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Abstract. There are a range of diagram types that can be used to visu-
alize sets. However, there is a significant lack of insight into which is the
most effective visualization. To address this knowledge gap, this paper
empirically evaluates four diagram types: Venn diagrams, Euler diagrams
with shading, Euler diagrams without shading, and the less well-known
linear diagrams. By collecting performance data (time to complete tasks
and error rate), through crowdsourcing, we establish that linear diagrams
outperform the other three diagram types in terms of both task comple-
tion time and number of errors. Venn diagrams perform worst from both
perspectives. Thus, we provide evidence that linear diagrams are the
most effective of these four diagram types for representing sets.

1 Introduction

Sets can be represented in both sentential (textual) and visual forms and the
latter is often seen as cognitively beneficial but only if the visual form is effec-
tive [15]. To-date, various different visualizations of sets have been proposed,
but there is little understanding of their relative effectiveness. This paper ad-
dresses this knowledge gap by empirically comparing four visualizations: Venn
diagrams, Euler diagrams with shading, Euler diagrams without shading, and
linear diagrams. We do not consider the relative effectiveness of these diagrams
with traditional sentential notations (such as (A ∩ B) − C = ∅) because it was
felt that the latter would be too hard for many people to understand in a short
space of time.

The Venn and the Euler variants will be familiar to most readers. All three
use curves to represent sets: the area inside a curve with label A represents the
set A. Venn diagrams (upper left, Fig. 1) require that every possible intersection
between curves is present. In order assert that sets are empty, the appropriate
regions (often called zones) are shaded. Euler diagrams with shading (upper
right, Fig. 1), by contrast, can either not include or shade zones which represent
the empty set. Euler diagrams without shading (lower left, Fig. 1) provide a
minimal representation of the underlying sets: all, and only, zones that represent
non-empty sets are included. Minimality of representation can necessitate the
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Fig. 1. The four diagram types considered in this paper.

presence of diagrammatic features considered sub-optimal for cognition, such
as three curves meeting at a point [23]; in this example, Hungarian, Italian
and Welsh form such a ‘triple’ point. Across these three diagram types, any
pair of diagrams expressing the same information will have the same number of
unshaded zones; only the number of shaded zones can differ.

Linear diagrams were introduced by Leibniz [5], with parallel bargrams [30]
and double decker plots [11] being similar. Each set is represented as one or more
horizontal line segments, with all sets drawn in parallel. Where lines overlap,
the corresponding intersection of sets contains an element that is not in any of
the remaining sets. Moreover, between them all of the overlaps represent all of
the non-empty set intersections. As an example, consider the linear diagram in
the lower right panel of Fig. 1. Since there is a region of the diagram where
the lines French, Italian, Turkish and Welsh (and only those lines) overlap, the
intersection of those four sets, less the union of Spanish, German and Hungarian,
is non-empty. Further, it is not the case that Hungarian is a subset of French,
because part of the line representing Hungarian does not overlap with that for
French: although one segment of the Hungarian line completely overlaps with
the French line, the other segment does not. Also, because there is no overlap
involving all seven sets, we can infer that no element is in all of the sets.

Most existing research on diagram effectiveness evaluates notations against
some cognitive framework for what should constitute a good diagram, such as
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the Physics of Notations [17] or empirically determines which aspects of a par-
ticular notation are most effective (e.g. [1, 3, 23]). There are some exceptions,
such as [7] which shows that the most effective diagram type is task dependent.
Following [7], we perform an empirical comparison of different notations. Simi-
lar studies do exist, and, by necessity, are task specific. In [25] Euler diagrams,
Venn diagrams and linear diagrams were compared in the context of syllogistic
reasoning (i.e. the interactions between three sets). In a more general reasoning
context, a study between Euler and Venn diagrams was undertaken in [26]. In
both studies, Venn diagrams were least effective, and in [25], linear diagrams
were as effective as Euler diagrams. Our study is the first to assess the effective-
ness of the four diagram types for visualizing sets and the first of its kind to be
conducted on a large and diverse group of participants through crowdsourcing.

