produced by the channelwhenever the input reading exceeds thesetpoint.failure:((reading � setpoint) ^ : channel signal) Critical failure of the channel: no signalproduced despite input reading exceedingsetpoint_((reading < setpoint) ^ channel signal) Spurious signal produced by channelwhen setpoint is not exceededTable 2: Interactor for object class Channel4.3 Causal analysis of object class modelIn this section, we describe a systematic method for the derivation of a graph of failure propa-gation over the modelled object classes which provides the basis for the analysis of causes andconsequences of failures. The graph is known as the impact structure [7] and is derived from theinformation provided within the object class model, and the interactor speci�cations.The components of an impact structure are nodes which represent object classes and arrows(connecting classes) which represent an impacts relation between classes. An impacts relationexists between two classes, when the behaviour of one a�ects the other.There are two types of impacts relations, impacts between sub-classes of a common aggregateclass (intra-impacts) and impacts between a sub-class and its aggregate class (inter-impacts).intra-impacts For classes A:B and A:C an intra-impact relation exists if A:B impacts A:C , andis depicted by a solid arrow connecting A:B to A:C .inter-impacts For class A and sub-class A:B an inter-impact relation exists if A:B impacts A,and is depicted by a broken arrow connecting A:B to A.There are three ways of composing impacts:n-impacts For two object classes A and B , B impacts A with multiplicity n if, according to theinteractor speci�cation, at least n instances of B must fail in order to impact an instanceof A. An n-impacts is represented by annotating the arrow with a circle containing theparticular number n.and-impacts For object classes A;B and C , instances of both B and C must fail in order toimpact an instance of A. An and-impacts is represented by linking the arrows involved inthe relation with a 
 symbol.or-impacts For object classes A;B and C , instances of either B or C must fail in order to impactan instance of A. An or-impacts is represented by linking the arrows involved in the relationwith a � symbol.The method for generating an impact structure is a three stage process, de�ned as follows.6
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(a) (b) (c)Figure 3: Impact structure for case study. (a) impact structure for the ESFAS SI Small class,(b) impact structure forTrain subclass, (c) complete impact structure for the ESFAS SI Small .Stage 1: Determine ImpactsThe impacts of an aggregate class are derived by an examination of the composed of v andstructure �elds on an interactor.1. Intra-impacts. A solid arrow is drawn between any two object classes A;B if thebehaviour of one object class can a�ect the other, as speci�ed in the structure �eld ofthe interactor for the aggregate object class.2. Inter-impacts. A broken arrow is drawn between any two object classes A:B and A ifA has an output de�ned in terms of an output of A;BStage 2: Simpli�cation of ImpactsThe impacts structure obtained from Stage 1, can be simpli�ed by the deletion of arrows andnodes. Firstly, redundant arrows are deleted by examining the transitive closure (impacts+);basically if the removal of an impacts relation will not change impacts+, the correspondingarrow is deleted. Secondly, nodes are deleted by substituting the impact structure of anaggregate class for the aggregate. After the substitution, those components with an impactsrelation to the aggregate class will inherit the impacts of that aggregate.Stage 3: Composition of ImpactsThe composition of the impacts obtained from Stage 2, can be identi�ed in two steps.1. Multiple composition. When there are multiple instances of a class that impact anotherclass, the interactor speci�cations are examined to determine the multiplicity2. Logical composition. When more than one class participates in an impact relation withanother class, the interactor speci�cations are examined to determine if the behaviourcorresponds to an or-impacts or an and-impacts.Figure 3 shows the evolution of the impact structure for the ESFAS SI Small case study.Figure 3.a illustrates the impact structure for the class ESFAS SI Small , and depicts an inter-impacts relation between the subclass Train and its aggregate class ESFAS SI Small , an intra-impacts relation between the subclasses Channel and Train , and a 3-impacts composition be-tween Channel and Train . Figure 3.b illustrates an and-impacts between subclasses Manual7



Actuation and Train Logic and subclass Sum , Figure 3.c illustrates a simpli�ed structurederived by merging �gures 3.a and 3.b, deleting the subclass Train .The impact structure provides a compact representation of failure propagation through objectclasses, thus facilitating the process for conducting a cause{consequence failure analysis of theobject class model. Thereby providing an essential step to the systematic derivation of a fault treefrom an object class model. This is achieved by instantiating the impact structure of the objectclass model, in order to obtain a structure representing failure propagation over object instances,from which a fault tree can be then generated.4.4 Fault tree instantiationThis section presents how to derive a fault tree, for a particular failure event, from an impactstructure of an object class model and the speci�cation of interactors of the classes.A fault tree consists of nodes, which represent failure events, and gates (\and", \or", andnumerical) which represent the causal relationships between the nodes [11].The method for generating the fault tree from the impact structure and the speci�cations ofthe interactors proceeds in two stages:Stage 1: Generating the nodes� Some of the nodes of the fault tree are formed by instantiating the impact structure,thus producing a node for each object instance of the classes in the impact structure.� The nodes related to aggregate classes are split into two nodes. A node representingthe failure behaviour of the object instance, which is a primitive node, and anothernode representing those failure behaviours which are to be re�ned at lower levels.� For the particular failure event being analysed, each resulting node is annotated withthe respective axiomatic speci�cation of the behaviour from the relevant interactor, andwhen necessary modi�ed to incorporate failure behaviours which are to be re�ned.Stage 2: Generating the gates� The gates of the fault tree are formed by referring to the composition of the impact(and, or, n) and introducing the relevant gate. An \or" gate is also used to connecttwo nodes that were produced by splitting the node representing an aggregate class.Figure 4 shows the fault tree resulting from the application of this method to theESFAS SI Smallcase study. The top node is annotated with the critical failure of the object classESFAS SI Small ,the failure event for this tree. The fault tree contains primitive nodes SUM A and SUM B represent-ing the failure behaviours of the class Sum . Similiarly primitive nodes are provided for thefailure behaviours of Manual Actuation , Train Logic, and Channel . The other intermediatenodes (generated from splitting an aggregate class) of the fault tree represent failure propagationfrom the primitive failure events to the top failure event. An example of an intermediate nodeis NO SIGN A, which represent the propogation of failures from lower levels when SUM A exhibitsnormal behaviour.There is an \and" gate joining the failure events assocaited with the two Sum instances, sincethe impact structure had an 2-impacts. The Channels are connected by a numerical gate \� 3",since there are four instances and the impact structure had an 3-impacts.The fault tree produced directly from the original system model is shown in Figure 5. Bothfault trees have been \pruned" for reasons of space.In order to validate that the failure properties of the object class model are consistent with theoriginal system model, the minimial cut sets of their respective fault trees are compared [10, 3]. Aminimal cut set of a fault tree is a sets of failure, such that if any event of the set occurs the top fail-ure event occurs. For example, one of the minimal cut sets resulting from the fault tree generatedfrom the impact structure: MAN ACT A, MAN ACT B, TRAIN LOGIC A, TRAIN LOGIC B.8
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