The structure of the paper is as follows. In section 2 we describe the experi-
mental design, including drawing criteria for the diagrams and the crowdsourcing
data collection methodology. Further details on maintaining quality of data are
given in section 3, and the results are analyzed in section 4. In section 5 and
section 6, we provide a discussion of the results and their validity, respectively.
Finally, we conclude in section 7. All of the diagrams used in our study, and the
data collected, are available from www.eulerdiagrams.com/set.

2 Experimental Design

We are aiming to establish the relative impact on user comprehension of four
different diagrams types that visualize sets. For the purpose of this study, as
with previous studies, e.g. [13, 20, 22], we measure comprehension in terms of
task performance using time and error data. We adopted a between group design
with one participant group for each diagram type to reducing learning effect. A
further advantage of a between groups design was that participants only had to
be trained in one notation. We recorded two dependent variables: the time taken
to answer questions and whether the answer was correct. Each participant group
was shown a set of diagrams about which they were asked a set of questions. If
diagram type impacts on comprehension then we would expect to see significant
differences between time taken to answer questions or error rates.

2.1 Sets to be Visualized

Each diagram represented a collection of sets with varying relationships between
them. Each such collection involved either three, five, or seven sets, and we had
six collections of each number of sets (thus, 18 in total). This was to ensure that
the questions exhibited a range of difficulties, thus requiring varying levels of
cognitive effort to answer the questions. The study included 18 questions – one
for each collection of sets – and, therefore, 18 diagrams of each of the four types.
Further, we wanted to ensure that, for each question, the Venn diagram, Euler
diagram with shading, and the Euler diagram without shading were different
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Fig. 2. Generating diagrams from real examples.

from each other. For diagrams representing three sets, we chose six combinations
of three sets that ensured the diagrams were different.

The choice of diagrams representing five sets and seven sets, respectively,
was not significantly limited. Rather than generate random combinations of
sets, which might be unlikely to arise in real situations, we turned to Google
images to choose diagrams for the five and seven set cases. We searched for ex-
amples of all diagram types that people had drawn to visualize data; we could
not find any actual examples of linear diagrams and we excluded any diagrams
that had been drawn by the authors of this paper. Some of the diagrams re-
turned in this search represented more than five or seven sets. In these cases,
some sets were removed, to yield the required number, in such a way as to keep
the diagram connected (the curves formed a connected component) whilst en-
suring that the number of zones remained as high as possible. This set removal
method meant that the diagram was, roughly speaking, close in complexity to
the original. An example of a diagram found through Google images can be
seen on the left of Fig. 2 (re-drawn here for copyright reasons, approximating
the colours used and adding shading to the zones representing empty sets; see
http://govwild.hpi-web.de/images/govwild/overlapLegalEntity.png). It
represents ten sets. Three sets were identified for removal, to yield a 7-set dia-
gram, shown on the right. The reduced 7-set diagram corresponds to the four
diagrams shown in Fig. 1 that were used in the study.

Since displaying real data can lead to bias (through the potential for prior
knowledge), the names of the sets were changed to a pseudo-real context, focused
on three domains: film collections, subjects studied, and languages spoken. It was
anticipated that participants would have a reasonable preconception of this kind
of information, but no prior knowledge of the (fictional) information visualized.

2.2 Study Questions

As this study aims to establish which of the four notations is most effective
for accessing information about sets, statements made about the diagrams were
chosen to adhere to the following templates:

1. Simple question templates:
(a) Intersection: Some ⟨elements in X are⟩ also ⟨in Y ⟩.
(b) Subset: Every ⟨element in X is⟩ also ⟨in Y ⟩.
(c) Disjointness: No ⟨element in X is⟩ also ⟨in Y ⟩.
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2. Complex question templates:
(a) Intersection: Some ⟨elements in X and Y are⟩ also ⟨in Z⟩.
(b) Subset: Every ⟨element in both X and Y are⟩ also ⟨in Z⟩.
(c) Disjointness: No ⟨elements in both X and Y are⟩ also ⟨in Y ⟩.

Every statement was prefixed with “This diagram shows ⟨some contextual text
goes here⟩. Is the following statement true?” and participants were asked to
choose the answer ‘yes’ or ‘no’. The statement templates were populated with
context-specific text by randomly choosing the sets for X, Y and, where neces-
sary, Z. The actual phrasing of the individual statements was far less mathemat-
ical in style than the templates just given. One of each type of complex question
is given here, one from each domain:

1. Intersection: This diagram shows the subjects studied by Mrs Robinson’s
students. Is the following statement true? Some of those studying both Ge-
ology and History are also studying Music.

2. Subset: This diagram shows the classifications of films owned by Grace.
Is the following statement true? Every film classified as both Action and
Thriller is also classified as Period.

3. Disjointness: This diagram shows the languages spoken by employees at
Interpro Translators. Is the following statement true? No one who speaks
both Welsh and Italian also speaks Turkish.

The four diagrams associated with question 3 are in Fig. 1.

2.3 Diagram Specification and Layout Characteristics

All of the diagrams were drawn sensitive to various layout guides, used to mini-
mize variability across types. These guides also helped ensure that each diagram
type was not compromised by bad layouts, but to-date only some of these guides
have been verified by empirical testing. The following conventions were adopted:

1. Curves/lines were drawn with a 6 pixel stroke width.
2. Diagrams were drawn in an area of 810 by 765 pixels.
3. Curves/lines representing a particular set were given the same colour. No

two sets, appearing in the same diagram, had same colour.
4. Set names had an using upper case first letter in Sans font, 24 point size.
5. Set names were positioned closest to their corresponding curve/line and took

the same colour.
6. The set names used in any one diagram started with a different first letter.
7. The same colour (grey) shading was used across diagrams where relevant.

A palette of seven colours was generated using colorbrewer2.org (accessed Novem-
ber 2013), in a similar fashion to [9]. Colour generation using the Brewer colour
palette is recognized as a valid approach for empirical studies, such as in the
context of maps [27]. So that the colours were distinguishable, but not sequen-
tial or suggestive (e.g. increasingly vivid shades of red used to denote heat), they
were generated using the ‘qualitative’ option, based on work by Ihaka [12].
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In Fig. 1 the diagrams exhibit all of these layout choices (although they are
scaled). Further layout conventions were adopted for each diagram type, using
results from the literature that guide us toward effective layouts [1, 3, 8, 23]. The
conventions were as follows:

Venn diagrams:
1. The curves were drawn smoothly.
2. The overlaps were drawn so that the zone areas are similar.
3. The diagrams were drawn well-formed; see [28].
4. The diagrams had rotational symmetry, using layouts given in [24].

Euler diagrams with shading:
1. The curves were circles where possible, otherwise ellipses were used.
2. The diagrams were drawn well-formed.
3. The number of shaded zones was kept minimal.

Euler diagrams without shading:
1. The curves were drawn smoothly, with recognizable geometric shapes (such

as circles, ellipses or semi-circles), or with rectilinear shapes.
2. The diagrams were drawn as well-formed as possible, aiming to minimize (in

this order of priority, based on [23]): concurrency between curves, non-simple
curves, triple points, and brushing points (points were two curves meet but
do not cross).

Linear diagrams
1. The number of line segments representing each set was kept small.
2. Favour layouts where, when reading from left to right, the number of over-

lapping line segments changes minimally.

In order reduce the number of line segments, the set with the largest number of
intersections with the other sets was drawn using a single line segment.

2.4 Data Collection Methods

For this study, we adopted a crowdsourcing approach and we used Amazon
Mechanical Turk (MTurk) [4, 19] to automatically out-source tasks to partici-
pants. In MTurk, the tasks are called HITs (Human Intelligence Tasks) which
are completed by anonymous participants (called workers) who are paid if they
successfully complete the HIT. The use of crowdsourcing platforms for conduct-
ing research-oriented studies is becoming more popular. Thus, as this method
for collecting data has now gained recognition within the scientific community.
In particular, there is evidence that it is a valid approach, where [19] compared
lab-based experiments with MTurk, showing that no significant differences arise
in the results. Moreover, MTurk has been specifically used to collect performance
data in other scientific studies in the visualization field, such as [10].

The MTurk HITs were based on the templates provided by Micallef et al.[16],
at http://www.aviz.fr/bayes. Every question, in both the training and the
main study, was displayed on a separate page of the HIT. Previous pages could
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not be viewed and subsequent pages were not revealed until the question on
the current page was answered. The questions in the main study were randomly
ordered to reduce ordering effects.

After every five study questions, participants were asked to answer a question
designed to identify inattentive workers (spammers) and those that had difficul-
ties with the language. In MTurk there is little control over who participates
in the study and, so, some workers may fail to give questions their full atten-
tion [4]. A recognized technique for identifying workers who cannot understand
the language used is to include questions that require careful reading, yet are
very simple to answer (e.g, [18]). In our study, these questions asked participants
to click on a specific area in the diagram, whilst still presenting the participants
with (redundant) radio buttons for the ‘yes’ and ‘no’ answers seen for the 18
main study questions. Participants were classified as spammers if they clicked a
radio button on more than one of the four spammer-catching questions included
in the study. All data obtained from spammers were removed before analysis.

3 Experiment Execution

Initially 20 participants took part in the pilot study (1 spammer). The pilot
study proved the experimental design to be robust, with a few minor changes
made to the wording of the questions (mostly due to typographical errors). A
further 440 participants were recruited for the main study. Of note is that we only
allowed MTurk workers with a HIT approval rate of at least 95% to participate.
All participants were randomly allocated to one of the four diagram types in
equal numbers. There were 16 participants identified as spammers, leaving each
participant group with the following number of participants: Venn diagrams
107, Euler diagrams with shading 109, Euler diagrams without shading 106, and
linear diagrams 102. The ID of all the workers that either completed one of
our HITs or started and returned the HIT before completion was recorded. A
worker whose ID was previously recorded was not assigned a HIT, so preventing
multiple participation. The participants performed the experiment at a time of
their choosing, in a setting of their choosing. They were told that the experiment
would take approximately 20 minutes, based on participants’ performance in the
pilot study, and were paid $1 to take part (this was reduced from $1.50 for the
pilot study, as all 20 HITs were completed within 30 minutes). For the main
study, the data were collected within 24 hours, with HITs made available in
sequential batches of 100, and a final batch of 40. We also note that $1 for
approximately 20 minutes work is higher than is typical for MTurk workers, for
example [19].

At the beginning of the study, each participant was told that they could only
participate once in the study and instructed to read the questions carefully. They
were further advised that they had to answer 75% of “key questions” correctly
in order to be paid (i.e. not classified as a spammer). They were further advised
that the first five pages of the HIT were training, which was the first phase of
the experiment. During this phase, participants attempted questions and were

7



told whether they had answered correctly, with the answer was explained to
them. An example of a training page can be seen in Fig. 3. The super-imposed
rectangles highlight the two radio buttons and show the text displayed after the
participant had clicked ‘reveal answer’.

The participants then entered the data collection phase. This began with
three questions, in addition to the 18 main questions. The data relating to these
first three questions was not included in the analysis, in order to reduce the
impact of any learning effect. Consequently, the following results are based on 424
participants each answering 18 questions, giving 18× 424 = 7632 observations.

4 Statistical Analysis and Results

We now proceed to analyze the data collected by considering time taken and error
rate. The raw data are available from www.eulerdiagrams.com/set, allowing
the computation of non-essential basic statistics omitted for space reasons.

4.1 Time Data

The grand mean was 20.452 seconds (standard deviation: 23.620) and the mean
times taken to answer questions by diagram type are: Venn diagrams 24.477
(sd: 24.158); Euler diagrams with shading 20.532 (sd: 26.996); Euler diagrams
without shading 19.810 (sd: 20.121); and linear diagrams 16.813 (sd: 21.843). In
many tables below, we abbreviate the diagrams types’ names to Venn, shaded
ED, unshaded ED and linear respectively. In order to establish if there is sig-
nificant variation across diagram types, we conducted an ANOVA. The results
of the ANOVA are summarized in table 1, which uses log (base 10) of time.
Although the data are not normal, even after taking logs, the skewness of the
logged data is 0.39 and the sample size is 7632, making the ANOVA test robust;
the raw data have a skewness of 12.08, which is outside the permissable range
of ±2 for the ANOVA to be valid. We regarded p-values of less than 0.05 as
significant, unless stated otherwise.

The row labelled question, with a p-value of 0.000, tells us that there are
significant differences between the mean times of at least one pair of questions.

Fig. 3. The first training page for the Venn diagram group.
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This shows robustness, in that the questions are sufficiently varied in that they
required different amounts of user effort to answer.

The row for diagram, with a p-value of 0.000, tells us that there are signif-
icant differences between the mean times taken to answer questions across the
diagram types. That is, diagram type significantly impacts on task performance.
Next, we performed a Tukey test to compare pairs of diagram types, thus es-
tablishing whether one mean is significantly greater than the other, in order
to rank the diagram types. Any p-values of less than 0.01 were regarded to be
significant, given multiple comparisons being made on the same data. Table 2
presents the rankings of diagram type by mean time taken. We see that linear
diagrams allow participants to perform significantly faster on tasks than
all other diagram types. There is no significant difference between shaded Euler
diagrams and Euler diagrams without shading, whereas Venn diagrams cause
participants to perform significantly slower on tasks. Thus, we conclude
that linear diagrams are the most effective diagram type, with respect to time
taken, followed by both unshaded Euler diagrams and shaded Euler diagrams
and, lastly, Venn diagrams.

The magnitude of the significant differences is reflected in the effect sizes
given in table 3. For example, the largest effect size tells us that 62% to 66%
of participants were faster interpreting linear diagrams than the average person
using Venn diagrams. The effect sizes all suggest that not only are the differences
in mean time taken significant but, taken with the mean times, real differences
in task performance will manifest through their use in practice.

Continuing now with our interpretation of the ANOVA table, the row for
diagram*question, with a p-value of 0.000, tells us that there is a significant
interaction between diagram type and question: the diagram type used impacts
user performance for at least one question. We further investigated this mani-
festation by running another ANOVA, looking for an effect of question type and
an interaction between diagram type and question type. This would establish
whether there was any obvious systemmatic way of describing the interaction
between diagram type and question. The ANOVA showed no significant effect
of question type (p = 0.201) and no interaction between diagram and question
type (p = 0.171). This implies that task performance is not affected by
question type.

Source DF MS F P

question 17 4.3966 108.32 0.000

diagram 3 7.5847 13.52 0.000

diagram*question 51 0.2155 5.31 0.000

participant(diagram) 420 0.5584 13.76 0.000

Error 7140 0.0406 – –

Total 7631
Table 1. ANOVA for the log of time.

Diagram Mean Rank

Venn 24.477 C

Shaded ED 20.532 B

Unshaded ED 19.810 B

Linear 16.813 A
Table 2. Pairwise comparisons.
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4.2 Error Data

Regarding errors, of the 7632 observations there were a total of 1221 errors (error
rate: 16%). The errors were distributed across the diagram types as follows: Venn
diagrams 391 out of 1926 observations; Euler diagrams with shading 377 out of
1962; Euler diagrams without shading 258 out of 1908; and linear diagrams 195
out of 1836. We performed a χ2 goodness-of-fit test to establish whether diagram
type had a significant impact on the distribution of errors. The test yielded a
p-value of 0.000. Thus, the number of errors accrued is significantly affected by
diagram type. Investigating further, table 4 summarizes where significant differ-
ences exist. We conclude that linear diagrams accrued significantly fewer
errors than all other diagram types. Moreover, significantly more errors
were accrued using Venn diagrams and shaded Euler diagrams than
the other two diagram types.

It is natural to ask whether question type impacts error rate by diagram type.
Table 5 summarizes the raw data for error counts for each diagram type, bro-
ken down by question type. Statistically analyzing these data, by question type,
reveals significant differences in all cases. In particular, our analysis revealed
that, for all question types, linear diagrams lead to significantly fewer errors.
For intersection and subset questions, Venn diagrams make a large contribution
to the χ2 statistic, indicating that they account for a significantly large number
of errors. Lastly, for disjointness questions, Euler diagrams with shading make a
large contribution to the χ2 statistic, indicating that they account for a signif-
icantly large number of errors. In summary, our analysis of the errors suggests
that linear diagrams are the most effective diagram type, with Venn diagrams
being the worst, except for questions on disjointness where Euler diagrams with
shading are worst.

4.3 Summary of Results

Linear diagrams allow users to perform most effectively in terms of both task
completion time and correctness: the mean time taken was significantly faster
than for all other diagram types and the number of errors was significantly lower.
By contrast, Venn diagrams were ranked bottom for both time taken and, jointly
with shaded Euler diagrams, error rate. Thus, the error analysis allows us to
distinguish Euler diagrams with shading from Euler diagrams without shading,
which were not significantly different in terms of time taken. This, therefore,

Diagram Unshaded Shaded Venn

Linear 54%-58% 54%-58% 62%-66%

Shaded – – 54%-58%

Unshaded – – 54%-58%
Table 3. Effect sizes.

Diagram Unshaded Shaded Venn

Linear Y Y Y

Unshaded – Y Y

Shaded – – N
Table 4. Error differences.
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Intersection Subset Disjointness

Diagram Error Correct Error Correct Error Correct

Venn 152 490 107 535 132 510

Shaded 122 532 96 558 159 495

Unshaded 100 536 70 566 88 548

Linear 70 542 51 561 74 538

p-values 0.000 0.000 0.000
Table 5. Error counts and significance.

provides an overall ranking of diagram types using both time and error data, in
order of effectiveness:

1. linear diagrams,
2. Euler diagrams without shading,
3. Euler diagrams with shading,
4. Venn diagrams.

5 Subjective Discussion

We now seek to explain our results in the context of theories about diagrams,
cognition and perception. One feature of diagrams that is thought to correlate
with their effectiveness is well-matchedness, introduced by Gurr [8]. A diagram is
well-matched if its syntax directly reflects its semantics. Euler diagrams without
shading are well-matched because the spatial relationships between the curves di-
rectly mirror the relationships between the sets they represent. Linear diagrams
are also well-matched because the spatial relationships between the lines also di-
rectly mirror the relationships between the sets. For example, in Fig. 1, the lines
representing German and Italian do not overlap, and the represented sets are dis-
joint. By contrast, Euler diagrams with shading are not well-matched because of
the additional zones used to represent empty sets. Likewise, Venn diagrams that
include shading are not well-matched. That is, the spatial relationships between
their curves does not directly mirror the relationships between the represented
sets. Thus, our results - with linear diagrams and Euler diagrams without shad-
ing being more effective than Euler diagrams with shading and Venn diagrams,
support Gurr’s theory.

An interesting point is that the Euler diagrams with shading and the Venn
diagrams used in the study were all well-formed, whereas those that did not use
shading were all non-well-formed; see [23] for a summary of these properties.
Rodgers et al., in [23], established that well-formed diagrams are more effective
than equivalent diagrams that are not well-formed (the diagrams in [23] did
not use shading). Thus, our results indicate that being well-matched is more
important than being well-formed.

Another way of examining differences between diagram types is through vi-
sual complexity. For the Venn and Euler family, one measure of visual complexity
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Fig. 4. Diagram complexity.

arises through the number of crossings between curves. In our study, Venn di-
agram exhibited more crossings than Euler diagrams with shading which, in
turn, had more than Euler diagrams without shading. By contrast, linear di-
agrams have no line crossings. For example, in Fig. 4, the Venn diagram has
121 crossings between curves, the Euler diagram with shading has 20, the Euler
diagram without shading has 9 (and a further 4 points where curves meet but do
not cross), and the linear diagram has none. The results of our study lead us to
hypothesize that this measure of visual complexity, at least for the diagrams in
this study, correlates with diagram effectiveness and, moreover, helps to explain
why linear diagrams are the most effective.

We can further explain why linear diagrams are interpreted more quickly,
and with fewer errors than all other diagram types and, in particular, Euler
diagrams without shading. With regard to linear diagrams, we quote Wagemans
et al. “[the] comparison of features lying on pairs of line segments is significantly
faster if the segments are parallel or mirror symmetric, suggesting a fast grouping
of the segments based on these cues [29]”, who reference Feldman [6] as the source
of this insight. As we have seen, linear diagrams use parallel line segments and
so are thought to be effective for this reason. However, as Wagemans et al.
consider the relative effectiveness of diagrams drawn with lines, this alone does
not explain why linear diagrams are more effective than the other diagram types.

To gain more insight into our observations, we consider the work of Bertin
who describes graphical features consisting of elements and properties [2]. Closed
curves and lines can be regarded as elements. Properties include shape and size.
Bertin, recognizing our visual sensitivity to graphical properties, proposes eight
visual variables. Two of these, called planar variables, are the x and y coordinates
in the plane. Venn and Euler diagrams are not constrained by planar variables:
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drawing their closed curves is not constrained by x or y coordinates. Therefore,
each closed curve’s position in the plane is arbitrary other than topological con-
straints imposed by the sets being visualized. Conversely, linear diagrams are
constrained by planar variables. Lines are ordered vertically and run horizon-
tally, in parallel. In the context of this study, a top down hierarchy is imposed,
along the y axis, based upon the alphabetical order of set names, and this layout
feature is thought to aid reading the diagram. There is no such prescribed order
in the Euler and Venn family. Moreover, relationships between combinations of
sets can be ‘read off’ along the x axis. Consequently, the prescriptive planar
layout of linear diagrams, as opposed to the ‘free’ (disordered) positioning of
curves in the other diagram types, is thought to aid comprehension.

6 Threats to Validity

Threats to validity are categorized as internal, construct and external [21]. The
following discusses threats to validity, focusing primarily on those arising from
using a crowdsourcing approach, that were considered and addressed to ensure
the study is robust and fit for purpose. With regard to internal validity, following
factor was among a number that were considered in our study design:
Laboratory : ideally, all participants would be exposed to the same environment
when the study took place. This would ensure that each participant was ex-
posed to the same hardware, free from noise and interruption. By adopting a
crowdsourcing approach, we had no control over the environment in which each
participant took part. To reduce the effect of this compromise, a large data set
was collected, with over 400 participants.

Now we consider construct validity, examining the rigour of our dependent
variables and independent variables for measuring comprehension:
Time: to ensure the rigour of time measurements, consideration was paid to the
precise duration elapsed interpreting a diagram as well as the units employed to
measure time. As we used a crowdsourcing approach, there was little control over
any distractions impacting the time taken by each participant on each question.
To manage this, a large sample size was used.
Question: it was considered a threat if participants did not spend time reading
and understanding the questions and diagrams. To manage this threat diversity
was introduced in the diagrams so that participants had to read and understand
each diagram before being able to answer the posed question. It was also consid-
ered a threat if the diagrams were regarded as trivial; having only a few sets was
deemed insufficient to yield noticeable differences in response times, should they
exist. To manage this, diagrams represented three, five or seven sets in order to
demand cognitive effort. Lastly, the study included questions to allow spammers
to be identified, catching those who did not read questions carefully.

The following factor considers the limitations of the results and the extent
to which the they can be generalized, thus examining their external validity:
Participant : participants were representative of the wider population, being
MTurk workers. They were predominately from the USA or India.
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Thus, the results should be taken to be valid within these constraints.

7 Conclusion

In this paper we have examined four diagram types that are used for visualizing
sets. By conducting an empirical study, we have established that task perfor-
mance is significantly better when using linear diagrams over the Euler diagram
family, comprising Venn diagrams, Euler diagrams with shading and Euler dia-
grams without shading. Furthermore, the Euler diagrams variants that we tested
can be ordered: Euler diagrams without shading were most effective, Euler di-
agrams with shading were next and, finally, Venn diagrams proved to be least
effective, having both poor time and accuracy performance. Given the prevalent
use of Euler and Venn diagrams for visualizing sets, and the relative lack of use of
linear diagrams, these results have implications for the use of diagrams in prac-
tice. Our results suggest that linear diagrams should be more widely adopted,
at least for use by the general population. It would be interesting to establish
whether these results manifest for expert users also.

Looking to the future, we plan to conduct further studies that augment the
syntax of these diagrams with data items (i.e. set elements). Many diagram-
matic systems, such as spider diagrams and Euler/Venn diagrams, exploit Euler
diagrams with graphs to represent sets and their elements. It will be interesting
to establish whether linear diagrams should instead be adopted for representing
this more complex data. Moreover, the result suggest that the number of shaded
zones, in the Euler and Venn diagram family, could impact on performance.
However, the current study did not control this variable and further study will
be needed to gain insight into their effect.
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